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ABSTRACT

A baroclinic model of intermediate complexity for the atmospheric jet at middle latitudes is used as a
stochastic generator of atmosphere-like time series. In this case, time series of the total energy of the system
are considered. Statistical inference of extreme values is applied to sequences of yearly maxima extracted
from the time series in the rigorous setting provided by extreme value theory. The generalized extreme
value (GEV) family of distributions is used here as a basic model, both for its qualities of simplicity and its
generality. Several physically plausible values of the parameter 7, which represents the forced equator-
to-pole temperature gradient and is responsible for setting the average baroclinicity in the atmospheric
model, are used to generate stationary time series of the total energy. Estimates of the three GEV param-
eters—location, scale, and shape—are inferred by maximum likelihood methods. Standard statistical diag-
nostics, such as return level and quantile-quantile plots, are systematically applied to assess goodness-of-fit.
The GEV parameters of location and scale are found to have a piecewise smooth, monotonically increasing
dependence on 7. The shape parameter also increases with 7', but is always negative, as is required a priori
by the boundedness of the total energy. The sensitivity of the statistical inferences is studied with respect
to the selection procedure of the maxima: the roles occupied by the length of the sequences of maxima and
by the length of data blocks over which the maxima are computed are critically analyzed. Issues related to
model sensitivity are also explored by varying the resolution of the system. The method used in this paper
is put forward as a rigorous framework for the statistical analysis of extremes of observed data, to study the

past and present climate and to characterize its variations.

1. Introduction

The study of climatic extreme events is of paramount
importance for society, particularly in the fields of en-
gineering as well as environmental and territorial plan-
ning. Indeed, temporal variations in the statistics of ex-
treme events may have effects that are more acute and
disruptive than changes in the mean climate (Katz and
Brown 1992). In works of economical nature (see, e.g.,
Nordhaus 1994; Kunkel et al. 1999), the special role
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played by the extreme events in terms of impacts is
modeled by the hypothesis that the costs associated
with climatic change can be represented as strong non-
linear functions of the observed variations in surface
temperature. This constitutes a clear motivation why,
when the impacts of climatic change are examined, the
interest for variations in the statistics of extreme events
plays a strategic role (Watson et al. 2001; Lucarini
2002). Apart from the evaluation of costs due to wind
storms (Rootzén and Tajvidi 2001), more recently esti-
mates of wind speed extremes have proved relevant in
the evaluation of potential production of wind energy
in a considered region (Mortensen et al. 1993; Lavag-
nini et al. 20006).

Recently, Karl and coauthors (Karl et al. 1996; Karl
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and Knight 1998) analyzed in qualitative terms the ex-
istence of trends in the frequency of extreme (precipi-
tation) events. Here the authors stated that “the per-
centage of the United States with a much above normal
proportion of total annual precipitation from extreme
precipitation events (daily events at or above 2 in.)”
showed an increase from 9% in 1910-20 to about 11%
in the 1990s. Despite scientific criticism of these papers
by other researchers in the field, the basic idea that the
frequency of extreme events may change together with
average surface temperature has been increasingly dis-
cussed, eventually becoming one of the issues debated
by the Intergovernmental Panel on Climate Change
(IPCC): a specific report on changes in extreme
weather and climate events was issued in 2002 (avail-
able online at http://www.ipcc.ch/pub/support.htm).
When dealing with extremes of complex processes, ba-
sic questions to be asked are what is the correct way of
measuring extremes? Are we concentrating on local or
global fluctuations of the system in question? How do
we measure local extremes? Extremes of wind speeds,
rainfall amounts, or economical damage? Moreover,
the enhancement in the extreme events might be quan-
tified either in terms of the number of events or in the
size of the average extreme event or a combination
thereof. Several other ambiguities often make the lit-
erature on the subject difficult to follow.

Two important weaknesses of much of the work on
the subject of extreme meteoclimatic events and their
trends are

e the lack of interpretation of the dynamical mecha-
nisms that are supposed to cause the hypothesized
changes in the probability distribution of extremes;
these mechanisms are often just alluded to, instead of
being explicitly formulated quantitatively and ana-
lyzed.

e the lack of a common and theoretically founded defi-
nition of extremes.

The deficit mentioned in the first point may have a
negative effect on both deterministic and statistical
studies of the phenomena in question. One major ex-
ample concerning global processes is that, despite the
great attention given to the subject, very few research-
ers have investigated the basic mechanisms that should
associate an increased CO, concentration to enhanced
extreme weather events in detail, especially in the case
of extratropical cyclones (see, e.g., Lionello et al. 2002).
Regarding the observed climate change, as summarized
from chapter 2 of the 2001 Working Group I report of
the IPCC (Houghton et al. 2001), while several studies
at regional level claim that increases in extratropical
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cyclones seem to have occurred in several regions of the
Northern Hemisphere (but not in the Southern Hemi-
sphere!), the mechanisms involved are not clear, and it
is not certain whether these trends are multidecadal
fluctuations or rather part of a longer-term trend. In
fact, we may guess that in the context of the current and
future global warming trends (if taken for granted) two
contrasting mechanisms might be at work: on the one
hand, the fact that the atmosphere and surface waters
are warming up might allow for a moistening of the
atmosphere, thus allowing for increases in stored en-
ergy in the form of latent heat; but at the same time, a
moderating influence might be exerted by the polar
warming, which reduces the equator-to-pole tempera-
ture difference, thus decreasing the average baroclinic-
ity of the system. Some parts of this complex dynamical
chain have been analyzed: for example, Allen and In-
gram (2002) postulate that the changes in precipitation
extremes are controlled by the Clausius—Clapeyron re-
lationship. Zwiers and Kharin (1998) found a decrease
in extreme wind speed under CO, doubling in a GCM
simulation. Nevertheless, to our knowledge, the com-
plete picture is far from being understood.

As for the second point above, the lack of a common,
rigorous framework for the statistical analysis of ex-
tremes (with exceptions such as, e.g., Katz et al. 2002;
Zwiers and Kharin 1998; Kharin and Zwiers 2000) pro-
vides a serious drawback for the interpretation and
comparison of results from different studies. This prob-
lem is not justified since mathematical theories on ex-
treme events are well developed (Castillo 1988; Coles
2001; Embrechts et al. 1997; Fisher and Tippett 1928;
Galambos 1978; Gnedenko 1943; Lindgren et al. 1983)
and the derived methods are quite successful in many
applications (Katz et al. 2002; Perrin et al. 2006; Zwiers
and Kharin 1998; Kharin and Zwiers 2000). One basic
ingredient of the theory is Gnedenko’s theorem
(Gnedenko 1943), which states that, under fairly mild
assumptions, the distribution of the block maxima of a
sample of independent identically distributed variables
converges to a member of a parametric family of dis-
tributions: the so-called generalized extreme value
(GEV) family. Note that one of the earliest applica-
tions of this theory in the natural sciences occurred
specifically in a meteoclimatic setting (Jenkinson 1955).
Other statistical models for extreme events include the
r-largest statistics, threshold exceedance models, such
as the generalized Pareto distribution, and point pro-
cesses (see Coles 2001).

