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ABSTRACT

A baroclinic model for the atmospheric jet at middle latitudes is used as a stochastic generator of
nonstationary time series of the total energy of the system. A linear time trend is imposed on the parameter
T, descriptive of the forced equator-to-pole temperature gradient and responsible for setting the average
baroclinicity in the model. The focus lies on establishing a theoretically sound framework for the detection
and assessment of trend at extreme values of the generated time series. This problem is dealt with by fitting
time-dependent generalized extreme value (GEV) models to sequences of yearly maxima of the total
energy. A family of GEV models is used in which the location w and scale parameters o depend quadrati-
cally and linearly on time, respectively, while the shape parameter ¢ is kept constant. From this family, a
GEV model is selected with Akaike’s information criterion, complemented by the likelihood ratio test and
by assessment through standard graphical diagnostics. The inferred location and scale parameters are found
to depend in a rather smooth way on time and, therefore, on 7. In particular, power-law dependences of
wand o on T are obtained, in analogy with the results of a previous work where the same baroclinic model
was run with fixed values of 7 spanning the same range as in this case. It is emphasized under which

conditions the adopted approach is valid.

1. Introduction

In the context of climate change, an intensely de-
bated question is whether the statistics of extreme me-
teo-climatic events is changing (and/or will change)
and, in case, how fast it is changing (and/or will change).
For example, the role of time dependence in the statis-
tics of extreme weather events has been at the heart of
discussions about climate change since the work by
Katz and Brown (1992). In particular, the detection of
trends in the frequency of intense precipitation has
been the object of much research, particularly at re-
gional level [see, e.g., Karl et al. (1996), Karl and
Knight (1998), for the United States and Brunetti et al.
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(2002, 2004) for the Mediterranean area]. The general
relevance of the problem has been highlighted in the
2002 release of a specific Intergovernmental Panel on
Climate Change (IPCC) workshop report on changes in
extreme weather and climate events (available at http:/
www.ipcc.ch/pub/extremes.pdf). In fact, the emphasis
laid on the subject by the IPCC report in many coun-
tries spread the question “Is the probability of major
impact weather increasing?” This question reached the
general public almost everywhere and innumerable
studies of trends in series of “extremes” were under-
taken. These studies mainly deal with variables of local
character, typically precipitation and temperature at
specific stations. Moreover, most studies are regional:
see, for example, the proceedings of the Italy-United
States meeting held in Bologna in 2004 (Diaz and
Nanni 2006) for the relevance of the extreme events in
the Mediterranean Climates and the INTERREG IIIB
Central, Adriatic, Danubian, and Southeastern Euro-
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pean Space (CADSES) hydrological cycle of the
CADSES regions (HYDROCARE; http://www.
hydrocare-cadses.net) for impacts of extreme events in
the hydrological cycle of the central eastern Europe.

In a companion paper (Felici et al. 2007, hereafter
Part 1) we have addressed the problem of extreme
value statistical inference on statistically stationary time
series produced by a dynamical system providing a
minimal model for the dynamics of the midlatitudes
baroclinic jet. There reported is, from mathematical lit-
erature, a suitable, rigorous, universal setting for the
analysis of the extreme events in stationary time series.
This is based on Gnedenko’s theorem (Gnedenko
1943) according to which the distribution of the block
maxima of a sample of independent identically distrib-
uted variables converges, under fairly mild assump-
tions, to a member of a three-real parameter family of
distributions, the so-called generalized extreme value
(GEV) distribution (Coles 2001). The GEV approach
to the analysis of extremes requires that three basic
conditions are met, namely the independence of the
selected extreme values, the consideration of a suffi-
ciently large number of extremes, the selection of val-
ues that are genuinely extreme. These conditions could
be achieved relatively easily for the case at hand.

Part 1 was originally motivated by the interest in
weather having major impact (on human life and prop-
erty) in the Mediterranean area, in particular, intense
precipitation and heat waves over Italy. [See, e.g., Bru-
netti et al. (2002, 2004), Lucarini et al. (2004, 20006),
Speranza et al. (2006), Speranza and Tartaglione
(2006), Tartaglione et al. (2006), and the Mediterra-
nean Experiment (MEDEX) phase 1 report (available
at http://medex.inm.uib.es/) for related results and ac-
tivities.] The study reported in Part I revealed, among
other things, that diagnostics of extreme statistics can
highlight interesting dynamical properties of the ana-
lyzed system. Properties that, thanks to the universality
of the GEV, can be investigated in a low dimensionality
space of parametric probability density functions, al-
though at the expenses of the total number of events
available in order to capture a sufficient number of
independent extremes. A key role (that is presently
being explored elsewhere, in the context of general at-
mospheric circulation theory) was played in Part I by
the smoothness of variation of the extreme statistics
parameters (average, variance, shape factor) upon the
external (forcing) parameters of the system. In this pa-
per, again, we devote attention to exploring the statis-
tics of extremes as a dynamical indicator, this time in
the framework of the (typically meteorological) statis-
tical inference problem of detecting trends in observa-
tions.
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The definition of a rigorous approach to the study of
extremes is much harder when the property of station-
arity does not hold. One basic reason is that there exists
no universal theory of extreme values (such as, e.g., a
generalization of Gnedenko’s theorem) for nonstation-
ary stochastic processes. Moreover, in the analysis of
observed as well as synthetically generated sequences
of data of finite length, practical issues, such as the
possibility of unambiguously choosing the time scales
that defines the statistical properties and their changes,
become of critical importance. Nevertheless, GEV-
based statistical modeling offers a practical unified
framework also for the study of extremes in nonstation-
ary time series. In the applications, the three param-
eters of the GEV distribution are taken as time-
dependent and time is introduced as a covariate in the
statistical inference procedure (Coles 2001). The prac-
tical meaning of this assumption is that the probability
of occurrence (chance) of the considered extreme
events evolves in time pretty much as we are inclined to
think in our everyday life. However, giving a scientific
meaning to such an assumption is possible only in an
intuitive, heuristic fashion: in an adiabatic limit of infi-
nitely slow trends (but rigorously not even in such a
limit). We adopt this point of view not only because it
is in line with the common practice and view of ex-
tremes, but also because interesting dynamical proper-
ties can be inferred from extremes, in analogy with the
findings in Part I.

