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a b s t r a c t

Extreme value theory for chaotic deterministic dynamical systems is a rapidly expanding area of research.
Given a system and a real function (observable) defined on its phase space, extreme value theory studies
the limit probabilistic laws obeyed by large values attained by the observable along orbits of the system.
Based on this theory, the so-called block maximum method is often used in applications for statistical
prediction of large value occurrences. In thismethod, one performs statistical inference for the parameters
of the Generalised Extreme Value (GEV) distribution, using maxima over blocks of regularly sampled
observable values along an orbit of the system. The observables studied so far in the theory are expressed
as functions of the distance with respect to a point, which is assumed to be a density point of the system’s
invariantmeasure. However, at leastwith respect to the ambient (usually Euclidean)metric, this is not the
structure of the observables typically encountered in physical applications, such aswindspeed or vorticity
in atmospheric models. In this paper we consider extreme value limit laws for observables which are not
expressed as functions of the distance (in the ambient metric) from a density point of the dynamical
system. In such cases, the limit laws are no longer determined by the functional form of the observable
and the dimension of the invariant measure: they also depend on the specific geometry of the underlying
attractor and of the observable’s level sets. We present a collection of analytical and numerical results,
starting with a toral hyperbolic automorphism as a simple template to illustrate the main ideas. We then
formulate our main results for a uniformly hyperbolic system, the solenoid map. We also discuss non-
uniformly hyperbolic examples of maps (Hénon and Lozi maps) and of flows (the Lorenz63 and Lorenz84
models). Our purpose is to outline the main ideas and to highlight several serious problems found in the
numerical estimation of the limit laws.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Background on extreme value theory

Classical extreme value theory concerns the probability distri-
bution of unlikely (large) events, see [1–7]. Given a stochastic pro-
cess X1, X2, . . . governed by independent identically distributed
random variables, let Mn be the random variable defined as the
maximum over the first n occurrences:
Mn = max(X1, . . . , Xn).

This variable has a degenerate limit as n → ∞, and therefore
it is necessary to consider a rescaling. Suppose that there exist
sequences an ≥ 0 and bn ∈ R such that the rescaled variable
an(Mn − bn) converges to a non-degenerate distribution. That is
lim
n→∞

P (an (Mn − bn) ≤ x) = G(x). (1)

∗ Corresponding author.
E-mail addresses: r.vitolo@exeter.ac.uk, renato.vitolo@unicam.it (R. Vitolo).

Then extreme values theory asserts that the limit G(x) can
only be one of three different types: the Gumbel, Weibull and
Fréchet parametric families of probability distributions. These
three families can be combined into a single three-parameter
family having distribution function

G(x) = exp


−


1 + ξ


x − µ

σ

−1/ξ

, (2)

defined on the set

x|1 + ξ

 x−µ
σ


> 0


, where the parameters

satisfy −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. Eq. (2) is
called the generalised extreme value (GEV) family of distributions.
The subset of the GEV family with ξ = 0 is interpreted as the limit
of (2) as ξ → 0, leading to the Gumbel family (with parameters µ
and σ ).

In the applications the GEV family is particularly useful to
predict the probability of occurrence of future large values of a
quantity, given a sample of past experimental measurements of
that quantity. The so-called block maximum method is frequently
used in this setting. Here one extracts a sub-sample of maxima
over data blocks: in environmental and climate contexts one
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often uses blocks of length one year, hence the name of the
annual maximum method. One then estimates the parameters
(µ, σ , ξ), assuming that that the block maxima form a random
sample drawn from a GEV distribution with unknown parameters.
Maximum likelihood is a common estimation method [6]: in
this case, standard asymptotic theory also provides confidence
intervals (uncertainties) for the point estimates. The estimated
GEV parameters and associated uncertainties can then be used to
derive other quantities of interest, such as return periods for given
return levels of the variable of interest, see the above references
and [8–11] for examples.

Extremes in deterministic systems

Recent work has extended the domain of extreme value theory
to the setting of chaotic deterministic dynamical systems [12–21].
We briefly outline the difference of our problem setting as opposed
to the above results. Suppose that we have a dynamical system
(X, ν, f ), where X is a d-dimensional Riemannian manifold, f :

X → X a measurable map and ν an f -invariant probability
measure. Assume that there is a compact invariant set Λ ⊂ X
which supports the measure ν. Specifically, our main interest
is the situation where Λ is a strange attractor and ν is a
Sinai–Ruelle–Bowen (SRB) measure [22]. Given an observable φ :

X → R ∪ {+∞} we study extreme value limit laws for the
stationary stochastic process X1, X2, . . . defined by

Xi = φ ◦ f i−1, i ≥ 1. (3)

The theoretical work cited above focused on the special casewhere
φ has the form

φ(p) = g(dist(p, pM)), p ∈ X, (4)

where g : [0,+∞) → R is a measurable function of the distance
dist(·, ·) in X and pM is a density point of ν. However, typical
observable functions used in applications are not of this form, at
least when dist(·, ·) is taken to be the ambient (usually Euclidean)
metric. Consider for example the quasi-geostrophic model of [8,9]:
thismodelwas conjectured in [23] to possess a compact (bounded)
strange attractor in its (unbounded) phase space. The observables
used in [8,9,11,24] are the system’s total energy, the wind speed
and vorticity at a gridpoint in the lower level. These observables
can be written as

φE(p) = pTEp, φW (p) = ∥Wp∥,
φV (p) = Vp, respectively,

(5)

where p is a point in the phase space X = Rd, ∥ · ∥ denotes
the Euclidean norm and E ∈ Rd×d,W ∈ R2×d, V ∈ R1×d are
matrices. When dist(·, ·) is the Euclidean metric then none of the
observables in (5) has the form (4). In fact this situation is to be
expected inmany, if not inmost, observables found in applications,
including the atmospheric and oceanicmodels of [25,26]. Although
observables such as (5) are usually unbounded in the system’s
phase space, the system’s attractor Λ is usually bounded due to
the presence of dissipative processes in the models. Therefore,
time series of such observables should be expected to have an
upper bound and, hence, large values typically obey Weibull limit
distributions, see [8,11] for a more detailed discussion.