The reliability of parametric estimates for extreme
value models is highly dependant on the asymptotic
nature of extreme value theory. In particular, at least
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the following issues should be checked or addressed
(Coles 2001):

1) Independence of the selected extreme values
2) Using a sufficiently large number of extremes
3) Using values that are genuinely extreme

Despite the importance of the third requirement,
many studies actually deal with so-called soft extremes
(Klein Tank and Konnen 2003), which are maxima of
blocks that are either too short or values having return
periods that are too small to allow the basic assump-
tions of the theory to hold. This is often the conse-
quence of the limited amount of available data: on the
one hand, one has to restrict to maxima of data blocks,
thereby discarding most available data; on the other
hand, one would like to have a long sequence of ex-
treme values. The net result is that the assumptions of
the extreme value theorems often go unchecked and
are, at times, plainly impossible to check, since the
available systematic climatic records cover the last cen-
tury at best. Therefore, thinking in terms of annual
maxima, in such cases we only have 100 extremes.
Adapting the definition of extremes to the needs of the
work means that the reliability of the resulting esti-
mates is seriously reduced.

The goal of this paper is to infer and critically check
the statistics of extreme values, in the GEV framework,
on the atmosphere-like time series produced by a dy-
namical system describing the midlatitude atmospheric
circulation. This system displays internally generated
noise (a chaotic attractor) and is used as a stochastic
generator of data. We consider the time series of the
system total energy E(f), which is a relevant physical
quantity of global character. Subsequently, we analyze
how the GEV distribution inferred from block maxima
of E(f) depends on the value of the forced equator-to-
pole temperature difference T, which controls the
baroclinicity of the model. The reliability of the GEV
fits is examined by considering both shorter sequences
of extremes and so-called soft extremes. Moreover, is-
sues related to model error and sensitivity are briefly
examined by analyzing the effects of variations in
model resolution. The usage of numerically generated
data allows us to avoid all the difficulties associated
with the available climatic records, such as missing ob-
servations and low-quality data. In particular, we do not
need to worry about the wastage of data caused by the
selection of annual maxima, which is a serious limita-
tion when considering observed data. In the method-
ological sense, and as far as statistical inference is con-
cerned, our approach is similar to that of Zhang et al.
(2004). However, an important difference is that the
statistics of the time series E(f) generated by the atmo-
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spheric model cannot be directly chosen: there is no
explicit formula relating the probability density func-
tion of E(¢) and the parameter 7.

The structure of the paper is thus outlined. In section
2 we first describe the setup of the numerical experi-
ments performed with the atmospheric model and then
the adopted methods of statistical analysis of extreme
values. The results for the considered reference case of
1000 yearly maxima are presented in section 3. Sensi-
tivity of the inferences is assessed in section 4 by vary-
ing the length of yearly maxima sequences, the block
length over which maxima are taken, and the model
resolution. The dependence of the GEV parameters
with respect to T is also analyzed in this section. Sec-
tion 5 summarizes the results and their relation to the
above discussion. The model of the baroclinic jet used
as a stochastic generator is described in the appendix,
referring to Lucarini et al. (2005) for a thorough dis-
cussion.

2. Data and methods

a. Total energy of the atmospheric model

We consider a quasigeostrophic intermediate com-
plexity model (Speranza and Malguzzi 1988; Malguzzi
et al. 1990; Lucarini et al. 2005; also see the appendix)
providing a basic representation of the turbulent jet and
of the baroclinic conversion, barotropic stabilization,
thermal diffusion, and viscouslike dissipation processes,
which characterize the physics of the atmospheric cir-
culation in the midlatitudes. The model is relaxed to-
ward a given equator-to-pole temperature profile,
which acts as baroclinic forcing. It features several de-
grees of freedom in the latitudinal direction and two
layers in the vertical, the minimum for baroclinic con-
version to take place (Pedlosky 1987; Phillips 1954).
The system’s statistical properties change quite rel-
evantly when the parameter 7, determining the forced
equator-to-pole temperature gradient, is varied. In par-
ticular, as 7' increases, we go from a stationary to an
atmosphere-like chaotic regime with internally gener-
ated noise. By chaotic, we mean that the system pos-
sesses a strange attractor in phase space (Eckmann and
Ruelle 1985). For a detailed description of the model
physics and dynamics see Lucarini et al. (2005).

In the present setting, the model is used as a stochas-
tic generator of time series of the total energy, both for
testing the reliability of different statistical approaches
(cf. with Zhang et al. 2004) and for studying the depen-
dence of extremes from the parameter 7. A uniformly
spaced grid of 21 values of T is fixed in the range [10,
50], starting from 10 and increasing with step 2. The
baroclinic model is run for 7 fixed at each of these
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FiG. 1. Autocorrelations of the total energy time series for (left) 7 = 10, (center) T = 30, and (right) 7z = 50; time
lag in days is on the horizontal axis. The full 6-hourly time series of 1000 yr have been used (see section 2a).

values, producing 21 simulations, which are 1000 yr of
length (preceded by an initial, discarded transient of 5
yr) where the total energy E(¢) is recorded every 6 h
[the formula of the total energy is given in the appen-
dix, Eq. (31)]. We recall that, in the nondimensional-
ization of the system, 7, = 1 corresponds to 3.5 K, 1
unit of total energy corresponds to roughly 5 X 10'7 J,
and ¢t = 0.864 is 1 day; see Lucarini et al. (2005) for
details.

For each of the selected values of T, a chaotic at-
tractor is numerically detected in the phase space of the
model. This is illustrated by the autocorrelations of the
time series of the total energy E(¢) (Fig. 1), which decay
to zero on a time scale that is comparable with that of
the atmospheric system [roughly 10-15 days (Lorenz
1967)]. Since all parameters of the model are kept fixed
in each simulation, upon discarding the initial transient
the time series of E(f) may be considered a realization
of a stationary stochastic process.

The distribution of the total energy time series is
visualized by means of the histograms and boxplots in
Fig. 2, for three values of Tj. Notice that, as T in-
creases,

¢ the upper tail of the distribution becomes heavier,
whereas the lower tail shortens; and

¢ both the average value and the variability of the total
energy time series increase.

The latter point is clearly visualized in Fig. 3, where
the time-averaged total energy is displayed for each of
the 21 stationary time series, together with confidence
intervals. Throughout the paper, confidence intervals
are computed as average plus/minus sample standard
deviations multiplied by 1.96.

In concluding this section a theoretical remark is in
order. All the strange attractors examined are implicitly
assumed to possess a unique Sinai—-Ruelle-Bowen
(SRB) ergodic invariant measure (Eckmann and Ruelle
1985). This is indeed a rather general and difficult prob-
lem in dynamical systems and physics. On the one hand,
existence of a unique SRB measure is necessary to cor-
rectly associate a stationary stochastic process with the
dynamical evolution law. On the other hand, existence
of a unique SRB measure is a very strong regularity
assumption for a dynamical system: it is not even
known whether invariant measures exist at all and, if so,

Ty =10 Ty = 30 Tk =50
[ I T | I I I [ I I |
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Fi1G. 2. Histograms and boxplots of the total energy time series for (left) 7, = 10, (center) 7, = 30, and
(right) T = 50.
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FIG. 3. Time-averaged total energy E (vertical axis) as a func-
tion of T (horizontal axis) for each of the 21 selected values of
Tp. Confidence bands (average =1.96 times sample std dev) are
added. The full 6-hourly time series of 1000 yr have been used (see
section 2a).

whether a finite or infinite number of invariant mea-
sures coexist for a given chaotic system. Moreover,
even if an SRB measure exists and is unique, it is in
general nonparametric: there is no explicit formula re-
lating the statistical behavior to the system’s equation
and parameters. Our assumption of existence and
uniqueness of a SRB measure is coherent with the cha-
otic hypothesis proposed by Gallavotti and Cohen
(Gallavotti and Cohen 1995a,b; Gallavotti 1996; Cohen
and Gallavotti 1999).