In the present paper we perform and assess time-
dependent GEV inference on nonstationary time series
E(1) of the total energy obtained by the same simplified
quasigeostrophic model that was used in Part I. The
model undergoes baroclinic forcing toward a given lati-
tudinal temperature profile controlled by the forced
equator-to-pole temperature difference 7,; see Lu-
carini et al. (2005, 2007b) for a thorough description.
We analyze how the parameters of the GEV change
with time when a linear trend is imposed on the large-
scale macroscopic forcing 7,; that is, when 7, is taken
as a (linear) function of time. Since this functional re-
lation is invertible, we derive a parameterization relat-
ing the changes in the GEV to variations in 7', (instead
of time). One major goal here is to present a method-
ological framework to be adopted with more complex
models and with data coming from observations, as well
as an assessment of the performance of the GEV ap-
proach for the analysis of trends in extremes in the
somewhat gray area of nonstationary time series. Meth-
odologically, our setup is somewhat similar to that of
Zhang et al. (2004) regarding the procedures of statis-
tical inference. However, in this case we face two ad-
ditional problems:
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1) As in Part I, the statistical properties of the time
series E(t) cannot be selected a priori: in the station-
ary case (T constant in time) and much less in the
nonstationary case there is no explicit formula for
the probability distribution of the observable E(t).

In the nonstationary case we even lack a definition
(in fact, even a mere candidate) of what might be the
probability distribution of E(f): certainly not a fre-
quency limit for ¢+ — 0; and not by construction, as
opposed to Zhang et al. (2004), who use stochastic
generators with a known distribution.

2)

This also means that we have no hypothesis concerning
the functional form of the trend in the statistics of ex-
tremes of E(t), resulting from the trend imposed on the
control parameter 7. The lack of a general GEV theo-
rem for nonstationary sequences implies that the choice
of the time-dependent GEV as a statistical model is, in
principle, arbitrary: other models might be equally (or
better) suitable. Here the adiabaticity hypothesis men-
tioned above comes into play, which leads to the central
statement of this paper: if the trend is sufficiently slow
and the statistical behavior of the atmospheric model
has a sufficiently regular response with respect to varia-
tions in the external parameters, the GEV remains a
suitable model for inference of trend in extremes.

The structure of the paper follows. In section 2, we
describe the general problem of the characterization of
statistical trends in deterministic models, with both its
conceptual and practical implications. Then in section 3
we describe how the GEV modeling can be applied to
nonstationary time series and how the quality check of
the fits is performed. In section 4 we present the time
series considered in this work and the setup of the nu-
merical experiments performed with the atmospheric
model. The inferences for various values of the trend in
the forcing parameter 7 are presented in section 5 and
a sensitivity analysis is carried out in section 6. A com-
parison with the stationary case analyzed in Part I is
given in section 7. In section 8, we summarize the main
findings of this work, highlighting the future research
developments.

2. Statistical trends: The theoretical problem

The stochastic generator used in this paper to pro-
duce the time series is a deterministic model (an ordi-
nary differential equation), whose dynamics, for the
considered range of values of 7', is chaotic in the sense
that it takes place on a strange attractor A in phase
space (Eckmann and Ruelle 1985). See Lucarini et al.
(2005, 2007b) for a study of the properties of this at-
tractor, including sensitivity with respect to initial con-
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ditions. The statistical behavior of this type of time se-
ries is determined by the Sinai-Ruelle-Bowen (SRB)
probability measure p (Eckmann and Ruelle 1985): this
is a Borel probability measure in phase space that is
invariant under the flow f* of the differential equation,
is ergodic, is singular with respect to the Lebesgue mea-
sure in phase space and its conditional measures along
unstable manifolds are absolutely continuous [see
Young (2002) and references therein]. Moreover, the
SRB measure is also a physical measure: there is a
neighborhood U of A such that for every continuous
observable ¢: U — R, we have the frequency-limit char-
acterization

1 t

lim ~ L oL f(x)]dt = J ddu, 1)
for time evolutions f(x) starting from almost all x € U
with respect to Lebesgue measure. We are adopting
Ruelle’s point of view: physical observability corre-
sponds to positive Lebesgue measure in phase space
(Eckmann and Ruelle 1985). Notice that the above
definition of SRB measure allows for the existence of
time evolutions that are pathological (e.g., they do not
have an associated statistics ), but requires that these
occupy a set which is physically negligible, since it has
Lebesgue measure zero in phase space. Conversely,
time evolutions that behave according to a well-defined
statistics, identified as the SRB measure w, occur with
probability one: in practice, an experimenter or numeri-
cal modeler would only see the latter.

Existence and uniqueness of an SRB measure u,
have been proved only for very special classes of flows
f* [in particular, for flows that possess an Axiom-A
attractor; see Young (2002)]. However, existence and
uniqueness of p are necessary to define a stationary
stochastic process associated to an observable ¢. In
sum, this allows one to consider a given time series of
the form [¢[f'(x)]: ¢ > 0] as a realization of the sta-
tionary process, justifying statistical inference on a solid
theoretical basis. In Part I, we conjectured existence the
uniqueness of an SRB measure for the atmospheric
model, providing the theoretical foundation to the ap-
plication of GEV models in the inference of extreme
values.

In certain cases of nonautonomous ordinary differ-
ential equations (e.g., if the dependence on time is pe-
riodic), it still is possible to define, at least conceptually,
what an SRB measure is. However, in the present case,
due to the form of time dependence adopted for the
parameter 7T, the atmospheric model admits no invari-
ant measure. This means that there is no (known) way
to associate a stationary stochastic process to the time
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series of the total energy. In other words, it is even in
doubt what we mean by statistical properties of the
time series, since it is impossible to define a probability
distribution associated with time averages. This concep-
tual problem has a very serious practical consequence:
the operational definition of probability as a frequency
limit [as in (1)] is not valid in the nonstationary case,
since the time evolution is not a sampling of a unique
probability distribution. Even if one assumes the exist-
ence of a sequence of distinct probability distributions,
one for each observation, one realization (the time se-
ries) does not contain sufficient statistical information,
since each distribution is very undersampled (with only
one observation).

Despite all these problems, the results in Part I sug-
gest a framework that is, for the moment, formulated in
a heuristic way. Suppose you evolve an initial condition
x in phase space by the flow f* of the autonomous at-
mospheric model, that is the system in which 7, is kept
fixed to some value T9. After an initial time span (tran-
sient), say for ¢ larger than some 7, > 0, the evolution
f'(x) may be thought to take place on the attractor A
and time averages of the form

1 t
— f [ f'(x)] dt 2)

may be considered as approximations of

f ¢ dp, 3)

which is the average of ¢ by the SRB measure p, ex-
isting at the value T, = T% (the attractor average at
T9,). Now suppose that at some ¢, > t, the parameter T
is abruptly changed to some value T, > T%: there will
be some transient interval, call it [#, #,], during which
the evolution f*(x) approaches the new attractor of the
atmospheric model, that is the attractor existing for T
fixed at T'%. After that time span, the evolution may be
considered to take place on the new attractor.

