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Abstract: River discharge in the UK exhibit significant clustering of high-flow

events on multidecadal timescales. A hidden semi-Markov model is constructed

for the study of such multidecadal variability. The model includes time depen-

dent covariates of climatological nature as well as a random effect driven by the

hidden Markov states to account for possible non-explicit low-frequency climatic

processes. The model is applied to an illustrative data set for river Severn in the

UK.
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1 Introduction

Floods are natural catastrophes which may have a disastrous effect in eco-
nomic terms. For example, UK floods in summer 2007 resulted in the largest
flood-related aggregate insured loss in the UK (Lane, 2007). These events
have generated considerable concern in the insurance industry and, there-
fore, interest in better understanding the associated statistical properties.
The problem of determining return periods for high-flow river discharge is
particularly delicate if the underlying physical process is intrinsically non-
stationary, for example due to climate change or to anthropogenic causes
(e.g. change in land usage). A recent study of a number of catchments
in UK has revealed remarkable hydrological volatility in the past: major
floods appear to be characterised by significant spatio-temporal clustering
(Robson, 2002). The pronounced temporal variability of flood occurrences
has been described in terms of ‘flood rich’ and ‘flood poor’ periods which
may extend for multiple decades (Robson, 2002; Lane, 2007).
Low-frequency behaviour at decadal timescales is a possible explanation
for the clustering behaviour described above, somewhat contradicting the
climate change hypothesis. Recent increasing trends in the frequency of
flooding in certain catchments may be explained as irregularly recurring
patterns of variability, occurring on multidecadal timescales. Climatic vari-
ability at such low frequencies has indeed been observed and described in
a fairly large number of studies and it is crucial to understand which cli-
matic trends can be attributed to natural variability of the climate system,
rather than to anthropogenic forcing. In this paper we consider a hidden
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semi-Markov model in an effort to try and capture features of the variability
in flooding that may be driven by unobserved processes.

2 Model Specification

Consider a data set which is a time series y = {y1, y2, . . . , yN} of yearly
counts of single days for which a flood event was recorded assuming that
the river was observed for N years. Here we assume a non-stationary Pois-
son model for yt (t = 1, . . . , N), where the mean Λ(xt) may depend on
possibly time dependent covariates xt. Furthermore we assume that the
mean depends on a hidden state St of a semi-Markov chain at time t where
St ∈ {1, 2, . . . , S} is the state space of the process. The mean is charac-
terised as follows:

Λ (xt; St) = exp {θSt
+ βxt}

so that given the state St, yt is Poisson distributed with a mean that
depends on time through covariates xt = (x1t, x2t, . . . , xpt) which have
associated parameters β = (β1, . . . , βp). According to the state of a hidden
semi-Markov chain, Λ (xt; St) will be different for each state through the
state dependent intercept θSt

. Here we assume that the resulting hidden
semi-Markov Poisson (HSMP) model occurs in discrete time mainly due
to the nature of flood data but also because it reduces the complexity of
the model in a way. Note that through the hidden chain, some correlation
structure is introduced in the counts yt.
To derive the likelihood of the HSMP model consider first the likelihood
of the Poisson model over a period τ given the state s of the chain during
that period:

`(y1, y2, . . . , yτ |s) =
τ∏

i=1

e−Λ(xi;s)Λ (xi; s)
yi

yi!
(1)

Second, consider a simple semi-Markov chain which is often defined by an
initial state distribution π = (π(1), π(2), . . . , π(S)), a transition probability
matrix P = {pij} where pii = 0,

∑
j pij = 1 and a vector of holding time

distributions h(τ) = {hi(τ)}. So the chain starts at a state s1 say, according
to π(s1) and holds that state for a time interval τs1

according to distribution
hs1

(τs1
), it then enters a new state s2 according ps1,s2

and the process
repeats itself analogously. The likelihood of a realisation (τs1

, τs2
, . . . , τsn

)
of this chain involving n state changes is

π(s1)hs1
(τs1

)

n∏

j=2

psj−1 ,sj
hsj

(τsj
) (2)

Note that hi(τ) can be any discrete distribution and if it is geometric then
the chain is Markov and not semi-Markov. The reason for considering a
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semi-Markov chain here is because it increases model flexibility by not
imposing a specific structure on hi(τ).
Now suppose that both the time series y and the semi-Markov chain have
been observed. Then the joint likelihood L(y1, . . . , yN ; τs1

, . . . , τsn
) is ob-

tained by combining (1) and (2):

π(s1)hs1
(τs1

)`(y1, . . . , yτs1
|s1)ps1,s2

hs2
(τs2

)`(yτs1
+1, . . . , yτs1

+τs2
|s2) × etc.