b. Parameter estimation and model assessment in
GEV inference

As discussed in the previous section, the time series
we work with are characterized by fast decay of auto-
correlations (roughly 10-15 days), which implies weak
(short time range) dependence of the observations (cf.
Fig. 1). Inference of threshold exceedance models
(Coles 2001; Embrechts et al. 1997; Lindgren et al.
1983) is, in this case, complicated by the choices of
suitable threshold values and cluster size for decluster-
ing (see, e.g., Coles 2001, chapter 5), which might be
somewhat arbitrary in the applications. On the other
hand, since the dependence is short range, if the
maxima of the total energy time series are taken over
sufficiently large data blocks, then they may be consid-
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ered independent with good approximation. This is why
we have preferred the GEV to threshold models. More-
over, since we can generate time series of arbitrary
length, for simplicity we refrained from using the r-
largest statistics, which are often a valid alternative to
the GEV, especially when data scarcity is an issue. In
this section, therefore, we recall the methods of GEV
inference as far as needed in the present work. The
exposition is largely based on Coles (2001). Also see
Castillo (1988); Coles (2001); Embrechts et al. (1997);
Fisher and Tippett (1928); Galambos (1978); Gnedenko
(1943); and Lindgren et al. (1983) for methodology and
terminology of extreme value theory.

Gnedenko’s theorem (Gnedenko 1943), or the three
types theorem, first presented in a slightly less general
form by Fisher and Tippett (1928), states that, under
fairly mild assumptions, the distribution of the block
maxima of a sample of independent identically distrib-
uted variables converges, in a suitable limit, to one of
three types of extreme value distributions. The three
types are in fact special cases of the GEV family of
distributions (also called von Mises type):

G(x) = exp{—[l + E(%)]_Ug}, (1)

for x in the set {x: 1 + &x — p)/o > 0} and G(x) = 0
otherwise, with —o0 < p < +o, ¢ > 0, and — < £ <
+oo. The quantities (p, o, &) are called location, scale,
and shape parameter, respectively. In such a frame-
work, statistical inference of extreme values amounts to
estimating the GEV distributional parameters (u, o, &)
for a given time series and assessing the quality of the
fit. If £ > 0 (¢ < 0) the distribution is usually referred to
as Fréchet (Weibull) distribution, whereas if ¢ = 0 we
are experiencing the Gumbel distribution. See Em-
brechts et al. (1997); Castillo (1988); Coles (2001);
Galambos (1978); and Lindgren et al. (1983) for details
and examples.

In practical applications of the extreme value theory
the distribution function of the data (the parent distri-
bution) typically is unknown. Therefore, both the type
of limiting distribution and the parameter values must
be inferred from the available data and the quality of
the resulting estimates should always be assessed. For
GEYV inference, a sequence of maxima is constructed
by subdividing the available data {x;} into blocks of
equal length and by extracting the maximum from each
block. The block length is one of the choices that plays
the usual, critical role between bias and variance in the
parametric estimates. On the one hand, by using
shorter blocks a longer sequence of maxima is ob-
tained, resulting in smaller uncertainties for the infer-
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ences. At the same time, approximation to the limiting
distribution might be worse due to the introduction of a
bias. On the other hand, if the blocks are too long an
enhanced uncertainty is induced for the inferred values
of the GEV parameters. In many situations concerning
climate studies a reasonable (and sometimes compul-
sory) choice is to consider the annual maxima (see
Coles 2001).

Assume that the observations in the time series are
equispaced in time and that none of them is missing
[both conditions are often violated in concrete cases,
see, e.g., Perrin et al. (2006)]. Let n be the number of
observations in a year and denote M,, ;, ..., M, ,, as the
sequence of the annual maxima, that is, the maxima
over the consecutive data blocks of length n. If the
variables X, are independent, then the variables
M,,, ..., M,, are independent as well. In fact, ap-
proximate independence of the M, ; holds also in the
case of weak-dependent stationary sequences, see
Lindgren et al. (1983) and Coles (2001) for definitions
and examples.

Among the numerous methods to infer the GEV pa-
rameters [moment based or graphical techniques, see
Castillo (1988)], we adopt the maximum likelihood es-
timator for its great adaptability to changes of models.
Denote 0 = (u, o, &) as the parameter vector for the
GEYV density g(x; 0), the latter being the derivative of
G(x) = G(x; 0) in Eq. (1). In the stationary context, the
block maxima of the observed data are assumed to be
realizations of a stationary stochastic process with den-
sity g(x; 6”), where 6° is the unknown parameter vector.
The maximum likelihood estimator 6° of 6° is defined as
the value that maximizes the likelihood function

Lo = [[ e, 0). @)
i=1

To put it simply, maximizing L(0) yields the parameter
values for which the probability of observing the avail-
able data is the highest. It is often more advantageous
to maximize the log-likelihood function

m

1(6) = 1ogL(6) = Zl log g(M,, ;; 6), 3)

and, according to Eq. (1), the log-likelihood function
I(p, o, & is given by

1 [ Mn,i -
—m logo — (1 + g>i1 {log[l + g(—a )}
M. . — —(1/8)
=) e
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if £ # 0 and by

mioso = 2 () - el (2 ]

®)

if £ = 0, defined on the points M, ; that, in the case & #

0, satisfy the condition 1 + &§(M,,; — w)/o > 0 for alli =

1,...,m. ~
Approximate confidence intervals for 6° are con-

structed using the fact that each component of 6° =

N NN VAN A AN
(60, 65, 69) = (u°, 0, &) is asymptotically normal (Coles
2001):

VAN ~
0 ~ N(O%. ) Vi=1,....d, ©)

where N(a, b) denotes the normal distribution with
mean a and variance b and J/i,j is a generic element of
the inverse of the observed information matrix l,(0)
defined by

91(0) .
1,(0) = ~ 3090,/ .. Vi,j=1,...,d (7)
Y/ i

N\
and evaluated at @ = 6°. From Eg. (6) one obtains the

(1 — «) confidence interval for 6):

/\
00 = zwz\/@, ®)

where z,, is the (1 — «/2) quantile of the standard
normal distribution. All confidence intervals in this pa-
per are computed by Eq. (8), except when a more de-
tailed analysis is presented. For example, in the assess-
ment of inference quality, confidence intervals are also
computed by a standard bootstrap procedure (applied
to the sequence of annual maxima) and by profile like-
lihood. The latter technique consists of the following.
Consider the parameter & for example. The profile
likelihood of & is obtained by se;gting p,/\and o to their
maximum likelihood estimates, MO and ¢°, respectively,
in the log-likelihood function / [Eq. (4)]. The profile
VAN AN

likelihood plot is the graph (x, y) = (& I(u’, u°, €)),
giving a section of the likelihood surface as viewed from
the & axis. A confidence interval can be computed by
determining the intersections of the horizontal line

—

y= 50 - EQO.QS )

with the profile likelihood graph, where g o5 is the 95%
quantile of the x* distribution with 1 degree of freedom.
See Coles (2001, section 2.6.6 and 2.7) for theory and
examples.