In our discussion we consider the invariant measure ν and the
observable φ given, with φ the form (5). If the attractor Λ is
compact, then there exists a point pM ∈ Λ where the observable
is maximised. An alternative approach to the problem could be to
find a function g : R+ → R and a metric in X such that the given
observable φ can be rewritten in the form (4). In some particular
cases g and the metric can be made explicit, but in general finding
this adapted construction may be just as difficult as working with
the original observable given by the problem. Indeed the adapted
metric would also depend on the geometry of the attractor.

Sketch of the results

In this paper we will consider observables φ which are not a
function of the distance from a point pM as in (4). Such observables
include cases, like those just mentioned, where φ has no upper
bound in the phase space, although time series ofφ on the system’s
attractor are bounded. Hencewewill restrict to theWeibull case in
our numerical examples. For comparisonwith the already available
theory, we also consider cases when φ is maximised at a point
pM , where however pM may or may not be a density point for the
invariant measure ν.

In such situations, to determine the form of the limiting GEV
distribution G(x) becomes a much more delicate problem: G(x) is
no longer determined by the functional form of φ(p) and by the
dimension of the SRB measure ν, but also critically depends on
the geometry of the attractor Λ ⊂ X and of the level sets of φ.
A careful analysis is required even if we assume that φ takes the
form of (4), but allowing instead that pM ∉ Λ. Without attempting
an exhaustive analysis of all possible cases, we focus on selected
examples to illustrate the key ideas of our approach, in view of
applications to a given system and observable.

To whet the reader’s appetite, we here anticipate one of the
results of this paper. For f we consider the solenoid map [27]
embedded in R3

= {(x, y, z)}: this system possesses a strange
attractor Λ which is locally the product of a Cantor set with an
interval [28], where the interval represent the leaves of a one-
dimensional unstable manifold W u. For the observable we take
φ(x, y, z) = ax + by + c + d, which is clearly not of the form (4):
rather, φ resembles the vorticity observable defined in (5). For this
pair of system and observable we obtain the formula

−
1
ξ

=
du
2

+ ds (6)

for the tail index ξ of the limiting GEV distribution. Here du =

dim(W u) = 1 and ds is the dimension in the stable direction,
which in this case is given by dimH(Λ) − 1, where dimH denotes
the Hausdorff dimension. Loosely speaking, the factor 1/2 in (6) is
obtained under a generic condition of quadratic tangency between
a local unstable manifold within the attractorΛ and the level sets
of the observable φ. As we shall argue, we believe formula (6) to be
valid, or at least sufficiently informative, for a large class of pairs
(f , φ) of systems-observables. However, we also discuss examples
where formula (6) has to be modified to take into account the
local geometry or the local scaling of the invariant measure of the
attractor, or the local behaviour of the level sets of the observable.
We will restrict our discussion to the tail index ξ , which is usually
the most delicate parameter to estimate in the analysis of extreme
values: see e.g. [6,7,29,30] for the link between the normalising
constants an, bn and the other two GEV parametersµ, σ . We note,
however, that our numerical procedure also provides estimates for
the latter two parameters, see Appendix A.

Outline of the paper

This paper is organised as follows. The general framework of
extremes in dynamical systems is presented in Section 2. Our
main theoretical results are formulated in Sections 3–6 for specific
dynamical systems. As a particularly simple example, we consider
Thom’s map in Section 3, to illustrate the main ideas in our
approach. Then in Section 4 we discuss the solenoid attractor,
which displays several features which are found in many concrete
physical systems. Section 5 presents results for two non-uniformly
hyperbolic systems, the Hénon and Lozi maps. In Section 6 we
examine two prototypical flows with chaotic dynamics due to
Lorenz [31,32]. In all of the sections, analytical calculations precede
numerical simulations, where the latter aim to show the typical
behaviour and estimation problems which can be expected to
occur. We return in Section 7 to the general relevance of our
approach.
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2. Extremes in dynamical systems: the general problem setting

We consider a measure preserving system (X, ν, f ) with a
compact attracting set Λ ⊂ X. Given an observable φ : X → R
and a threshold u ∈ R, we define the level regions L+(u) (resp.
level sets L(u)) as follows:

L+(u) = {p ∈ X : φ(p) ≥ u}, L(u) = {p ∈ X : φ(p) = u}. (7)

For the reasons discussed in the Introduction, we consider
observables which achieve a finite maximum within Λ, although
the observable themselves could be unbounded in X. We define

ũ = sup
p∈Λ

φ(p). (8)

SinceΛ is compact there exists (at least) one point p̃ ∈ Λ forwhich
φ(p̃) = ũ. We will assume that such an extremal point p̃ is unique.
Given our focus on the Weibull case (again, see the Introduction)
we consider sequences un = u/an + bn for which the limit

lim
n→∞

nν(L+(un)) := τ(u) (9)

exists. From the theory of [33], we can choose bn = ũ, and we
take an → ∞. The precise form of an depends on the regularity
of φ, and the regularity of the density of ν in the vicinity of the
extremal point p̃. In general an will be a power law in n, and τ(u)
will be regularly varying in u. If we now consider the processMn =

max(X1, . . . , Xn) with Xn = φ ◦ f n−1, then we investigate to what
extent the following statement is true:

nν{p : φ(p) ≥ un} → τ(u) ⇔ ν{Mn ≤ un} → e−τ(u). (10)

If τ(u) = uα , then the processMn is described by aGEVdistribution
with tail index ξ = −1/α. The statement (10) is shown to hold for
a wide class of dynamical systems, such as those governed by non-
uniformly expanding maps, and systems with (non)-uniformly
hyperbolic attractors, [16,34]. However the current theory for
analysing extremes in dynamical systems assumes that the level
regions L+(u) introduced in (7) are described by balls in the
ambient metric, and moreover that these balls are centred on
points inΛ that are generic for ν. These assumptions allow for the
tail index to be expressed in terms of local dimension formulae for
measures.