In our case, though T, varies continuously (linearly)
with time, if the trend magnitude is low, then 7 may be
considered constant (with good approximation) during
time spans that are sufficiently long in order to have
both convergence to the new attractor and good sam-
pling of the new SRB measure, in the sense sketched
above. Though admittedly heuristic, this scenario al-
lows one to clarify under which condition it is still rea-
sonable to speak of statistical properties of a time series
generated by a nonautonomous system: namely, the
closeness to a stationary situation for time spans that
are sufficiently long. This is the adiabatic hypothesis
that we mentioned in the introduction. An essential
ingredient for this to hold is that the statistical proper-
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ties of the autonomous model do not sensibly depend
on the external parameter 7, in the sense that no
abrupt transitions (bifurcations) should take place as
Ty is varied. This was indeed checked for the system at
hand in Part I. Notice that the validity of the adiabatic
hypothesis also has a useful practical consequence: one
can use the statistics of the stationary system as a ref-
erence against which the results for the nonstationary
case can be assessed. Having this scenario in mind, we
proceed to the description of the time-dependent GEV
approach in the next section.

3. GEV modeling for nonstationary time series

The GEV approach for sequences of independent,
identically distributed (IID) random variables is by now
rather standard (Castillo 1988; Embrechts et al. 1997,
Falk et al. 1994; Galambos 1978; Gumbel 1958; Jenkin-
son 1955; Leadbetter 1974, 1983; Lindgren et al. 1983;
Reiss and Thomas 2001; Tiago de Oliveira 1984). We
refer the reader to Part I for a concise description of the
GEV method in the stationary case. We describe here
our approach in the nonstationary setting, referring to
Coles (2001) for more details.

If stationarity of the time series does not hold, then
the limiting distribution function is no longer bound to
be the GEV (or any other prescribed family). Some
exact results are known only in certain very specialized
types of nonstationarity (Hiisler 1986; Lindgren et al.
1983), but it is very unlikely that a general theory can be
established. However, a pragmatic approach is adopted
for nonstationary statistical modeling of extreme val-
ues: the GEV distribution is used as a template in which
time-dependent parameters u(f) and o(f) are used,
yielding a model of the form

— —1/&
ctemnana-eol 4552

4)

Usually ¢ is kept time-independent in order to avoid
numerical problems, since it is the most delicate param-
eter to estimate. Different kinds of time dependence
can be imposed for [u(t), o(f)]. In this paper, we adopt
a simple polynomial family of models:

w(t) = po + pt + P«zfza a(t) = oy + oy, (5)

with g, and 0,; € R. Polynomially time-dependent
families, as in (5), have been already used in the geo-
physical literature for analysis of nonstationarity at ex-
treme levels [see, e.g., Nogaj et al. (2006)]. Usually, to
ensure positivity of the inferred values of o(¢), the loga-
rithm of o(¢) is used instead of o(¢) self. However we
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chose to directly use o(f) since this yielded a better
numerical convergence. In our case, positivity of o(z) is
preserved anyway, since the inferred values of the co-
efficients o, and o, turn out to be always positive.

Members of the family (5) are denoted by G, , ac-
cording to the degree of w(f) and o(¢) as functions of ¢:
for example, G4, ( is a model for which p, = oy = 0, so
that w(f) = py + 4t is a linear function of time and
o(t) = oy is constant. Note that the ordinary GEV dis-
tribution is obtained from the time-dependent model
(4) by setting u, = p; = o, = 0 in (5). For the above
family, statistical inference amounts to estimating the
parameter vector

B = [“O? M5 M2, O, O, ‘S] (6)

from the given time series. The time 7 is included as a
covariate in the inference, which is performed as fol-
lows: the time series is divided into m consecutive
blocks, each containing 7 observations, equally spaced
in time. Denote by z;, ..., z,, the sequence of the
maxima taken over each data block. A log-likelihood
function is defined as

m

PR V(s
g =-> {log(r(t) 1+ 1) log[l 4 g(z U(g( )ﬂ
=1

— —1/&
L] L

for the case & # 0, provided that

z, — wt)
1+§< o) >>O, t=1,....,m. (8)
If ¢ = 0, an alternative log-likelihood function, derived
from the Gumbel distribution, must be adopted. Nu-
merical procedures are used to estimate the value of the
parameter vector 3, which maximizes the log-
likelihood function in (7). Confidence intervals for 8
may be computed by means of the expected or ob-
served information matrix, using the asymptotic multi-
normality of the maximum likelihood estimator (Coles
2001).

Although the complexity of our family of time-
dependent GEV models, as defined by (5), might be
easily increased by choosing polynomials of larger de-
grees for w(t) and o(¢), parsimony is recommended
(Coles 2001): too many coefficients in the parameter
vector 3 would result in unacceptably large uncertain-
ties, especially if few data are available, as it is often the
case with real observations. Therefore, in the search for
the best estimate model in family (5), the right values
for p and g should be determined, being as low as pos-
sible compatibly with satisfactory goodness-of-fit.
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Model selection is achieved through Akaike’s informa-
tion criterion (Akaike 1973, 1974): all models from the

family G, , are first inferred, searching for the one such
that Akaike’s error
AIC(G, ) = 201G, ) + 2k )

is minimal. Here, k = p + g + 3 is the number of
parameters of the model G, , and /(G, ) is the maxi-
mized log-likelihood corresponding to model G, ;. Ac-
tually, following the suggestions of Burnham and
Anderson (2002, 2004), we have considered the quan-
tity

AG

qu)

= AICG, ) — Igiqn AIC(G, ):  (10)
although the best model, in principle, is that for which
A(G,,) = 0, models with A = 2 should also be consid-
ered as reasonable candidates. Therefore, in the pres-
ence of a pair of models with A < 2, we have used the
likelihood ratio test to select the best model (see sec-
tion 5 for the description of our procedure). This is
possible since our family G, , is nested: simpler models
are obtained from more complex ones by setting to zero
some of the parameters. In other words, the choice of a
model G, is rejected in favor of a more complex
model G, ,, (Where more complex means that p, = p,
and g, = ¢q,) if the maximized likelihood of G, ,, is
much larger than that of G, ,,. We refer to Coles
(2001) for details.