One of the main goals of extreme value theory is
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estimating the probability of occurrence of events that
are more extreme than those that have been observed
thus far. Let z,, be the value that has a probability p to
be exceeded every year by the annual maximum
Pr{M, ;> z,} = p with 0 < p < 1. In common termi-
nology z,, is called the return level associated with the
return period 1/p. A maximum likelihood estimator for

N
Z, is obtained by plugging the estimates for 0° = (i, &,
¢) into the quantiles of G(x), obtained by inverting Eq.
(1). This yields the estimator

G 2 A
f——{1—[~log(l —p)] ¢} for ¢=0
2, = 3
fi — ¢log[—log(1 —p)]  for £=0o.
(10)

The variance of the return level estimator Z,, is approxi-
mated as

Var(Z,) ~ VzIT,VVzP, where

V is the variance—covariance matrix
Var(n)  Cov(u, o) Cov(u, §)
V(p, 0,8 = | Cov(o,pn)  Var(e)  Cov(§, o)
Cov(§, n)  Cov(§, o)  Var(§)
(12)

and both Vz, and \/I\ are evaluated at the maximum
likelihood estimate 6° = (f, 6, é). This allows for the
construction of confidence intervals for z/;, and is re-
ferred to as the delta method. Again, profile likelihood
and a bootstrap technique are used for goodness-of-fit
assessment of the return level inferences.

Only Weibull distributions (¢ < 0) allow for the pos-
sibility of having p = 0, corresponding to a return level
with an infinite return period. In this case,

g

Zp=f -3 (13)

Information on the return levels is usually reported in
the return level plot, where z’} is plotted against log y,,,
where y, = —log(l — p) [cf. Eq. (10)]. The return level
plot is linear for the Gumbel distribution, concave for
& > 0 (Frechet), and has the horizontal asymptote Eq.
(13) for £ < 0 (Weibull). Note that the smallest values
of p are usually those of interest, since they correspond
to very rare (particularly extreme) events. In the return
level plots, events with a short return period (large
probability p) are compressed near the origin of the
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axes, while outliers and rare events (small p) are high-
lighted. It is for this reason that such plots are very
useful tools for both model analysis and diagnosis.

The above procedures for inference require assess-
ment with reference to the available data. Useful
graphical checks are the probability plot, the quantile—
quantile plot (QQ plot), and the return level plot. The
first is the comparison between the estimated and the
empirical distribution function G(x): the latter is a step-
function defined by

i

G(M(i)) = m 5

(14)
where M, is the order statistics for the sequence
M,,, ..., M,, of mblock maxima. Note alternative
definitions of the empirical distribution function exist,
see Castillo (1988).

The QQ plot, formed by the points

() o)

highlights the behavior of the model tail, which is often
the most interesting part. Substantial departures of the
above-listed plots from the diagonal indicate inad-
equacy of the GEV model or other systematic errors.
Another diagnostic plot is constructed by adding con-
fidence intervals for z/:, and return levels of the empiri-
cal distribution function, according to Eq. (15), to the
return level plot (see above). Agreement of the empiri-
cal distribution function with the return level curve sug-
gests goodness-of-fit and adequacy of the GEV model.

All computations and plots in this paper have been
carried out with the statistical software R (Ihaka and
Gentleman 1996) freely available at www.r-project.org
under the General Public License (GPL). The library
ismev (www.cran.r-project.org), which is an R-port of
the routines written by Stuart Coles as a complement to
Coles (2001), has been used with minor modifications.

3. GEY inferences for 1000 annual maxima

The annual maxima are extracted from the 6-hourly
time series of the energy described in section 2. Each
series contains 4 X 365 X 1000 = 1 460 000 data. We fix
n = 1460 as the length of the data blocks over which the
maxima {M, ;|i = 1, ..., 1000} are computed. Thereby,
for each value of T, we obtain a sequence of 1000
annual extremes of the total energy. The yearly maxima
are linearly uncorrelated (Fig. 4), suggesting that it is
both safe and reasonable to assume weak dependence.
This can also be compared with the autocorrelation de-
cay time in Fig. 1.
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F1G. 4. Autocorrelations of the sequences of 1000-yearly maxima of the total energy time series for

(left) T = 10, (center) T, = 30, and (right) T = 50.

On theoretical grounds we can deduce one constraint
on the distribution of extremes for the total energy time
series. Indeed, since the attractor is contained within a
bounded domain of the phase space and since the en-
ergy observable E(¢) defined in Eq. (A15) is a continu-
ous function of the phase space variables, it turns out
that the total energy is bounded on any orbit belonging
to (or converging on) the attractor. Therefore, the ex-
tremes of the total energy are necessarily Weibull dis-
tributed (£ is negative). This provides a theoretically
founded criterion for quality assessment of the GEV
inferences. We note that such a strict Weibull con-
straint is specific to the present setup, where a global
observable (the total energy) obeying global balances is
used. Although we might expect that the total energy
extremes of any atmospheric model should be Weibull
distributed, for other meteoclimatic variables this might
be not the case. For example, wind speeds in extratrop-
ical latitudes are known to be approximately Weibull
distributed, although a Gumbel fit (¢ = 0) often per-
forms better on extreme wind speeds (Perrin et al.

2006). Hydrological variables, such as precipitation
(Smith 2006) and streamflow (Morrison and Smith
2002), often display heavy tails (£ > 0). See Katz et al.
(2002) and references therein.

The GEV parameters (u, o, §) are estimated by the
maximum likelihood method (see section 2b) from the
sequences of yearly maxima. The fitted values of (u, o,
£), together with confidence bands [computed by the
observed information matrix, Eq. (8)], are plotted as
functions of T in Fig. 5. The inferred parameters w and
o increase monotonically with 7. Estimates of £ are
negative in each case and the related confidence inter-
vals are markedly bounded away from zero: observed
information matrix, profile likelihood, and bootstrap
yield similar estimates. The theoretical expectation of
Weibull distribution is thus confirmed. Also notice that
the uncertainty in ¢ may reach up to 21% of its value,
whereas the parameters w and o are quite accurately
estimated: the maximal uncertainties in w and o are
0.1% and 2.5% of the corresponding value, respec-
tively.
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F1G. 5. Maximum likelihood estimates of (left) u, (center) o, and (right) & (on vertical axis) for each of the 21
sequences of 1000 maxima of the total energy, against the corresponding values of 7' (horizontal axis). Confidence
intervals are added with error bars but are hardly visible for (left) u at the selected scale.
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Information on the tails of the energy distribution is
expressed in a straightforward manner by the return
level plots (see previous section for the definition). In
Fig. 6, return levels with return periods of 10, 100, and
1000 yr are plotted as functions of Tj. Each graph is
monotonically increasing with T and, for 7 fixed, the
return levels increase with the return period.

The dependence of the GEV probability density with
respect to T is illustrated in Fig. 7. The increase of
scale and location parameters with 7' induces a right-
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ward shift and a broadening of the probability density
function. In particular, from the geophysical point of
view, the range of possible extreme values of the total
energy expands with 7 and the magnitude increases
too. In fact, this behavior sets in for 7 right after the
creation of the chaotic attractor (see Fig. 7, right panel).

Smoothness of GEV inferences with respect to
system parameters

The dependence on T of the time-averaged total
energy and the inferred GEV parameters (including the
return levels) is rather smooth (see Figs. 3 and 5). This
strongly suggests the existence of functional relations of
the form

w=oa,Tp and o=oa,T). (16)
Such power laws are fitted to the graphs of u and o as
follows.