In this article we do not assume that the level sets are balls
(in the Euclidean metric): for example we consider observables of
the form φ(p) = φ(x1, . . . , xd) =


i |xi|

ai , where the level sets
have cusps or are non-conformal. We also consider observables
φ(p) =


i cixi, for which the level sets are hyperplanes. For

observables of these types (also compare with (5)) the standard
machinery does not immediately apply. The first problem is to
determine the sequence un and the limit τ(u) defined in (9). Even
if the measure ν is sufficiently regular then the sequence un will
depend on the geometry of the attractor close to where φ(p)
achieves its maximum value on Λ, in addition to depending on
the form of φ. In Section 3 we illustrate the various geometrical
scenarios that can arise using an hyperbolic toral automorphism
as a simple example. When ν is a more general SRB measure, then
even for uniformly hyperbolic systems (such as the solenoid map)
it becomes a non-trivial problem to determine un and τ(u). We
discuss this scenario in Section 4. The second problem is to verify
statement (10) for the class of observables under consideration.
This relies upon checking two conditions D2(un),D′(un), see [15,
34]. We summarise these conditions as follows. For integers t, l let
Mt,l = max{Xt+1, Xt+2, . . . , Xt+l}, with M0,l := Ml. Then:

(D2(un)) Wesay conditionD2(un)holds for theprocessX0, X1, . . . ,
if for any integers l, t and n we have

|ν(X1 > un,Mt,l ≤ un)

− ν(X1 > un)ν(Ml ≤ un)| ≤ γ (n, t),

where γ (n, t) is non-increasing in t for each n and
nγ (n, tn) → 0 as n → ∞ for some sequence tn = o(n),
tn → ∞.

(D′(un)) We say conditionD′(un) holds for the process X1, X2, . . . ,
if

lim
k→∞

lim sup
n→∞

n
[n/k]
l=2

ν(X1 > un, Xj > un) = 0. (11)

If the level sets have complicated geometry, or if the measure ν
is supported on a fractal set then these conditionsmust be carefully
checked. For uniformly hyperbolic systems, and for observables
that are functions of balls in the ambient metric these conditions
are checked in [34]. In this article we consider the computation of
the GEV tail index ξ for more general observables and contrast to
results known for observables that are functions of balls. We focus
on particular examples to highlight how the geometrical features
of the level sets and the attractor feed into the computation of
the tail index ξ , without attempting an exhaustive analysis of all
possible cases.We also discuss the computation of the tail index for
non-uniformly hyperbolic systems such as the Lozimap andHénon
map, and also for Lorenz flows, again for general observables.

3. A prototypical example: Thom’s map

Let T2
= R2 mod 1 be the 2 dimensional torus. Thom’s map

f : T2
→ T2, also known as Arnold’s cat map, is the hyperbolic

toral automorphism defined by

f (x, y) = (2x + y, x + y)mod 1. (12)

This system is Anosov and it has Lebesgue measure ν on the torus
T2 as the (unique) invariant measure. With this example we want
to study the role of the observable in determining extreme value
laws. For this purpose we will consider f as a map of R2 having the
square [0, 1)2 as the invariant set. In otherwords,X = R2 andΛ =

[0, 1)2, henceΛ is not an attractor, strictly speaking. The advantage
is that this allows us to take functions of R2 as observables, rather
than functions of T2. In this way, we can construct observables
which aremaximised at points in the interior or in the complement
ofΛ and whose level sets have different shapes.

The main point of this section is that the value of the tail index
is determined by the interaction between the shape of level sets
(7) of the observable and the shape of the support of the invariant
measure (colloquially, the geometry of the attractor). To illustrate
our ideas, and without attempting to cover all possible cases, we
consider the following two observables φα, φa,b : R2

→ R

φα(x, y) = 1 − dist(p, pM)α, with p = (x, y) ∈ R2 (13)

φa,b(x, y) = 1 − |x − xM |
a
− |y − yM |

b, (14)

where, given our focus on theWeibull case, we require a, b, α > 0.
Both observables are maximised at a point pM = (xM , yM) ∈ R2.
When pM is in the interior of Λ, observable (13) has the form
so far analysed in the mathematical literature about extremes in
dynamical systems, but we will also consider the case pM ∉ Λ.
Observable (14) has been chosen to illustrate the effect of the shape
of the level sets: the level regions of (14) are not (Euclidean) balls
unless a = b = 2, in which case (14) can be written as (13) for
α = 2. For other values of a and b, we could consider a coordinate
transformation of the form xa/2 = r cos θ+xM , yb/2 = r sin θ+yM .
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Fig. 1. Sketch of the three situations considered in Theorem 3.1 for the level sets L(u) (defined in (7)) for observable φα (13).

Fig. 2. Sketch of a few possible configurations for the level sets L(u) (defined in (7)) for observable φab (14). (A) (a, b) = (2, 1.25); (B) (a, b) = (0.5, 0.75);
(C) (a, b) = (1.5, 0.7).

In the (r, θ) coordinate system the level regions now correspond
to r = const. These sets would then be balls with respect to a
new (Riemannian) metric. This new metric can be expressed in
terms of the Euclideanmetric using the coordinate transformation.
e.g. when a = b = 2, (r, θ) are just polar coordinates and the
new metric becomes dr2 + r2dθ2. The next subsection contains
our analytical results, numerical simulations are postponed to
Section 3.2.

3.1. Analytical calculations

The level regions L+(u) as defined in (7) are always balls for
observable (13). However three (main) different situations occur,
depending on the location of the point pM relative to the support
of the invariant measure, see the sketch in Fig. 1.

Theorem 3.1. Let ξ be the tail index of the GEV limit distribution
associated to the process Mn = max(X1, . . . , Xn)with Xn = φ ◦ f n−1,
where f is the map (12) and φα : R2

→ R is the observable in (13).
Then for ν-a.e. pM = (xM , yM) ∈ R2 we have:

−
1
ξ

=
2
α

for pM ∈ Λ; (15)

−
1
ξ

=
3
2

for pM ∉ Λ, with either yM ∈ (0, 1)

or xM ∈ (0, 1); (16)

−
1
ξ

= 2 for pM ∉ Λ, with both xM , yM ∉ [0, 1]. (17)

For observable (14) the shape of the level sets L(u) depends on a
and b. For example, L(u) has a convex elliptic-like shapewhen both
a, b > 1 (see the sketch in Fig. 2(A)), or an asteroid-like shape
when both a, b < 1, (see Fig. 2(B)). Clearly various possibilities
arise, depending on the geometry of the level sets, on whether the
point pM is in the interior ofΛ and on the local geometry ofΛ near
the extremal point p̃ = (x̃, ỹ)with minimum distance from pM .