Probability and quantile plots have been used as
graphical diagnostics, where reduction to Gumbel scale
is applied to deal with nonstationarity. Let z,, =1,. . .,
m be a sequence of block maxima extracted from a
nonstationary time series, from which the time-
dependent GEV model G[u(t), (1), %] has been in-
ferred. The sequence of maxima is transformed accord-
ing to

_ A —~1/&
Zt_log{[l"'é(ZtTg(ﬂ)] }’ t=1,...,m.

(11)

If Z, are random variables with distribution G[f(r),
(1), &, then the transformation (11) produces variables
Z, that have the standard Gumbel distribution. In other
words, transformation (11) attempts to remove the time
dependence from the sequence of maxima bringing it as
close as possible to a common scale. This way, the dis-
tribution function and the quantiles of the transformed
sequence of maxima Z, can be compared with the em-
pirical ones of the standard Gumbel distribution. The
probability and quantile plots are then constructed as in
the stationarity case (see Part I), except for using the
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transformed variables Z, instead of the z,. For both
kinds of plots, displacement of points from the diagonal
indicates low quality of the inference.

We conclude this section by emphasizing that all of
the above procedure is performed in the spirit of pure
inference, that is, determining the likelihood of the
adopted parametric hypothesis and not its truth or con-
ceptual validity: these latter, in the absence of a sup-
porting theorem, remain unknown. It should be kept in
mind that several structurally different models might fit
the observations with similar reliability (likelihood): in
this case, as no universal model is suggested or enforced
(as opposed to the stationary case), there is no reason
to prefer the one above the other.

4. The time series: Total energy of the
atmospheric jet model with a trend in average
baroclinicity

We consider here the same baroclinic jet model used
in Part I, where the spectral order JT is set to 32. The
model temperature is relaxed toward a given equator-
to-pole profile, which acts as baroclinic forcing. The
statistical properties of the model radically change
when the parameter 7, determining the forced equa-
tor-to-pole temperature gradient, is varied. A physical
and dynamical description of the model is given in
Speranza and Malguzzi (1988), Malguzzi et al. (1990),
and Lucarini et al. (2005, 2007b).

In Part I we performed an extreme value analysis of
the system’s response with respect to variations in 7.
Several stationary time series of the total energy E(f)
were used as a basis for GEV inference. Each time
series was generated with T fixed at one value within
a uniform grid on the interval [10, 50], with spacing of
2 units. We recall that, given the nondimensionalization
of the system, T, = 1 corresponds to 3.5 K, 1 unit of
total energy corresponds to roughly 5 X 10'7 J, and ¢ =
0.864 is one day, see Lucarini et al. (2005, 2007b). In
that case, all parameters of the system being kept fixed,
after discarding an initial transient each time series of
the total energy could be considered as a realization of
a stationary stochastic process having weak long-range
dependence. Therefore, the classical framework for
GEV modeling was applied (see Part I).

In the present setting, a specific linear trend is im-
posed on T starting at time ¢ = 0, the model is run
with a time-dependent forcing parameter

Tp(t) = (T — 1) + ATy, 1[0, (12)

with 79 = 10. Three values are chosen for the trend
intensity AT: 2 units every L, = 1000, 300, and 100 yr,
yielding three time series for the total energy E(¢). The
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TABLE 1. The length L of each of the three time series and the
length L, of each of the 21 the data blocks B; (both are expressed
in years), as a function of the intensity AT, of the trend (12)
imposed on the parameter 7 of the baroclinic model.

AT, 2/(1000 yr) 2/(300 yr) 2/(100 yr)
L 21 000 6300 2100
Ly 1000 300 100

range swept by T;(¢) during integration is kept fixed in
all three cases to the interval [9, 51], so that the total
length of the time series depends on AT,. Each time
series is split into 21 data blocks B,i=1,...,21. The
length L of each block corresponds to a time interval
I' such that, as ¢ varies within I’, the baroclinicity pa-
rameter 7(f) by (12) spans the interval

[Ty —1,Tg+1], (13)

which is 2 units wide and centered around one of the
values T considered in Part I:

(T, Ty, ..., T%)=(10,12,14,...,50). (14)

Therefore, the total length L of the time series depends
on the trend intensity, so that we have L = 21 X 2/AT, =
21L . Moreover, since the time span over which the
maxima are computed is kept fixed to one year, the
number of maxima in each data block B’ also depends
on ATy in fact, it is equal to L,, see Table 1.

Such a selection of the intervals as in (13) allows for
a direct comparison of the present results with those
obtained for stationary time series in Part I. Moreover,
our choices regarding block length and other factors are
based on the indications provided in Part I, where the
goodness-of-fit assessments performed by a variety of
means showed that:

¢ the adopted block length of 1 yr ensures that the
extremes are uncorrelated and genuinely extreme;

e the minimum length (100 data) used for the se-
quences of maxima yields robust inferences.

5. Time-dependent GEV analysis of the total
energy

For each data block B',i =1, ..., 21, we first extract
a sequence of yearly maxima z/, with¢ =1, ..., L For
compactness, each sequence is denoted in vector form
as z' = (24, z5 . .., 2;,). One GEV model of the form
G, , [see (5)] is fitted from each of the sequences z'. In
the following, by simpler model we mean a model hav-
ing less nonzero parameters in the vector B as in (6).
Foreachi =1,..., 21, the analysis follows three main
steps:
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(p,q) = (0,0) (p.q) = (1,0) (p,q) = (1,1) (p,q) = (2,1)

[l =—"7489.9 [ =—5390.6 = —5346.9 [ =—-5345.1

A = 4283.5 A =86.9 A=1.54 A=

(; Oi2 | 0.6 | 1‘ 0 012 | 0.6 | 1‘ 0 012 | 0.6 | 1‘ 0 0‘.2 | 016 | 1‘
Empirical Empirical Empirical Empirical

é N § 8 § ~ g «
I 7—‘2 (; ; 4 ; | 7—2 (; ; 4 (; | -2 (; 2 4 6 I -2 0 2 4 6

Empirical Empirical Empirical Empirical

FiG. 1. Diagnostic plots of GEV inferences with model (4) and parameters as in (5), for block B; with i = 2
[corresponding to T% = 12 through (14)] and AT, = 2/(1000 yr). (top) Probability plots; (bottom) quantile plots;
(left to right) plots for models G, , [see (5)], with (p, ¢) indicated on top, together with the corresponding

log-likelihood / [Eq. (7)] and value of A [Eq. (10)].