To illustrate, consider u and denote [(77%) and
sﬁ(T’g) as the maximum likelihood estimate of w and
the related standard deviation (calculated by the ob-
served information matrix), respectively, where T%; is
one of the 21 chosen values in the interval [10, 50]. A
bootstrap procedure is performed where iterated real-
izations of a sequence of 21 independent Gaussian vari-
ables with mean (.(7;) and standard deviation s,(7%)
are simulated. For each realization, a power-law fit as in
Eq. (16) is performed. The sample average and stan-
dard deviation of the obtained fits, constructed inde-
pendently for w and o, are reported in Tables 1 and 2.
Two distinct ranges of T are identified, where u scales
by a different exponent (v, ; and vy, ,, respectively) (see
also Fig. 8, left panel). For T < 18, v, ; ~ 1.73 while
Yz ~ 1.6 for T;; = 18. The time-mean total energy of
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F1G. 7. (left) Probability density functions of the GEV for the 21 values of 7 in the
considered range [10, 50] and for the additional values 7, = 8.75, 9, 9.25, 9.5, and 9.75. (right)
Same as left, but for 7 = 8.75, 9, 9.25, 9.5, and 9.75.
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TABLE 1. Power-law fits of the location parameter p as a func-
tion of 7' of the form pu « T, performed in two adjacent intervals
of Tp. The number of used annual extremes is n, and T% is the
value of T separating the two intervals. Compare with Fig. 8.
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TABLE 2. Same as in Table 1 but for the scale parameter o. Here
the fits with exponents v,; and v, hold for T such that 7%' =
Ty = T% and T% = T, = 50, respectively. No power-law fit is
found for T < T%'. Compare with Fig. 9.

n Vi1 T% Y2 n Tlél Yo.1 T%Z Yor2
1000 1.7310 £ 0.0007 18 1.6019 = 0.0017 1000 15 3.011 = 0.076 22 2.140 = 0.025
300 1.7311 £ 0.0013 18 1.6017 = 0.0030 300 14 3.236 = 0.115 22 2.114 £ 0.047
100 1.7219 + 0.0018 17 1.5982 + 0.0018 100 14 2.944 + 0.157 24 2.040 *= 0.093

the system has a rather similar power-law dependence
on Ty (Lucarini et al. 2005). In the upper T range the
exponent of the power law of the extremes is larger
than that of the time-mean total energy (~1.52), which
implies that asymptotically the extremes tend to be-
come relatively more extreme. When considering o,
there is an initial interval of 7 where no power law is
obeyed (see Fig. 9, left panel). For 22 = T, = 15, we
have vy,; ~ 3.0, while v,, ~ 2.1 for T, = 22. Since
Yo2 > Yo, for high values of T the broadening of
distribution of the maxima tends to become consistent
with respect to their average location, thus suggesting a
larger variability in the maxima. Shorter sequences of
yearly maxima, of length 300 and 100, lead to nearly
identical estimates for both v, ;and v, ;, j = 1, 2 and for
their confidence intervals, thus implying that this is a
rather robust property of the system.

It turns out that analogous power-law dependence
with respect to 7' is detected in the considered model
for several dynamical and physical observables, such as
Lyapunov dimension, maximal Lyapunov exponent,
and average zonal wind (Lucarini et al. 2005). This sug-
gests that the whole attractor of the model (more pre-
cisely, its SRB measure) obeys some scaling laws with
respect to T. The qualitative features described above
when T, is sufficiently large, such as the form of (w, o)

as functions of 7' and the fact that ¢ seems to approach
a constant negative value, are most probably related to
this scaling behavior. An important question we ad-
dress elsewhere is whether this is a peculiarity of the
baroclinic model used here or if analogous smoothness
properties are common (generic or robust in some way)
for models of atmospheric dynamics, including general
circulation models.

4. Sensitivity of the GEV inferences

Selecting sequences of 1000-yearly maxima results in
good accuracy for the GEV inferences. The sensitivity
of these estimates has been tested by relaxing the ex-
perimental conditions considered in the previous sec-
tion. This has been done in several ways:

e by varying the number of extreme events (length of
the sequences of yearly maxima);

e by using soft extremes (maxima are computed over
data blocks corresponding to time spans shorter than
1 yr); and

¢ by varying the resolution of the model.
The best estimates and related uncertainties of the

GEYV parameters obtained under modified experimen-
tal conditions have been first compared at face value to

nyears=1000 nyears=300 nyears=100
0 le} 0
(= o [
T log(T%) T log(T%) T log(T%)
S| S| P
o0 o o0 o o0 o
2 p S . 2
o | o | o |
© » © » © e
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F1G. 8. Power-law fits of the inferred values of log p (vertical axis) as a function of log 7' (horizontal axis), where
(left) 1000-, (center) 300-, and (right) 100-yearly maxima have been used. In each case, there are two intervals of
Ty, separated by the point 7%, characterized by a different scaling exponent (cf. Table 1).
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FIG. 9. Same as in Fig. 8 but for log 0. The two intervals characterized by a different scaling exponent are

separated by the point 7%?, while no power law is detected for T, < T%' (see Table 2).

that which was obtained in the reference case in order
to detect mismatch due to biases and changes in preci-
sion. Moreover, the resulting differences in the GEV
distributions have been inspected also by the standard
graphical diagnostics, such as quantile—quantile and re-
turn level plots, and by computing bootstrap confidence
intervals and profile likelihood, both for the critical pa-
rameter £ and for the return levels.

a. Sensitivity with respect to the extreme events
sample size

We now move on to the description of what is found
when reducing the number of yearly maxima used for
GEV inference. The, particularly unfortunate, case oc-
curring for 7T, = 32 is first analyzed by means of a
profile likelihood plot for the GEV parameter & Se-
quences of 1000-, 300-, 100-, and 50-yearly maxima of
the total energy are used to produce the plots in Fig. 10.
The cases 1000, 300, and 100 yr yield coherent estimates
for & For detailed diagnostics, confidence intervals are
computed by the observed information matrix [Eq. (8)]
and compared by those obtained by profile likelihood
and by a standard bootstrap procedure. The three meth-
ods yield similar results in all cases, both for the esti-
mates and for the confidence intervals. However, for 50
maxima the confidence intervals become very wide and
a positive value for ¢ is inferred, which is unphysical.

The decay of the inference quality is revealed in a
different way by the profile likelihood plots for the 100-
yr return levels (Fig. 11). In general it is not safe to
infer, from a series of n annual extremes, return levels
with return periods larger than n years. Extrapolation
to larger return periods may produce incorrect values
and is likely to yield significant uncertainties. In the
case considered, estimates are coherent for 1000-, 300-,
and 100-yearly maxima. As expected, the confidence
intervals (computed by the delta method, see section

2b) expand as shorter sequences of maxima are used.
This also holds for bootstrap and profile likelihood.
However, for 50 maxima the profile likelihood confi-
dence intervals become very skewed as opposed to boot-
strap or delta method. This clearly indicates poor approxi-
mation of normality for the GEV estimators (Coles
2001), underlining the unreliability of the estimates.

Quantile-quantile and return level plots for the
above inferences are reported in Fig. 12. These confirm
excellent quality for 1000, 300, and 100 maxima,
whereas they reveal that something must be wrong for
50. In the quantile-quantile plots (top row of Fig. 12),
from left to right increasing departures from the diago-
nal are apparent especially in the upper tail, whereas
the central part of the distribution does not suffer from
sample reduction (except in the case of 50 maxima).
Analogous effects occur in the upper tail of the return
level plots. The main point is that the most delicate part
of an extreme value inference is the behavior of the
tails. Usually, this is also the aspect one is most inter-
ested in. Notice how the black line in the middle of the
return level plot for 50 maxima erroneously suggests
unboundedness of the return levels (which is only pos-
sible for £ = 0, see section 2b). Therefore, extrapola-
tions to high levels should be avoided in this case.