Theorem 3.2. Let ξ be the tail index of the GEV limit distribution
associated to the process Mn = max(X1, . . . , Xn)with Xn = φ ◦ f n−1,
where f is the map (12) and φa,b : R2

→ R is the observable in (14).
Then for ν-a.e. pM = (xM , yM) ∈ R2 we have:

−
1
ξ

=
1
a

+
1
b

for pM ∈ Λ. (18)

To prove Theorems 3.1 and 3.2 the main step is to determine the
explicit sequence un and functional form of τ(u) as defined in (9).

The verification ofD2(un),D′(un) follows from the techniques of
[34,21] for this class of observables. since the observable geometry
is non-standard, we discuss briefly the idea of proof at the end of
this subsection and point out the limitations. The main proof of
Theorem 3.1 is contained in Lemmas 3.3–3.5.

The proof of Theorem 3.2 is given in Lemma 3.6. We do not
further discuss Case (C) of Fig. 2, or the other configurations not
covered by Fig. 2.

Lemma 3.3. Suppose pM ∈ int(Λ) = (0, 1)2 and φ takes the form
of (13), then ξ = −α/2.

Proof. If pM ∈ int(Λ) (see Fig. 1(A)), then we see that

nν{φ(x, y) ≥ un} = nν{d((x, y), pM) ≤ (1 − un)
1/α

}

= Cνn(1 − un)
2/α. (19)

Thus the correct scaling laws are an = C ′
νn
α/2, bn = 1 and τ(u) =

(−u)2/α . Here Cν, C ′
ν are uniform constants. �

Lemma 3.4. Suppose pM ∉ Λ = [0, 1]2 and φ takes the form
of (13). If yM ∈ (0, 1) or xM ∈ (0, 1) then ξ = −2/3.

Proof. If pM ∉ Λ then there will exist a unique extremal point
p̃ = (x̃, ỹ) ∈ Λwhere φ(p) achieves its supremumwith value ũ as
in (8). Since yM ∈ (0, 1) or xM ∈ (0, 1) then this point p̃ will not
be a vertex of ∂Λ, see Fig. 1(B). The scaling un will be chosen to so
that

nν{φ(x, y) ≥ un} = nν{p = (x, y) ∈ Λ : d(p, pM)

≤ (1 − un)
1/α

} → τ(u). (20)
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Themiddle term is no longerO(n(1−un)
1/α) since the level region

that intersects Λ is not a ball. We first of all set un = u/an + ũ so
that

ν{φ(x, y) ≥ un} = ν


p = (x, y) ∈ Λ : (1 − ũ)1/α

≤ d(p, pM) ≤


1 − ũ −

u
an

1/α
. (21)

To choose an we first note that the level set L(ũ1/α) as defined in
(7) is a circle that is tangent to ∂Λ (since the extremal point p̃
is not a vertex). However the level set L((ũ −

u
an
)1/α) crosses ∂Λ

transversely (and is concentric to L(ũ1/α)). To estimate themeasure
in Eq. (21), we suppose without loss of generality that yM ∈ (0, 1)
and xM > 1. Hence

ũ = sup
(x,y)∈Λ

{1 − d((x, y), (xM , yM))α} = 1 − |1 − xM |
α.

Thus the measure (21) is of the order1x1y, where

1x = (1 − ũ − u/an)1/α − (1 − ũ)1/α,

and

1y = 2

(1 − ũ − u/an)2/α − (1 − ũ)2/α

1/2
.

The former expression was obtained by solving φ(x, yM) = un for
x and taking the difference of this (smaller) root with xM , while the
latter result for1ywas obtained by solving φ(1, y) = un for y and
then taking the difference between the roots. If u/an is sufficiently
small, then a Taylor expansion implies that

ν{φ(x, y) ≥ un} ≈ 1x1y ≈ (u/an)3/2, (22)

where ≈ means equal to up to a uniform multiplication constant.
Setting an = n2/3 implies that τ(u) = O((−u)3/2). �

Lemma 3.5. Suppose pM ∉ Λ and φ takes the form of (13). If both
xM , yM ∉ [0, 1] then ξ = −1/2.

Proof. Without loss of generality we consider pM = (xM , yM) in
the upper right hand quadrant as in Fig. 1(C). Also, we assume that
xM = 1+λ cos θ, yM = 1+λ sin θ for λ > 0 and θ ∈ (0, π/2). For
such values of (xM , yM), the corner point (1, 1) ∈ ∂Λ will always
maximise φ. The proof is identical to Lemma 3.4 except that the
level sets are not tangent to ∂Λ at (1, 1), as illustrated in Fig. 1(C).
Setting un = u/an + ũ and arguing as in the proof of Lemma 3.4,
we obtain:

ũ = sup
(x,y)∈Λ

{1 − d((x, y), (xM , yM))α}

= 1 − ((xM − 1)2 − (yM − 1)2)α/2,

1x = 1 − xM + {(1 − ũ − u/an)2/α − (1 − yM)2}1/2,
1y = 1 − yM + {(1 − ũ − u/an)2/α − (1 − xM)2}1/2.

Again, if u/an is sufficiently small, then a Taylor expansion implies
that

ν{φ(x, y) ≥ un} ≈ 1x1y ≈ (u/an)2, (23)

and hence setting an = n1/2 implies that τ(u) = O((−u)2). �

This concludes the proof of Theorem 3.1. For the proof of
Theorem 3.2 we have the following lemma.

Lemma 3.6. Suppose that pM ∈ int(Λ) = (0, 1)2 and φ takes the
form of (14). Then for u . 1we have that Leb(L(u)) = C(1−u)

1
a +

1
b

for some C0 ≤ C ≤ 4 where C0 > 0.