1) nested models G, ,,for0=p=2and0=¢g =1, are
fitted on the ith sequence of maxima z'; the quantity
A(G,,,) is computed for all p, g;

2) models for which A > 2 are discarded; the model
with A = 0 is checked against each of the models
with A < 2, starting from the simplest and each time
increasing the complexity: according to the likeli-
hood ratio test, if a simpler model cannot be rejected
in favor of that with A = 0, then the simpler model
is chosen as the best fit; conversely, if the model with
A = 0 must be rejected in favor of a more complex
model, then the latter is chosen as the best fit;

3) lastly, the best-fit model is graphically checked by
examining the probability and quantile plots, and it
is possibly rejected in favor of a simpler model.

Following the above procedure, for each time interval
I'i=1,...,21, time-dependent GEV models G,igi(2)
with parameters [{'(¢), 6'(¢), &'] are inferred from the
data block z'. Model G,i,i(z") (denoted for shortness
Gpi4iin the rest of this section) is the best estimate for
the ith data block, relative to the family of models
G,, , and to the selection criteria listed above. Choos-
ing a model with different orders (p, q) would either
give poor results in the graphical checks, or fail to pass
Akaike’s information criterion, or the likelihood ratio
test.

An example is given in Fig. 1, for the data block i =

2 in the time series with AT, = 2/(1000 yr). According
to Akaike’s criterion, models Gy, and G, are imme-
diately discarded and one should choose model with (p,
q) = (2,1). However, by the likelihood ratio test, model
(p, g) = (1, 1) cannot be rejected at the 5% level of
confidence in favor of model (p, g) = (2, 1), since the
deviance statistics satisfies D = 2{l,; — [, ;} = 3.6 <3.84
(the latter is the 0.95-quantile of the 7 distribution).
Moreover, the graphical diagnostics reveal that both
models fit the data quite well. Therefore, the simpler
model (p', ¢°) = (1, 1) is selected as best fit.

Another example of out procedure is given in Fig. 2,
for the data block i = 18 in the time series with AT, =
2/(100 yr) According to Akaike’s criterion, models G,
is discarded, whereas G, 4, G, and G, are all plau-
sible. By the likelihood ratio test model (p, q) = (1, 0)
cannot be rejected at the 5% level of confidence in
favor of model (p, q) (2, 1), since the deviance statistics
satisfies D = 2{l,; — [0} = 43 < 5.99, which is the
0.95-quantile of the x3 distribution. The simplest non-
stationary model (5, ¢') = (1, 0) is therefore selected as
best fit (the graphical diagnostics does not indicate lack
of fit). Model (p, ¢) = (1, 1) is not taken into account,
since we have found a simpler model with a satisfactory
fit.

Plots of the best estimate parameters [f4(t), &(f), &]
as functions of time are proposed in Fig. 3. Confidence
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FIG. 2. Same as Fig. 1 but for block i = 18 [corresponding to T% = 44 through (14)] and AT, = 2/(100 yr).

intervals are computed by assuming exact multinormal-
ity of the maximum likelihood estimator, which only
holds asymptotically (Coles 2001): to fix ideas, suppose
that for the ith data block a best-estimate model is ob-
tained with p’ = 1, that is, @/(f) = p{ + wit. Then the
uncertainty of {'(f) is computed as though ) and !
were normal variables with variances and covariance
given by o, 0, and cov(ug, ), respectively, where
the latter are provided by the observed information
matrix (see Part I):

o 2 2 i 2
Oginy = '\/ouilt + 2t cov(pg, ) + i (15)

The corresponding confidence interval at time ¢ is com-
puted as

[A'(0) — 204

These confidence intervals have been systematically
compared with those obtained by a standard bootstrap
procedure, which uses the same covariance matrix: no
significant difference has been detected.

For most of the time intervals I, the best-estimate
model is such that i’(¢) and &'(¢) are respectively linear
and constant in time; that is, (5°, ¢°) = (1, 0). (See
Tables 2, 3, and 4.) The best fit includes a quadratic
term in w(7) for only three cases, whereas models of the
form (p', ¢°) = (1, 1) are typically found for small values
of i. The fact that a statistical model of enhanced com-
plexity (more parameters) is needed to achieve good-
ness-of-fit may be interpreted as follows: although the

) ﬂi([) + 2040 (16)

hypothesis of smoothness, described in section 2, may
be considered valid, the rate of variation of the SRB
measure with respect to variations in 7, is compara-
tively larger for small values of 7, particularly when
viewed through the extremes of the energy observable.

In concluding this section, we emphasize that the
convergence of the numerical procedure used in the
maximization of the likelihood function is here consid-
erably more problematic than in the stationary case
studied in Part I. Indeed, in the present case it is often
necessary to accurately choose a suitable starting point
for the maximization procedure, in order to achieve
convergence. In particular, ad hoc starting points had to
be searched for all cases with i = 1.

6. Trend assessment

When dealing with nonstationary data, the problem
of assessing the sensitivity of trend inferences is par-
ticularly delicate. Beyond the serious conceptual prob-
lems explained in section 2, one is confronted with sev-
eral practical issues. Most of the sensitivity tests in Part
I were based on examining a shorter portion of same
time series or on calculating the maxima on data blocks
of different lengths. In the present nonstationary con-
text, both operations would result in an alteration of the
statistical properties of the sample (exactly because of
the nonstationarity) and this makes comparisons some-
what ambiguous. An example is provided in Fig. 4
where we compute the best-estimate GEV fits using
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sequences of yearly maxima having different lengths—
but starting at the same instant (year 15 000)—
extracted from the time series with the slowest trend
intensity A7, = 2/(1000 yr). Notice that the best fit
obtained by taking 100 yearly maxima is stationary. The
corresponding extrapolations in time are, of course,
completely wrong. By using 500 and 1000 maxima, the
best estimates obtained (not shown) fall inside the con-
fidence band of the 2000-yr-based estimate for most
values of time.

The above example illustrates the trend dilemma: on
the one hand, in order to be detected, a statistical trend
has to be sufficiently fast with respect to the length of

the record of observations; on the other hand, if the
trend is too fast then the adiabatic hypothesis discussed
in section 2 is no longer valid: one is left with no ref-
erence statistics against which the inferred models can
be compared.