We emphasize that the value of 7, which has just
been examined, corresponds to a particularly bad infer-
ence for 50 yr. An overview, throughout the considered
range of T, of GEV inference sensitivity to length re-
duction is summarized in Fig. 13, where the cases of
300-, 100-, and 50-yearly maxima are plotted against
1000. The quality of the fits, of course, generally de-
creases when using shorter series of maxima. Inference
of &is particularly sensitive to the length of the series of
maxima: the maximal value of the ratios between un-
certainty in & and value of the corresponding maximum
likelihood estimate of & is 600%, 1387%, 45%, and
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Fi16. 10. Profile likelihood plots of & for 7, = 32, where the number of used yearly maxima
is (top left) 1000, (top right) 300, (bottom left) 100, and (bottom right) 50. Confidence intervals
are computed by bootstrap, profile likelihood, and observed information matrix (the three
stacked segments at the bottom part of the plots labeled by B, P, and D, respectively). The
solid and dashed horizontal lines are at the values % and :g“ — 0.5¢g, 95, Tespectively, where g o5
is the 95% quantile of the x* distribution with 1 degree of freedom [cf. Eq. (9)]. Notice the
increasing width of the confidence intervals (quite large already for length 100) and the
agreement between confidence intervals computed by the three methods, also for the wrong

(positive) estimate obtained with 50 maxima.

21%, for 50, 100, 300, and 1000 maxima, respectively.
The median of those ratios is 48%, 30%, 19%, and
10%, respectively. Taking only 50 maxima yields two
positive estimates of & (for 7 = 32 and 50), which is an
unphysical result and overall very large uncertainties:
for many values of T, confidence bands for ¢ include
part of the positive axis. The bias in the estimates of &
induces a significant alteration in those of o. However,
the inferred values of w display a remarkable insensi-
tivity and the same holds for the 100-yr return levels
(Fig. 14), although large uncertainties are obtained for
the two cases T = 32 and 50 that correspond to posi-
tive estimates of &.

b. Sensitivity with respect to the extreme events
selection procedure: Soft extremes

We now turn to the second type of inference sensi-
tivity mentioned above, obtained by using so-called soft

extremes (Klein Tank and Konnen 2003) instead of
genuine extremes. In the present setting, we simulate
the usage of soft extremes by considering sequences of
maxima over data blocks that correspond to time spans,
which are shorter than 1 yr, in particular 0.6, 1.2, and 3
months. In the first two cases, and especially in the first,
we are not even sure that the considered maxima are
actually uncorrelated, which is the typical situation in
real systems. In each case, the number of considered
extremes is kept fixed to 1000, so that the difference is
only determined by block length.

The net result of using shorter time spans is the in-
troduction of a progressively larger bias in the GEV
inferences. The location and shape parameters are sys-
tematically underestimated. For the location parameter
p (leftmost column in Fig. 15) the underestimation in-
creases when taking maxima over shorter time spans,
but it also increases with 7. Notice that this is quite
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Fi1G. 11. Profile likelihood plots of the 100-yr return level for 7, = 32 for different lengths
of the sample of yearly maxima: (top left) 1000-, (top right) 300-, (bottom left) 100-, and
(bottom right) 50-yearly maxima. Confidence intervals are computed by bootstrap, profile
likelihood, and observed information matrix (the three stacked segments at the bottom part
of the plots labeled by B, P, and D, respectively). Notice the increasing width of the confidence
intervals and increasing skewness of those obtained by profile likelihood: for 50 maxima the
left ends of the B and D confidence intervals lie out of the figure.

different from the effect obtained by reducing the
number of maxima (cf. Fig. 13, leftmost column). The
sample medians of the relative differences between the
estimates of w for 12 months and those for 3, 1.2,
and 0.6 months (where the sample is indexed by the
values of T'f; for which the estimates are computed) are
3.2%, 5.7%, and 7.5% for 3, 1.2, and 0.6 months, re-
spectively. The underestimation of the 100-yr return
levels (see Fig. 16) is a consequence of the under-
estimation of u [see the definition in Eq. (10)]. Also
notice that the variations in the return levels con-
nected to an increase in T are much larger than those
induced by usage of either soft extremes or shorter
datasets (cf. with Fig. 13, rightmost column). Con-
versely, the scale parameter o (second column from the
left in Fig. 15) is largely overestimated: the sample me-
dians of the relative differences between the estimates
of o are 31%, 59%, and 82% for 3, 1.2, and 0.6 months,
respectively. So in our case, taking soft extremes mis-

takenly suggests an enhanced variability in the extreme
values.

Qualitatively, the response of the GEV estimates to
the usage of soft extremes is explained by the introduc-
tion of much more data in the central part and in the
lower tail of the distribution of the selected extreme
values. From this fact, the underestimation of u follows
directly. Moreover, since the range of the extreme
events distribution gets wider, a larger variability is ar-
tificially introduced and this is indicated by an overes-
timated scale parameter o. Last, the upper tail of the
obtained distribution of extremes looks more squeezed,
given the wider extension at lower values. This corre-
sponds to a more negative value of & (cf. the third col-
umn from the left in Fig. 15).

c¢. Sensitivity with respect to the model resolution

In this section we analyze the response of the GEV
inferences to variations in the model. In fact, this re-
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F1G. 12. Diagnostic plots of the GEV inferences for 7, = 32. (top row) Quantile—quantile and (bottom row) return level plots,
respectively (see section 2b for definitions). Left to right columns are sequences of yearly maxima of the total energy used, having
lengths 1000, 300, 100, and 50, respectively. Notice the different scale of the vertical axis in the rightmost return level plot.

sponse is a further aspect of the issues of smoothness
and robustness discussed in section 3a, which is of great
practical importance: our estimates should not drasti-
cally change if the model is slightly altered. Different
choices are possible, such as introducing an orography
in the bottom layer or changing the lateral boundary
conditions. In the present setting, however, we confine
ourselves to compare simulations of the baroclinic
model performed with a few values of the spectral dis-
cretization order J;, [see Egs. (A11)—(A14) in the ap-
pendix].

Time series of the total energy, of length 1000 yr, are
computed with the baroclinic model using four differ-
ent resolutions: J, = 8, 16, 32, and 64 (resolution J, =
32 is used throughout the rest of this paper). In each
case the GEV parameters are estimated from se-
quences of 1000-yearly maxima. The results are com-
pared with each other in Fig. 17. The relative differ-
ences of the estimated values of u between the case
J; = 64 and each of the other three cases (top left
panel) remain rather small: they are less than 1% and
2% for J; = 32 and 16, respectively, and increase to
about 5% for J, = 8. In a similar manner, the 100-yr
return level E,, of the total energy (top right panel) is
not very sensitive to changes in spectral order: for the
relative difference of the cases J, = 64 and J, = 32 it is
less than 2%. Also the estimates of ¢ (bottom right

panel) generally agree quite well with all the resolu-
tions considered. More pronounced differences appear
in the inferred values of the scale parameter o (bottom
left panel): for T, = 26, the estimates obtained with
resolutions J, = 8 and 64 are larger than those for J, =
16 and 32.

The estimates for w and for the 100-yr return level
E,y, closely reflect the behavior of the time-averaged
total energy (computed on the same time series from
which the yearly maxima are extracted). Considering,
to focus ideas, the range T, € [26, 36], for each fixed T
both the inferred values of w and the time-averaged
total energy (not shown) decrease as J increases. Con-
versely, there is no simple relation between the sample
standard deviation o of the total energy time series
and the GEV scale parameter a: for the mentioned
values of T, the sample standard deviation o de-
creases for larger J, (not shown), whereas this is not so
for the scale parameter, see above.