Proof. Let u = 1 − ε. For ε sufficiently small the level region can
be written as

L+(u) = {(x, y) ∈ int(Λ) : |x|a + |y|b ≤ ε}. (24)

The area of this set is bounded fromabove by the area of a rectangle
of sides 2ε1/a and 2ε1/b. Also, for any q ∈ (0, 1), the area of the set
is bounded from below by that of a rectangle of sides 2q1/aε1/a and
2(1 − q)1/bε1/b, so we can choose C0 = 4q1/a(1 − q)1/b. �

Hence if (xM , yM) ∈ int(Λ), we see that (for uniform Cν > 0),

nν{p = (x, y) : φ(p) ≥ un}

→ Cν(−u)
1
a +

1
b with an = n

ab
a+b , bn = 1. (25)

We now explain how to check D′(un) and D2(un) for the
observables given in (14). The other scenarios are similar. The
methods used in [34] are primarily geared towards observables
that are expressed as functions of distance. In our situation the
observables are not given explicitly in this form, but they do have
a bounded geometry in the sense that the level set {φ(p) = ϵ} can
be circumscribed by a ball of radius ϵd

′

with d′
= max{a−1, b−1

}.
This fact is useful when checking the D′(un) and D2(un) conditions.

More specifically, to check D2(un) following [34] it suffices to
show that for (fixed) r > 0, ν{r ≤ φ(p) ≤ r + δ} is bounded by
a power of δ as δ → 0. By a simple integration calculation, this
estimate holds for the observables (14). Another property required
is that the system has exponential decay of correlations. This is
property holds by uniform hyperbolicity.

Checking D′(un) is generally harder, but the main estimate,
see [34,21,12] involves a control of the measure of the set {p :

d(p, f j(p)) ≤ an} for some specific sequence an → 0, usually
power law in n and j = o(n). The general aim is to show that
the measure of this set goes to zero at a rate bounded by a power
law in n. When the observables are functions of distance, then a
natural choice for an is n−1/d. This follows by observing that (by
choice of un)

{φ(p) ≥ un} ⊂


p : d(p, pM) ≤

1
n1/d


. (26)

When the observables have the form given in (14) then a similar
statement holds, but for the right hand set in (26) we instead have
d(p, pM) = O(n−γ ) for some γ = γ (a, b). This relationship
is sufficient to allow the methods, such as the maximal function
technique utilised in [12] to be applied to this class of observables.

However we remark that the methods have limitations, and
at present the arguments do not directly extend to more exotic
observables, such as

φ(x, y) = exp

−

1
|x − xM |


+ |y − yM |

c . (27)

This observable has the property that the Lebesgue measure of the
level set {φ(p) = ϵ} is O


ϵ1/c/ log(1/ϵ)


, but any circumscribing

ball must have radius at least O (1/ log(1/ϵ)). Thus, if an extreme
value law is to be proved for this observable then the methods
of [34,21]would need to be adapted to situationswhere the an have
sub-polynomial asymptotics.

3.2. Numerical results

As formula (18) shows, one of the main ingredients in
determining the tail index is the shape of the level sets of the
observable. We here fix a = 2 and consider two values of b,
namely b = 1 and b = 3.5. In both cases, the value of ξ expected
according to (18) is less than −0.5. Since the maximum likelihood
estimator is not regular for ξ < −0.5 [6], we resort to the method
of L-moments for the numerical estimation of the GEV parameters.
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Fig. 3. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block lengthNblocklen for Thom’smap (12) under the observable (14) with
a = 2 and pM = (0.510001, 0.5090001) fixed, where b/2 = 0.5 (left) and b/2 = 1.75 (right). The horizontal dashed lines represent theoretically expected values according
to (18). Crosses and vertical bars are the mean and ± one standard deviation of a sample of Nsamp = 100 individual estimates along a single orbit. Individual estimates are
obtained by the method of L-moments with sequences of Nbmax = 50 000 block maxima over blocks of length Nblocklen , as described in Appendix A.

Fig. 4. Point estimates (crosses) and estimation uncertainty (vertical bars) of
the tail index ξ versus parameter b for Thom’s map (12) under the observable
(14) with a = 2 and pM = (0.510001, 0.5090001) fixed and varying
b/2 = 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2. The dashed line represents
theoretically expected values according to (18). Point and interval estimates are
obtained by themethod of L-moments as for Fig. 4, withNbmax = 10 000,Nblocklen =

10 000 and Nsamp = 100, see Appendix A.

See Appendix A for details on our procedure for parameter
estimation and associated uncertainties.

In Fig. 3 we examine the sensitivity of the numerical estimates
of ξ with respect to the block length used to compute the maxima.
Essentially no significant variations are found for block lengths
larger than 1000. Hence, we fix Nblocklen = 10 000 and conduct a
study of the dependence of the tail index on the parameter b of the
observable (18). Fig. 4 shows a good agreementwith the theoretical
predictions of (18) for a range of values of b. In this example the
level regions of the observable of the form L+(u) as in (7) are fully
contained in the interior of Λ = [0, 1)2, at least for sufficiently
large values of the threshold u. The only peculiarity is the non-
circular shape of L+(u), see Fig. 2 and compare with Lemma 3.6.

We now consider a case where the level regions L+(u) are not
fully contained inΛ. We take observable (13) and vary the location
of the point pM = (xM , yM). Starting from values xM , yM such that
pM is in the interior of Λ we increase xM across 1, bringing pM in
the region where yM ∈ (0, 1) but xM ∉ (0, 1). This transition is
illustrated in panels (A) and (B) of Fig. 1 and the two situations
correspond to (15) and (16) respectively.

Fig. 5 shows the sensitivity of the numerical estimates of ξ
with respect to the block length used to compute the maxima
for four values of xM . Convergence to the theoretical value (15)
is achieved already with block lengths of a few hundred iterates

when the point pM is in the interior of Λ (panel (A), xM = 0.9)
and on the boundary of Λ (panel (B), xM = 1.0). When pM is
in the complement of Λ = [0, 1]2 but close to its boundary,
then very large block lengths (Nblocklen > 105) are required to
achieve convergence to the theoretical value of (16) (panel (C),
xM = 1.01). When pM is further away from [0, 1]2 shorter block
lengths of about 104 iterates already guarantee convergence to the
theoretical value of (16) (panel (D), xM = 1.1).