Moreover, when considering large time spans a fur-
ther practical complication arises: because of the non-
linear dependence of the statistical properties with re-
spect to the external parameter 7, a functional relation
between the GEV parameters and time might require
many parameters to achieve goodness of fit. An indi-
cation of this phenomenon is the fact that for small
values of i typically one needs more parameters, as dis-
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TABLE 2. Best estimate GEV fits G, ,i(z") with parameter vec-
tor as in (6) for the nonstationary time series with trend speed
AT, = 2/(1000 yr); see text for details.

i fo B fi Gy o 3
1 3585.34 1.41 0 7.79 0.02 —0.29
2 4990.60 1.50 0 30.71 0.04 —0.15
3 6498.00 1.61 0 66.34 0.04 —0.17
4 8106.62 1.77 0 105.56 0.04 —0.15
5 9851.78 1.84 0 155.78 0.06 —0.16
6 11 709.87 1.96 0 206.43 0.06 —0.17
7 13 699.46 2.00 0 296.81 0 -0.17
8 15718.89 2.14 0 367.36 0 —0.16
9 17 936.64 2.15 0 451.82 0 —0.18
10 20141.28 2.35 0 521.44 0 -0.17
11 22527.79 2.25 0 597.35 0 —0.16
12 24 934.78 2.48 0 702.10 0 —0.18
13 27 452.54 2.58 0 774.77 0 —0.14
14 30 061.01 2.61 0 749.40 0.13 -0.12
15 32 686.08 2.88 0 855.56 0.19 —0.13
16 35348.30 3.16 0 1072.35 0 -0.17
17 38 384.21 3.06 0 1136.50 0 —0.14
18 41 335.49 2.88 0 1131.06 0.27 -0.12
19 44 351.82 3.11 0 1336.62 0 —0.13
20 47 501.96 3.15 0 1443.89 0 —0.11
21 50 675.26 3.20 0 1625.06 0 —0.10

cussed in section 5. In more problematic cases, one
faces the problem of large uncertainties in the param-
eter estimates or even lack of convergence. This has
indeed been observed for the present time series: if we
consider a long record, such that the change in T is
large, the model family G, , with parameters as in (5)

TABLE 3. As in Table 2 but for trend speed AT, = 2/(300 yr).

i P By fio o 0y ¢
1 3583.57 4.70 0 8.29 0.08 -0.29
2 4988.11 5.00 0 35.09 0.09 —0.20
3 6491.71 5.41 0 68.78 0.10 —0.13
4 8115.16 5.82 0 88.98 0.18 —0.10
5 0843.28 6.29 0 152.46 0.17 —0.14
6 11 735.94 6.45 0 176.65 0.30 —0.16
7 13 750.43 6.20 0 285.48 0 —0.19
8 15 763.80 6.99 0 286.16 0.44 -0.17
9 17 844.04 7.86 0 479.55 0 -0.19
10 20107.74 7.57 0 524.39 0 —0.13
11 22 485.55 7.75 0 608.08 0 —0.14
12 24 954.35 8.26 0 699.97 0 —0.14
13 27 314.52 9.46 0 763.00 0 -0.19
14 29928.19 10.07 0 853.05 0 —0.15
15 32723.97 8.88 0 896.10 0 —0.16
16 36 056.60 1.29 0.03 912.06 1.24 —0.10
17 38284.71 9.73 0 1147.70 0 —0.12
18 41 437.32 9.95 0 1293.54 0 —0.18
19 44 386.77 10.05 0 1270.29 0 —0.06
20 47 704.61 10.77 0 1496.65 0 -0.13
21 50 890.62 9.09 0 1673.99 0 —0.14
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TABLE 4. As in Table 2 but for trend speed AT = 2/(100 yr).

i fo iy fio 9 0 ¢
1 3586.92 13.53 0.01 5.94 0.22 —0.17
2 4989.65 14.84 0 34.92 0.26 —0.24
3 6494.95 15.26 0.01 50.34 0.30 —0.14
4 8118.51 17.11 0 123.09 0 —0.14
5 9905.01 17.29 0 144.91 0 —0.07
6 11 679.56 19.67 0 261.31 0 -0.15
7 13 628.09 21.49 0 309.89 0 -0.19
8 15 542.18 24.39 0 354.45 0 —0.13
9 17757.54 25.41 0 484.45 0 -0.22
10 20 245.62 19.27 0 503.43 0 —0.20
11 22528.24 24.12 0 378.94 2.83 —0.06
12 24 848.74 25.25 0 632.31 0 —0.24
13 27 442.05 27.17 0 780.44 0 —0.27
14 29 638.34 35.68 0 790.87 0 —0.03
15 32618.26 28.05 0 1010.55 0 —0.12
16 35812.81 21.48 0 1046.24 0 -0.12
17 3842225 28.22 0 1055.08 0 —0.15
18 41 120.50 31.06 0 1238.43 0 -0.18
19 44 510.73 27.28 0 1350.89 0 —0.14
20 47 641.12 25.50 0 1549.09 0 -0.12
21 50452.92 28.15 0 1770.02 0 —0.16

becomes inadequate to catch the time dependence of
the statistics of extremes. As a further example, we
have examined a data block of length 5000 starting at
year 14 500 in the time series with AT = 2/(1000 yr).
Inspection of graphical diagnostics (probability and
quantile plots) reveals that no model in the family G, ,
produces an acceptable inference. It should be empha-
sized that goodness-of-fit is achieved for the same time
series using blocks of length 1000; that is, performing
inferences that are more localized in time. Thus we
infer that in this case the problem is not the failure of
the adiabatic or smoothness hypothesis, but the nonlin-
ear dependence of the attractor on the parameter 7,
which manifests itself on sufficiently large time inter-
vals.

7. Smooth dependence on the forcing

The setup of the present analysis (see section 4) has
been chosen to allow comparison of the nonstationary
GEYV inferences with the results of Part I, obtained
from statistically stationary time series. To perform the
comparison, for each i = 1, ..., 21 the best estimate
parameters [{(¢), 6(¢), £] inferred from data block B’
are first expressed as functions of T, inside the interval
(13). This is achieved by inverting the trend Eq. (12),
(writing time as a function T}):

T,—-T%+1

(Tg) = A—TE , Tgel[9,51], (17)
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and inserting this into the expression of [{(¢), &(t), &].
This yields functions that are denoted as [/(Tg),
&'(T,), &']. These are evaluated at the central point T’
of the interval of definition and plotted in Fig. 5. Con-
fidence intervals are given by the same estimate as in
(16), used for Fig. 3, again evaluated at the value of ¢
corresponding to the central point T via (12). A rather
smooth dependence on T is observed, especially for
the GEV parameters p and o. The location parameter
W turns out to be not very sensitive to changes in the
trend intensity, being much more sensibly dependent
on variations in 7. Moreover its confidence intervals
are always very small (relatively to the size of w).