Power-law fits of w and o as functions of T, are
performed for 1000-yearly maxima of the total energy,
where the baroclinic model is run with four different
resolutions: J, = 8, 16, 32, and 64. As in section 3a, the
range of T is divided into two intervals for the fits of
w and into three for o (in the latter case, no power law
is found in the leftmost interval). Remarkable accuracy
and coherence of the laws for p is observed (Table 3).
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FiG. 13. (top) Maximum likelihood estimates of (left) u, (middle) o, and (right) & for 1000- and 300-yearly
maxima (dashed and solid lines, respectively), with confidence intervals computed by the observed information
matrix Eq. (8). (center), (bottom) Same as top but for 100- and 50-yearly maxima, respectively, instead of 300. In
the case of 50 maxima, for 7, = 32 and 50 the inferred values of & are positive (thus completely wrong according
to the theoretical expectation, see text) and the uncertainties are very large for o and &

There is more variability in the power laws for o (Table
4), although, again, a striking coherence is observed for
large 7.

To summarize, we have observed moderate model
sensitivity for the GEV estimates. This inspires confi-
dence in the validity of our results for the class of in-
termediate complexity models considered in this paper.
However, it is to be emphasized that a particularly
stable observable has been examined here (the total
energy) and that only one type of model alteration has
been considered, namely a change in the spectral order.
More complex models (e.g., general circulation models)

might exhibit sensitive behavior with respect to resolu-
tion, particularly for phenomena, such as the precipita-
tion, for which the involved spatial scales are small.

5. Summary and conclusions

In this paper we have performed statistical inference
of extreme values on time series obtained by a minimal
two-level quasigeostrophic model of the atmosphere at
midlatitudes. The physical observable used to generate
the time series is the total energy of the system and the
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Same as left but for where the estimates plotted with solid lines have been computed with 100- and 50-yearly

maxima, respectively.

statistical model for the extremes is the generalized ex-
treme value distribution (GEV). Several physically re-
alistic values of the parameter T, descriptive of the
forced equator-to-pole temperature gradient and re-
sponsible for setting the average baroclinicity in the
atmospheric model, are examined. In the standard set-
ting, the maxima of the total energy are computed over
data blocks with a length of 1 yr and 1000 maxima used
as basis for the inference.

A result of the present investigation, which has po-
tential relevance in the field of geophysical fluid dy-
namics, is the detection of a piecewise smooth depen-
dence of the location and scale GEV parameters (u, o)
on the macroscopic forcing parameter 7 controlling
average baroclinicity. Two distinct power laws, holding
in different intervals of T, are obtained for both w and
o as functions of T, where the fit for w is quite accu-
rate. Interestingly, the increase in variability is larger
than the increase in average intensity of the extremes.
The shape parameter § also increases with T and it is
always negative, as a priori required by the bounded-
ness of the total energy of the system. We conjecture
that the dependence of & on 7 becomes smooth when
much longer time series are considered. The observed
smoothness is considered in relation to the results in
Lucarini et al. (2005), where analogous scaling laws are
found for other dynamical properties, such as
Lyapunov exponents and dimension, and physical ob-
servables, such as the time—space average of total en-
ergy and zonal wind. All of these problems will be ex-
plored further in connected work (see Felici et al. 2007).

After the assessment of the goodness-of-fit by means
of standard statistical diagnostics, such as return levels
and quantile—quantile plots, and computation of confi-
dence intervals by different procedures, we have con-
sistently verified that

¢ the adopted block length of 1 yr guarantees that the
extremes are uncorrelated and genuinely extreme; as-
sessing this property may result more problematic
when dealing with real observations because of sea-
sonal modulations, etc;

e the considered length of the series of maxima (1000
data) yields reliable parameter estimates; and

e the GEV inferences are not dramatically affected by
structural changes in the atmospheric model adopted
in the present work.

The sensitivity of the statistical inference process is
first studied with respect to the selection procedure of
the maxima: we analyze the effects of reducing either
the number of maxima or the length of data blocks over
which the maxima are computed.

The first point is checked by repeating the GEV in-
ferences using only 300-, 100-, and 50-yearly maxima.
The estimates are coherent for 1000-, 300-, and 100-
yearly maxima, but the confidence intervals of the best
estimates, not surprisingly, expand as shorter sequences
of maxima are used. Moreover, markedly unreliable
estimates are obtained when only 50-yearly maxima are
considered: the estimated long-term return levels are
patently wrong, the uncertainty of the inferred shape
parameter & is very large, and the best estimate of & is
positive (i.e., unrealistic) for a few values of 7.

To address the second point, we have taken maxima
over data blocks corresponding to shorter time spans to
explore the effects of using soft extremes (Klein Tank
and Konnen 2003). Specifically, the sensitivity of the
GEYV inferences is analyzed with respect to shortening
the length of the data blocks to 3, 1.2, and 0.6 months.
The obtained statistics are contaminated: an unaccept-
able bias is introduced for the cases of 1.2 and 0.6
months and still significant (at least for the GEV pa-
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FiG. 15. Inferred values of GEV parameters as a function of 7 in a soft extremes experiment: sequences of 1000
maxima of the total energy time series are used, where the maxima are determined over data blocks corresponding
to (top) 3, (center) 1.2, and (bottom) 0.6 months; (left) w, (middle) o, and (right) & are plotted. Dashed lines are
the estimates obtained for the yearly maxima (as in Fig. 5) for reference. Notice how the magnitude of the
uncertainties does not significantly depend on the temporal block length.

rameter o) for 3 months. Moreover, the parameter &
tends to be underestimated. Taking shorter maxima se-
quences results in even larger uncertainties, very large
for the case of 50-yearly maxima. Physically unrealistic
values of ¢ may also be obtained.

Finally, issues related to model sensitivity are also
explored by varying the (spectral) resolution of the sys-
tem, and it turns out that the GEV estimates are in
general rather robust. Summarizing, to get a good in-
ference many maxima are required and they must be
genuinely extreme, that is, taken over sufficiently large
data blocks. Failing to fulfill these requirements may

result in affecting the GEV estimates much more seri-
ously than adopting a baroclinic model with lower reso-
lutions. However, it must be emphasized that for more
complex models (e.g., general circulation models) and
when using spatially localized observables (such as pre-
cipitation) high resolution might be essential to get ac-
curate inferences. Moreover, the extremes of localized
observables might prove harder to analyze than global
observables: a recent study performed with very long
integrations of a global atmospheric model shows that
when considering a localized observable, such as the air
temperature at a given grid point, the convergence to
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TABLE 3. Power-law fits of the location parameter p as a func-
tion of T of the form p = T7%. Here J, indicates the spectral
resolution (number of Fourier modes) of the baroclinic model and
T is the value of T}, dividing the two considered intervals (see
text for details).

J Y T% Y2

64 1.7346 = 0.0008 15 1.6027 = 0.0005

32 1.7310 £ 0.0007 18 1.6019 + 0.0005
16 1.7027 = 0.0007 18 1.5982 = 0.0007
8 1.6794 = 0.0006 22 1.5977 + 0.0011

the GEV family of the empirical distribution of the
block maxima is very slow and multiannual maxima
have to be considered, maybe because of spatial corre-
lation effects (Vannitsem 2007).

If we consider the additional complications present in
observed data or in more realistic representations of
the natural processes (e.g., taking into account seasonal
modulations), it is apparent that a reliable estimation of
the uncertainties in the extremes of a given meteocli-
matic variable is crucial. In the present case, the most
robust statistical properties turn out to be the return
levels, which are also the most relevant for applications.
We maintain that a rigorous and well-defined frame-
work for the statistical analysis of extremes of observed
data, such as that provided by the GEV theory, is nec-
essary to study the past and present climate and to
characterize its variations.