But since the chain is not observed, we sum over all possible states si ∈
{1, 2, . . . , S} and and all possible holding times τi ∈ {1, 2, . . . ,∞} to obtain
the marginal likelihood L(y1, . . . , yN ) of the HSMP model as:

∞∑

τs1
=1

. . .

∞∑

τsn=1

S∑

s1=1

. . .

S∑

sn=1

L(y1, . . . , yN ; τs1
, . . . , τsn

) (3)

In general, the HSMP likelihood is a function of the parameters in Λ (x(t); St),
the unknown initial distribution π and transition matrix P and also the pa-
rameters φ of the specified holding distributions hi(τi). Given the complex-
ity of the model we adopt an MCMC approach to model fitting considering
that the computational cost in evaluating (3) is great given any reasonable
observation interval and number of proposed states. By our assumption,
the data y for the HSMP model are expressed in discrete time steps mean-
ing that recursive algorithms used in the Hidden Markov models literature
(MacDonald and Zucchini, 1997) can be analogously modified for efficient
calculation of the HSMP likelihood. The idea in such recursion is to con-
sider a variable αt(j) sequentially at each discrete time step t ∈ {1, . . . , N},
where:

αt(j) = Pr(y1, . . . , yt and chain exits state j at time t)

One can then compute αt(j) recursively:

α1(j) = π(j)hj(1)`(y1|j)

α2(j) = π(j)hj(2)`(y1, y2|j) +
∑

i6=j

α1(i)pijhj(1)`(y2|j)

α3(j) = etc...

Then
∑S

j=1 αN (j) is equivalent to (3). Note that in the recursive expres-
sion for αN (j), we replace hj() with its upper tail to account for right
censoring in the final state duration. Once the likelihood is efficiently eval-
uated, it can be used in conjunction with Metropolis-Hastings to provide
a computationally feasible estimation procedure for the parameters of the
HSMP model. Here we use a combination of the random walk and the inde-
pendence Metropolis samplers (Gilks et al., 1996) but do not provide any
details.
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3 Model Application

We examine daily discharge data for the river Severn at Bewdley (UK)
in the 85 year period between 1922 and 2006. A flood is recorded when
the discharge passes a certain threshold and the response y is defined as
the number of days a flood has occurred in a year. Covariates x1(t) and
x2(t) are used corresponding to the yearly averages of Atlantic multidecadal
oscillation (AMO) and North Atlantic oscillation (NAO) indexes between
1922 and 2006 respectively. The possible presence of other, not explicit
low-frequency processes is accounted for by the hidden semi-Markov chain.
Specifically we assume two hidden states St in the chain where each has a
Poisson holding time with a different mean. The model is then

yt ∼ Pois(Λ (x1t, x2t; St)) t = 1, . . . , 85

Λ (x1t, x2t; St) = exp {θSt
+ β1x1t + β2x2t} St ∈ {1, 2}

10000 samples were collected from the posterior distribution of each pa-
rameter and from the posterior predictive distributions of the fitted values.
In figure (1) the black line represents the actual values y, the dashed line
shows the fitted values calculated as the means of the posteriors and bold
lines show the 95% credible intervals calculated as the 95% quantiles of the
posteriors (note that the lower interval is 0 for all years)

1920 1940 1960 1980 2000

0
5

10
15

time (years)

Num
ber

 of 
floo

d d
ays

 pe
r ye

ar

FIGURE 1. Fitted and actual values of the response.

3.1 Conclusion and Discussion

Figure 1 shows that the model is able to capture the increased variance in
prevalence between 1930 and 1960 and in the last part of the record: these
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are two ‘flood-rich’ periods for the Severn, separated by a long ‘flood-poor’
period between 1960 and the late 1990s. Although this behaviour is mainly
explained by the covariate AMO and not the hidden chain, the model did
identify two hidden states, one with a very small prevalence in time but
with a higher value of θSt

in the Poisson mean which is what the data is
suggesting looking at the ‘spikes’ of large values in the observed counts in
Figure (1). This is reflected in the sufficiently high credible intervals.
Possible extensions to the model include the introduction of a (spatial)
random effect to facilitate a multi-catchment scenario. Also, one of the
main point of interest will be to try and characterise the hidden states of
the Markov model in terms of physical processes which would be possibly
useful in setting up improved seasonal or interannual forecasts of high-flows.
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