Denote by w' the sequence of yearly maxima of the
total energy, computed for T, fixed at T%, which were
used in Part I to infer time-independent GEV models.
These stationary GEV models are here denoted by
Goo(w') and the inferred values of their parameters by
', &', and &' Since the graphs of the parameters ji’,
&', and &' versus T% very closely match those in
Fig. 5, comparison with the stationary data is presented
under the form of relative differences (Fig. 6). To be
precise, on the left column the absolute values of the
ratios

w(Ty) — i

— - 18
BTy + i "

are plotted against 7% (similarly for the GEV param-
eters o and §). Remarkable agreement is obtained for

the parameter w: the relative differences less than 10%
and drop below 5% for large T and for all considered
trend intensities. Excellent agreement is also obtained
for o (particularly for large 7;) and for & except for the
fastest trend intensity AT, = 2/(100 yr). In the latter
case, indeed, the sample uncertainty is as large as (or
even larger than) the estimates self.

We emphasize that inferring time-independent mod-
els Gy (') from the nonstationary data z’ might induce
very large errors, particularly in the scale and shape
parameters. This is also reflected in the diagnostic plots,
compare Fig. 1 (leftmost column). This lack of fit ob-
tained with the time-independent model is particularly
bad for the lowest values of T%. A much better (even
surprising) agreement between the stationary and non-
stationary estimates is obtained with the procedure de-
scribed in the previous section: first fitting the time-
dependent model G,i4(z") and then evaluating its pa-
rameters at the central point 7. There is agreement
even in the estimates of the parameter & which is usu-
ally the most difficult one to infer. In the case of sta-
tionary time series, since the attractor is bounded and
since the energy observable E(f) is a continuous func-
tion of the phase space variables, the total energy is
bounded on any orbit lying on (or converging to) the
attractor. Therefore, the total energy extremes are nec-
essarily Weibull-distributed (& is negative); see Part I.
Although this property is not bound to hold for non-
stationary forcing, it is still verified; see Table 2.

Two distinct power-law regimes are identified for the



2170 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 64
LB= 1000 LB= 1000 LB= 1000
o
0 S
0 | -
< — —
OI' —
x “ & = - W |
O )
e} o
- S 7 T
o)
o o — o
T T T T T 17 1T T 17T [ T T 17T T T [ T T 17T T T 1T T T 171
10 18 26 34 42 50 10 18 26 34 42 50 10 18 26 34 42 50
Tg Tp Tk
LB= 300 LB= 300 LB= 300
&
0 — g —
[Te} —
<+ - - 7] -
» S
5 B = W |
o )
[Te} o
- O B I
o)
o o o
1T T T 1T 1T T T T T T T T T T 177 1 T T T T 1T T T 1T T°1
10 18 26 34 42 50 10 18 26 34 42 50 10 18 26 34 42 50
Tg Tp Tg
LB= 100 LB= 100 LB= 100
& -
0 = -
0 | -
<+ 4 L o
o - S
3 & = W, |
N )
[Te} o
- S .
)
o o S
T T T T T 7T T T 17T T T T T T T [ T T 17T T T 1T T 17 171
10 18 26 34 42 50 10 18 26 34 42 50 10 18 26 34 42 50

T

Tx Ty

FIG. 5. (left to right) Parameters {/(T%), &(T%), & of the best estimate GEV model G,,,1(z’) evaluated at the
central point T% of each of the 21 intervals (13). The trend intensity AT is equal to (top) 2/(1000 yr), (middle)

2/(300 yr), and (bottom) 2/(100 yr).

Al AL

GEYV parameters (', &
the form

, &) as functions of T%, having

PATY) = o, (TH)™ and  G(T%) = a,(T%);
(19)

see Figs. 7 and 8. The values of the fitted exponents v,
and v, in each scaling regime are reported in Tables 5
and 6, respectively. A similar power law dependence of
the GEV parameters on 7 was already observed in
Part I for the stationary datasets w': indeed, the expo-
nents obtained there are very similar to those in Tables
5 and 6, particularly for large 7. The lack of a power-
law scaling regime for the parameter o for small 7

explains both the more pronounced differences be-
tween the stationary and nonstationary estimates (Fig.
6) and the necessity of including a linear term for o in
the statistical model to get acceptable inferences. This
highlights the strongly nonlinear behavior of the baro-
clinic model, whose response to changes of T has dif-
ferent features depending on the considered range of
variation.

Two factors explain the qualitative analogies and the
quantitative agreements between the time-dependent
models discussed here and the stationary results of Part
I. First of all, the trend intensity imposed on 7 in all
cases is sufficiently slow with respect to the time of
relaxation of the baroclinic model to the statistics of
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FIG. 6. Relative differences of the values of the GEV parameters i, 5, and 5’7, inferred in Part I from stationary
data for T, = T fixed, and the best estimate GEV parameters [(/(T%), 6'(T%), £&'] obtained from the nonsta-
tionary simulations in the present setting (see the explanation in section 7 for details).

extreme values of the total energy. For clarity, we em-
phasize that the latter time scale is that used in section
2 to define the adiabatic hypothesis: it is the time nec-
essary to obtain a good sampling of the SRB measure
on the attractor, provided that one may consider the
system as frozen (with constant 7';) for sufficiently long
time spans. We do not know yet (the problem is under
examination) whether this time scale bears any physical
relation to other time scales, such as those of baroclinic
instability or low-frequency variability [both have been
described in Speranza and Malguzzi (1988) for the
present model]. A second factor is that the system’s
statistical behavior responds rather smoothly to the im-
posed time-dependent variation of the parameter 7.

This smooth dependence on Ty of the statistical prop-
erties of the baroclinic model was analyzed in detail in
Lucarini et al. (2005, 2007b) by considering not only
global physical quantities such as total energy and av-
erage wind profiles, but also finer dynamical indicators,
such as the Lyapunov exponents and dimension. Both
properties of smoothness and adiabaticity are of crucial
importance in order to justify the usage of nonstation-
ary GEV models that are (locally) smooth functions of
time, such as our polynomial family G,, .