Fig. 6(A) shows the discontinuity of ξ in the transition between
the situations of panels (A) and (B) in Fig. 1. The figure shows the
estimated value of ξ as a function of xM where yM is kept constant
and a fixed block length is used. As the point pM exitsΛ, the value
of ξ has a jump from the value of (15), to that of (16). However, the
numerical estimation does not resolve this jump unless large block
lengths (Nblocklen > 105 iterates) are used.

Lastly, Fig. 6 shows the discontinuity of ξ from (16) to (17), at
the transition between the situations of panels (B) and (C) in Fig. 1.
This transition is not resolved accurately even with block lengths
of 105. From the numerical point of view, very large block lengths
are required near the transition to detect the change of scaling
between (22) and (23).

The example discussed in this section is admittedly somewhat
artificial. It has been chosen to clearly illustrate the main ideas
and the problems which are found in the numerical estimation,
without the additional complications due to higher dimensionality
of phase space and fractal nature of the attractors. In the next
section, we consider a situation which is closer to what one can
expect in concrete physical systems.

4. Uniformly hyperbolic attractors: the solenoid map

Consider the solid torus as the product of T = R/Z times the
unit disc in the complex plane DR = {z ∈ C| |z| < R}, for some R
with 0 < R < 1. Then the solenoid map is defined as follows:

fλ : T × DR → T × DR

(ψ,w) →

2ψ, λw + Kei2πψ


.

(28)

In order to have the map well defined we need K + λR < R
and λR < K . For our purposes it is convenient to have the torus
embedded in R3. Consider Cartesian coordinates (x, y, z) ∈ R3

and define corresponding cylindrical coordinates r, ψ, z by x =

r cos(ψ) and y = r sin(ψ). Then the torus of width R can be
identified with the set D = {(r − 1)2 + z2 ≤ R2

} for R < 1. The
torusT×DR (with coordinates (ψ, u+iv)) can be identifiedwithD
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Fig. 5. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block length Nblocklen for Thom’s map (12) under the observable (13)
with α = 2 and pM = (xM , yM )with yM = 0.510001 fixed and (A) xM = 0.9, (B) xM = 1.0, (C) xM = 1.01, (D) xM = 1.1. Horizontal lines labelled by 1, 2 represent theoretical
values according to (15) and (16), respectively. Estimates are obtained by the method of L-moments as for Fig. 4, with Nbmax = 50 000 and Nsamp = 100, see Appendix A.

Fig. 6. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ for Thom’s map (12) under the observable (13) with α = 2 and
(A) yM = 0.5090001 and xM varying, and (B) xM = 1.2 and yM varying. Horizontal lines labelled by 1, 2, 3 represent theoretical values according to (15)–(17), respectively.
The method of L-moments was used as described in Appendix A with Nbmax = 10 000 and Nsamp = 100 fixed, with Nblocklen = 104 (red) and Nblocklen = 105 (blue). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

taking r = 1+u and z = v. We thus obtain an embedded solenoid
map
gλ : D → D, gλ(ψ, r, z) = (2ψ, 1 + K cos(ψ)

+ λ(r − 1), K sin(ψ)+ λz). (29)
The solenoid attractor is defined as the attracting set of themap gλ:

Λ =


j≥1

g j
λ(D).

For λ < 1
2 we have

dimH(Λ) = 1 +
log 2

log λ−1
, (30)

where dimH denotes the Hausdorff dimension [35]. We consider
the following observables φα, φabcd : R3

→ R:

φα(x, y, z) = 1 − dist(p, pM)α, with p = (x, y, z) ∈ R3, (31)
φabcd(x, y, z) = ax + by + cz + d. (32)

Observable (31) is maximised at a point pM ∈ R3, whereas (32)
is unbounded in the phase space R3 (except for the trivial choice
a = b = c = 0). Note that the vorticity observable φV of (5)
has the same general form as (32). Our theoretical expectations
are first discussed in Section 4.1, followed by numerical results in
Section 4.2.
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4.1. Analytical calculations

For observables which are functions of distance we have the
following result.

Theorem 4.1. Let ξ be the tail index of the GEV limit distribution
associated to the process Mn = max(X1, . . . , Xn)with Xn = φ◦gn−1

λ ,
where gλ is the map (29) and φα : R3

→ R the observable of (31),
where pM ∈ Λ. Then we have:

−
1
ξ

=
dimH(Λ)

α
. (33)

The above result is not explicitly stated in the literature but
the proof follows easily from [34]. The essential modification
being that [34] consider only two-dimensional systems (with one
dimension expanding, one dimension contracting). However, if the
contracting (stable) direction has dimension bigger than one then
the same methods apply.

More interesting considerations arise for the observable (32). As
a simple case, consider first the degenerate solenoid with λ = 0
and take a planar observable φ := ax + by + d, thus reducing
the problem to the (x, y)-plane. In this case we have the trivial
dimension formula dimH(Λ) = 1 since Λ is a circle. However,
for computing the tail index we lose a factor of 1/2 due to the
geometry of the level set. Indeed, level sets are straight lineswithin
the (x, y)-plane, and at the extremal point p̃ = (x̃, ỹ) the critical
level set L(ũ) is tangent to Λ. Since the tangency is quadratic, we
find that

ν(L+(ũ − ϵ)) = mγ u{γ u(p̃) ∩ L+(ũ − ϵ)} = O(
√
ϵ). (34)

Here γ u(p̃) is the unstable manifold through p̃ (i.e. it is the unit
circle), and mγ u is the one-dimensional conditional (Lebesgue)
measure on γ u(p̃). Hence

−
1
ξ

= dimH(Λ)−
1
2

=
1
2
.

The mechanism described above is similar to that illustrated for
Thom’s map in Fig. 1(B), leading to formula (16): indeed, there we
have dimH(Λ) = 2, yielding the value 3/2 for the tail −1/ξ .