We conclude by highlighting that the parameteriza-
tion of physical observables with respect to an external
forcing is indeed a rather general and difficult problem
in the dynamical analysis of a physical system. Exis-
tence of a unique Sinai-Ruelle-Bowen (SRB) measure
is required in order to rigorously associate a stationary
stochastic process to the dynamical evolution law.
However, even if an SRB measure exists and is unique,
there is typically no explicit expression in terms of the
system’s equations and parameters (Eckmann and
Ruelle 1985). Both our conjecture about the existence
of a unique SRB measure for the analyzed system and
the observed smooth dependence on 7' of all the con-
sidered statistical and dynamical indicators are coher-
ent with the theory proposed by Gallavotti and Cohen
(Gallavotti and Cohen 1995a,b; Gallavotti 1996; Cohen
and Gallavotti 1999). Indeed, the chaotic hypothesis
implies that, for the purpose of computing macroscopic
quantities, the attractor of the system behaves as
though it were structurally stable with respect to
changes in the external parameters. In this respect, the
simplicity and the universality of the GEV model can
be exploited to characterize chaotic systems by focusing
on extreme values of suitable time series, rather than
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TABLE 4. Same as in Table 3 but for the scale parameter o = T'7.
The interval [T%!, T%?] is the range of validity of the first power
law having exponent vy,. The point dividing the two considered
intervals is 7%%. No power law is detected for T, < T4

Jr T[él Yo1 T%Z Yoo

64 18 2.514 + 0.046 32 2.067 = 0.055

32 15 3.011 £ 0.076 22 2.140 £ 0.025
16 15 2.821 * 0.045 26 2.150 = 0.033
8 17 2.675 = 0.065 26 2.149 = 0.033

examining the distribution of all states visited by the
system in phase space (i.e., the SRB measure). Differ-
ent model variants (both in boundary conditions and in
model structure) and other observables will be consid-
ered in future research.
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APPENDIX

A Model for the Midlatitude Atmospheric
Circulation

As mentioned in the introduction, the stochastic gen-
erator of the energy time series used in this paper is a
model for the baroclinic jet at midlatitudes. The system
is relaxed toward a prescribed north—-south temperature
profile, where the gradient is controlled by the param-
eter Tx. In fact, the parameter T, controls average
baroclinicity of the system and is used to study the re-
lation with extreme values of the energy time series.
Many dynamical properties of the model depending on
Tr have been analyzed before the analysis of extreme
values presented in this paper, providing a sort of road
map. See Speranza and Malguzzi (1988); Malguzzi et al.
(1990); and Lucarini et al. (2005) for a detailed deriva-
tion of the model and for discussion on the physics
involved. In this section, we confine ourselves to a brief
sketch.

Starting point for the construction of the model is the
two-level quasigeostrophic equation:

J 2 9 2
5 HT—EE)—[T-F](T,AH(b-FBy-FE%(I))+J(qb,AHT)
2UEA @ ) 2KA +2vN( 5 d
=— -7 ——Ayr+— (11— 1%), an
H " H "

(A1)
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Apyd + J(d, Ayd + By) + J(1, AyT)

2
= Apy(d — 7). (A2)

Hz

Here 7 and ¢ are the baroclinic and barotropic compo-
nents, respectively, of the streamfunction ; and s; at
the two levels

1 1
r=3 W~ ) and b=o W ) (A3
where A is the horizontal Laplacian, 1/H3 is the
Froude number, B is the gradient of the Coriolis pa-
rameter, and vg, k, and vy parameterize the Ekman
pumping at the lower surface, the heat diffusion, and
the Newtonian cooling, respectively.

The system is driven for the baroclinic component by
the term in (7 — 7*) in Eq. (A1), which forces a relax-
ation to the radiative equilibrium 7* with a character-
istic time scale of 1/vy. We take
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RT
7*=——Ecos<wy), (A4)

fo 4 L

y

so that T is the forced temperature difference between
the low- and high-latitude border of the domain. In this
sense, the parameter 7 is responsible for average
baroclinicity of the system and is the control parameter
we vary to test changes in the extreme value statistics.

The fields ¢ and 7 are expanded in Fourier series in
the longitudinal direction x. Moreover, in order to
avoid wave—wave nonlinear interactions, only the terms
of order n = 1 and n = 6 are retained (see Lucarini et
al. 2005 for details). These yield

b(x, y, 1) = — fy U(z,t)dz + A exp(ixx) + c.c. and
0
(AS)
(X, ¥, ) = — jy m(z,t) dz + Bexp(ixx) + cc. (A6)
0

By substitution into Egs. (A1)—(A2), one obtains

Vg

. 5 . 2ug 3 vy ) 2
A, — XA+ le-i-? A, — | ixU+ixU, +H2)(—zxﬁ A+ l)(m—? B,

2

2UE
B=0,
)

- (ix3m +ixm,, —

yy

2 2 2

vy

. 2vg . .
+ (1)( - ?>Ayy - <1X3m + ixm,, — %Xz

2

. 2v
U+ ?f(u — m) + 2xIm(AA}, + BB%,) =0, and
2
(A9)
2 2k ZVE
i, — Pm Emyy H2 (U —m),,
2 2
2vy
—— (m — m*) + — xIm(A*B)
H; 2
+ 2xIm(ABj + BAj),,, = (A10)

where the dot indicates time differentiation and A* de-
notes the complex conjugate of A. This is a set of six
equations for the real fields A', A%, B', B2, U, and m,
where A' and A? are the real and imaginary parts of A
and similarly for B. Rigid walls are taken as boundaries
aty = 0, L,, so that all fields have vanishing boundary
conditions.

. 2, ) 2up 2k i ) 2ug
B —XZB—EB+ (IXU+?+—2>BW— <1X3U+szyy+?X2

2

(A7)
. 2k 2vN+ 2 u\g
l s —51
2 iXB ng 2 X
2
7 —ixym |A =0, (A8)

A system of ordinary differential equations is ob-
tained from Egs. (A7) to (A10) by means of a pseu-
dospectral (collocation) projection involving a Fourier
half-sine expansion of the fields of the form

(A11)

Jr .
) ) T
A= EAfSin Y , i=1,2,
. 7 Ly
, =12, (A12)

(A13)

(A14)
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The resulting system is the generator of the time series
used in this paper for extreme value analysis. In par-
ticular, as observable (i.e., as function of the state space
yielding the time series) we choose the total energy E()
of the system, obtained by integration in the (x, y) do-
main of the energy density:

op |1 1 1
e(x,y, 1) = Ep [5 (Vi)” + 3 (Vifs)” + Y72 (e 1113)2]-
2

(A15)

Here the factor 8p/g is the mass per unit surface in each
level; the first two terms inside the brackets describe
the kinetic energy and the last term describes the po-
tential energy. We emphasize that in Eq. (A15) the
potential energy term is half of what is reported in Ped-
losky (1987), which contains a trivial algebraic mistake.

It turns out that the order J, = 32 in Eqgs. (All)-
(A14) is sufficiently high to have an earthlike chaotic
regime characterized by intermediate dimensionality in
suitable ranges of the parameter 7. By chaotic, we
mean that the dynamics take place on a strange attrac-
tor with internally generated noise. By earthlike we
mean that the time-dependent Fourier coefficients in
Egs. (A11)-(A14), as well as the total energy and mean
zonal wind, have unimodal probability densities. The
mentioned chaotic range is T > T, where T§" =
8.75 approximately. For lower values of T, the Hadley
equilibrium (stationary solution) is stable and is there-
fore the unique attractor. See Speranza and Malguzzi
(1988); Malguzzi et al. (1990); and Lucarini et al. (2005)
for a complete discussion. Throughout this work, we
consider J, = 8, 16, 32, and 64 and the considered pa-
rameter range is 10 = T, = 50 with integer steps of 2.
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