8. Summary and conclusions

In this paper, we have investigated a general, al-
though not universal, framework for the analysis of
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trends in extremes of climatic time series. When all the
shortcomings that are present in datasets and observa-
tions have to be considered, a rigorous definition of
extremes and a neat, clean, and legible approach to the
evaluation of trends is necessary in order to get useful
and reliable information (Zhang et al. 2005). The time-
dependent approach allows the expression the inferred
GEYV distributional parameters as functions of time. As
expected, it is found that trend in the statistics of ex-
treme values is detectable in a reliable way, provided
that the record of observations is sufficiently long, de-
pending on the time scale of the trend itself. Trend
inference and assessment is much more problematic
than in the statistically stationary inference. First, one is
faced with a serious conceptual problem: there is no
operational definition of probability, since, to say it in
loose words, the time series is not a sampling of a
unique probability distribution, as it is in the stationary
case. Even if one assumes that the time series is a re-
alization of a sequence of random variables (with dif-
ferent distributions), the statistical properties of the

sample are altered by any operation such as resampling
or taking shorter subsamples, which makes sensitivity
studies somewhat ambiguous. One must assume that
the distributions of the random variables vary slowly
and smoothly with time, so that the time series contains
sufficient sampling information on the local (in time)
statistical behavior.

In the present context, we have adopted GEV mod-
els whose parameters are polynomial in time: the loca-
tion parameter u is at most quadratic with respect to
time and the scale parameter o is at most linear in time.
Since the relation between the macroscopic forcing 7z
and time is invertible, the time dependence of the in-
ferred GEV models can be expressed as a relation be-
tween the GEV parameters and T, showing rather in-
teresting properties. The location and scale parameters
feature power-law dependence with respect to T,
while the shape parameter has in all cases a negative
value. As expected, both results are in agreement with
what obtained in the companion paper (Part I) for sta-
tionary data. Since the parameter T increases mono-
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FIG. 8. As in Fig. 7 but for the inferred values 6/(T%).
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TABLE 5. Power-law fits of the inferred location parameter
[@/(T%) as a function of T% [see (14)] of the form @/(T%) =
a,(T%). Two distinct scaling regimes (with distinct exponents
Y,.1 and vy, ,) are identified and the corresponding adjacent inter-
vals in the T axis are separated by the common endpoint 7%
reported in the third column from left.

Ly Vi1 TZ‘ Y2
1000 1.573 = 0.004 16 1.54 = 0.01
300 1.572 = 0.002 16 1.545 = 0.002
100 1.572 = 0.001 16 1.542 = 0.001

tonically in the simulations with the baroclinic model,
the system certainly does not possess any invariant
measure. However, the results suggest that, as T in-
creases, the system explores statistical states that vary
smoothly with 7, and whose properties are locally
quite similar to those obtained in the stationary setting.
This is even captured for the relatively fast trend inten-
sity AT, = 2/(100 yr). The proposed explanation is that:

1) the system’s statistical properties depend rather
smoothly on T (cf. Lucarini et al. 2005, 2007b);

2) the adopted time scales of variation of T (i.e., the
trend intensity AT;) are sufficiently slow compared
to the relaxation time to the statistics of extreme
values.

The second condition, which was explained in more
detail in section 2, amounts to the heuristic statement
that for sufficiently short time spans the system’s sta-
tistical properties can be considered frozen to those
holding for a corresponding value of 7. The possibility
of using GEV models that are locally smooth (polyno-
mial functions of time) depends essentially on these two
conditions. For example, for a system having several
bifurcations as the control parameter is changed the
time-dependent GEV modeling would be much more
complicated. However, even if the above two condi-
tions do hold, the inference of time-dependent GEV
models is valid locally in time, that is, if the sequences
of maxima used for the inference span not too large
time periods. For large time spans, indeed, the nonlin-
ear response of the baroclinic model to variations in 7
becomes dominant and polynomial GEV models are no
longer suitable. On the other hand, if the sequences of
maxima used for the inference are too short (depending
on the trend intensity), the wrong trend estimates may
be obtained.

There are several ways in which we plan to extend
the present study. First, it would be very useful to give
quantitative criteria for the definition of the slowness of
a statistical trend. This problem is very hard when deal-
ing with observed data, where one does not dispose of
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TABLE 6. As in Table 5 but for the inferred scale parameter

&'(Th).
Lg Yo1 T}E Yoo
1000 3.69 = 0.06 18 2.04 = 0.04
300 3.4 = 0.1 18 2.08 = 0.07
100 3.7 =02 20 2.0 = 0.1

a stationary model, justified on theoretical and physical
grounds, which can act as a reference statistic, to be
used as comparison as well as test (as we have done in
Fig. 6). However, in the theoretical context of dynami-
cal systems having well-behaved statistical properties
(e.g., hyperbolic attractors or Anosov systems), one
might try to formalize the heuristic notion of adiabatic-
ity presented in section 2. Another aspect of this inves-
tigation would be to examine what might be the impact
of trend in systems that are not smooth with respect to
external parameters, for example, in systems having bi-
furcations. A second point is that we have considered
an indicator of global character, the total energy of the
system. Other choices might be to analyze the wave
kinetic energy, the available energy or also the maxi-
mum vorticity on the domain of the model, which might
behave in different ways as 7 is changed. Moreover,
there are delicate issues connected with reducing the
scale from a global indicator to a local one, such as the
value of the wind on a grid point. This brings into play
all complications due to the multifractality and the spa-
tial dependence of the process. A more fundamental
problem is the characterization of SRB measures and
observables such that the associated stochastic process
falls into the domain of attraction of the GEV family.
First rigorous results in this sense were obtained by
Haiman (2003) and J. M. Freitas and A. C. Moreira-
Freitas (2007, personal communication), who examined
the one-dimensional dynamical systems given by the
tent map and the quadratic map, respectively. In par-
ticular, in both cases it was proved that the extremes are
Weibull distributed (under mild conditions on the ob-
servable and for suitable values of the parameters),
contradicting previous speculations (Balakrishnan et al.
1995). Lastly, a further development of the present
work is the usage of extreme statistics as a dynamical
indicator, in the sense of process-oriented metrics (Lu-
carini et al. 2007a). All these issues are currently under
investigation.

We conclude by observing that the present and the
companion paper (Part I) are devoted not merely to the
statistical inference of extremes and their trends but
also to explore the possibility of using extreme statistics
in diagnosing the dynamical state of a geophysical fluid.
Our analysis of the problem reveals, in fact, that diag-
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nostics, which are based on universal (GEV theorem),
robust (smoothness properties), simple (power-law
scaling), controllable (low-dimensional parametric) sta-
tistical models, can be very helpful in setting up well-
targeted models of the general circulation (see Lucarini
et al. 2005, 2007b).
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