For λ > 0, the attractor has more complicated geometry and
is locally the product of a Cantor set with an interval [28]. Planar
cross sections that intersect Λ transversely form a Cantor set of
dimension dimH(Λ)−1 = − log 2/ log λ. To calculate ν(L+(ũ−ϵ))
we would like to repeat the calculation above using Eq. (34), but
now the set of unstable leaves that intersect L+(ũ − ϵ) form a
Cantor set (for each ϵ > 0). The extremal point p̃ where φ(p)
attains its maximum on Λ forms a tip of Λ relative to L(ũ). Such
a tip corresponds to a point on p̃ ∈ Λ whose unstable segment
γ u(p̃) is tangent to L(ũ) at p̃, and moreover normal to ∇φ(p̃) at p̃.
Given ϵ > 0, we (typically) expect to find a Cantor set of values
t ∈ [0, ϵ] for which the level sets L(ũ − t) are tangent to some
unstable segment γ u

⊂ Λ. For other values of t these level sets
cross the attractor transversely. Given (fixed) ϵ0 > 0we can define
the tip set Γ ≡ Γ (ϵ0) ⊂ Λ as follows: let Tpγ u(p) be the tangent
space to γ u at p. Then we define

Γ = {p ∈ L+(ũ − ϵ0) ∩Λ : Tpγ u(p) · ∇φ(p) = 0}. (35)

This tip set plays a role in proving the following result, which in
turn provides us with information on the form of the tail index ξ .

Proposition 4.2. Suppose that gλ is the map (29) and φ = φabcd.
Define τ(ϵ) = ν{φ(p) ≥ ũ − ϵ}. If dimH(Γ ) < 1, then modulo a
zero measure set of values (a, b, c, d), τ (ϵ) is regularly varying with
index 1/2 + dimH(Γ ) as ϵ → 0.

We give a proof below. Based on this proposition we conjecture
that

−
1
ξ

= dimH(Λ)−
1
2

=
1
2

+
log 2

log λ−1
. (36)

We outline the main technical challenges that would need to
be overcome to prove this conjecture. Firstly, conditions D(un)
and D′(un) should be checked. We believe that this should follow
from [34], however the proof would be non-standard due to the
level set geometry. Secondly, we would claim that dimH(Γ ) =

dimH(Λ) − 1. The proof of this would utilise the techniques used
in [28] to analyse the regularity of the holonomy map between
stable disks. In particular, the authors of [28] show that the
holonomy map is Lipschitz on a set of full dimension. However, it
does not automatically follow that the holonomy map between Γ
andΛ∩D is Lipschitz (for a disk D transverse ofΛ), but we believe
that it is for general planar observables.

Proof of Proposition 4.2. For each ϵ < ϵ0, consider the set
Γ (ϵ) ⊂ Γ ∩ L+(ũ− ϵ). Then for each p ∈ Γ (ϵ), there exists t < ϵ
such that γ u(p) is tangent to L(ũ− t). If the observable φ takes the
form of (32), then by the same calculation as (34) we obtain

mγ u{γ u(p) ∩ L+(ũ − ϵ)} = O(
√
ϵ − t). (37)

Thus to compute ν(L+(ũ − ϵ)), we integrate (37) over all relevant
t < ϵ using the measure νΓ , which is the measure ν conditioned
on Γ . Provided dimH(Γ ) < 1, the projection of Γ onto the line
in the direction of ∇φ is also a Cantor set of the same dimension
for typical (full volume measure) (a, b, c, d), see [36]. Thus the set
of values t corresponding to when L(ũ − t) is tangent to Γ form
a Cantor set of dimension dimH(Γ ). If π is the projection from Γ

onto a line in the direction of∇φ, then the projectedmeasureπ∗νΓ
has local dimension dimH(Γ ) for typical (a, b, c, d). We have

ν(L+(ũ − ϵ)) =

 ϵ

0


L+(ũ−ϵ)

dmγ udνΓ . (38)

To estimate this integral we bound it above via the inequality
mγ u(γ u

∩L+(ũ−ϵ)) ≤ C
√
ϵ, and bound it belowusing the fact that

for t > ϵ/2,mγ u(γ u
∩ L+(ũ− ϵ)) ≥ C

√
ϵ. Here C > 0 is a uniform

constant. Putting this together we obtain for typical (a, b, c, d)

ν(L+(ũ − ϵ)) =

 ϵ

0


L+(ũ−ϵ)

dmγ udνΓ =
√
ϵ · ϵdimH (Γ )+δ(ϵ)

= ϵ1/2+dimH (Γ )+δ(ϵ), (39)

where δ(ϵ) → 0 as ϵ → 0. The constant δ(ϵ) comes from the
definition of dimension of an SRB measure, namely that for ν-a.e.
x ∈ Λ, log ν(B(x, ϵ))/ log ϵ → dimH(ν). �

4.2. Numerical results

Wenowexamine the convergence of the numerically estimated
values to the theoretically expected ones. In the following, λ =

0.49 unless specified otherwise. For the numerical simulations, we
rewrite observable (32) in two forms φθ,1, φθ,2 : R3

→ R (form
(32) is recovered for suitable values of a, b, c, d):

φθ,1(x, y, z) = cos(2πθ)(x − x0)+ sin(2πθ)(y − y0), (40)

φθ,2(x, y, z) = cos(2πθ)(x − x0)+ sin(2πθ)(z − z0). (41)

The level sets associated to (40) and (41) are planes orthogonal
to (cos(2πθ), sin(2πθ), 0) and (cos(2πθ), 0, sin(2πθ)), respec-
tively. Fig. 7 shows the dependence of the estimates of ξ with re-
spect to the block length Nblocklen for both (40) and (41) at θ = 0.5.
Fig. 7 suggests that the block length Nblocklen = 104 is sufficient to
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Fig. 7. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block length Nblocklen for the Solenoid map (29) under the observable
(40) (left) and (41) (right) with θ = 0.5. The horizontal dashed lines represent theoretically expected values according to (36). Estimates are obtained by the method of
L-moments as for Fig. 4, with Nbmax = 10 000 and Nsamp = 100, see Appendix A.

Fig. 8. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus parameter θ for the solenoid map (29) under the observable (40)
(A) and (41) (B, C) with x0 = y0 = z0 = 3, where θ =

i
10 for i = 0, . . . , 9. The dashed line represents theoretically expected values according to (36). Estimates are obtained

by the method of L-moments as for Fig. 4, with Nbmax = 10 000 and Nsamp = 100, see Appendix A, where Nblocklen = 10 000 (A, C) and Nblocklen = 106 (B).

get an estimate coherentwith the theoretical value (36) for observ-
able (40), whereas the same value is not sufficient for observable
(41). This is illustrated in Fig. 8 for a range of values of θ : reliable
estimation is obtained with block length Nblocklen = 104 for ob-
servable (40) (panel (A)) but not for observable (41) (panel (B)), for
which Nblocklen = 106 seems to suffice (panel (C)).

In summary, the minimum block length required for (approxi-
mate) convergence to the theoretical valuemay vary strongly with
the locationwithin the attractor of the extremal point p̃ in (34), that
is with the relative position of the attractor and the level sets. Also,
the minimum block length may depend on the dimensionality of
the attractor. Numerical experiments suggest that reliable estima-
tion is more difficult when the dimensionality of the attractor is
smaller. Fig. 9 indeed shows better agreement with the prediction
of (36) for the larger values of λ which also correspond to a larger
dimension according to (30).

Lastly, we consider observable (31). As we did in Fig. 5, we
illustrate the effect of the point pM ‘‘dropping out’’ of the attractor
Λ. To achieve this, we iterate the solenoid map starting from an
arbitrarily chosen initial condition. After discarding a transient of
105 iterates, we regard the final point p0M of the orbit as being
generic with respect to the Sinai–Ruelle–Bowen measure on Λ.
Fig. 10(A) shows the sensitivity of the estimates of ξ with respect
to block length for observable (31) when pM is equal to p0M as
obtained above. The estimates display strong oscillations around
the theoretical value and barely seem to settle for very large block
lengths Nblocklen > 107. We return to this problem in Section 5.

We then choose pM as a perturbation of point p0M in the radial
direction in R3: namely we set pM = ptM = (1 + t)p0M .
By dissipativity of the solenoid map, we expect ptM ∉ Λ with
probability 1 when t ≠ 0. We find out that when t is sufficiently
large (Fig. 10(B)), the estimates of ξconverge to the theoretically

Fig. 9. Point estimates (crosses) and estimation uncertainty (vertical bars) of the
tail index ξ versus parameter λ for the solenoidmap (29) under the observable (40)
with θ = x0 = y0 = 0. The dashed line represents theoretically expected values
according to (36). Estimates are obtained by the method of L-moments as for Fig. 4,
with Nbmax = 50 000,Nsamp = 100 and Nblocklen = 10 000, see Appendix A.

expected value (36) already for block lengths of 1000. However,
when t is small (Fig. 10(C)) the estimates are closer to the value
attained within the attractor (33) for small block lengths, whereas
convergence to the theoretically expected value (36) takes place
for Nblocklen larger than about 105.

5. Non-uniformly hyperbolic examples: the Hénon and Lozi
maps

We here consider the Hénon map [37,16]

ha,b : R2
→ R2, ha,b(x, y) = (1 − ax2 + y, bx), (42)
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Fig. 10. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block length Nblocklen for the solenoid map (29) under the observable
(31) with α = 0.3. (A) pM is chosen as a point p0M ∈ Λ as described in the text. (B) pM = ptM = (1 + t)p0M with t = 0.1. (C) pM = ptM with t = 1. ‘‘Theoretical 1’’
and ‘‘Theoretical 2’’ represent theoretically expected values according to (33) and (36) respectively. Estimates are obtained by the method of L-moments as for Fig. 4, with
Nbmax = 10 000 and Nsamp = 100, see Appendix A.

for the classical parameter values (a, b) = (1.4, 0.3) and the Lozi
map [38,39]

la,b : R2
→ R2, la,b(x, y) = (1 − a|x| + y, bx), (43)

for (a, b) = (1.7, 0.1), under the observables

φα(x, y) = 1 − dist(p, pM)α, with p = (x, y) ∈ R2, (44)
φθ (x, y) = x cos(2πθ)+ y sin(2πθ), (45)

where α > 0 and θ ∈ [0, 2π ] are parameters and pM is a point
in R2. Following the discussion for the solenoid map, we could
conjecture that

−
1
ξ

=
dimH(Λ)

α
for φ = φα and pM ∈ Λ; (46)

−
1
ξ

= dimH(Λ)−
1
2

for φ = φθ . (47)

The numerical verification of these conjectures turns out to be
rather problematic. See [29] for related results. First of all for a
given system it may be very hard or even unfeasible to compute
an estimate of the Hausdorff dimension. For this reason, we will
use the Lyapunov (Kaplan–Yorke) dimension of the Hénon or
Lozi attractor instead of the Hausdorff dimension appearing in
(47)–(46). The Lyapunov dimension of an attractor Λ ⊂ Rn of a
system with Rn as phase space is defined as

dimL(Λ) = k +

k
j=1
χj

−χk+1
, (48)

where χ1 ≥ χ2 ≥ · · · ≥ χn are the Lyapunov exponents and k
is the maximum index for which

k
j=1 χj ≥ 0. It is believed that

the Lyapunov dimension forms an upper bound for the Hausdorff
dimension under general conditions [40,41].

For the Hénon map under observable (13), and in view of
the results of a recent paper [16], it is expected that formula
(46) holds for so-called Benedicks–Carleson parameter values [42].
Such parameter values, however, are obtained by a perturbative
argument near (a, b) = (2, 0), where the bound on the smallness
of b is not explicit. Moreover, the parameter exclusion methods
used to define the Benedicks–Carleson parameter values are not
constructive. For these reasons, it is not possible to say whether
Benedicks–Carleson behaviour is also attained at the ‘‘classical’’
parameter values (a, b) = (1.4, 0.3). Despite this, (46) forms our
best guess for the value of ξ .

For planar observables, we again study the tip set Γ ⊂ Λ

as defined for the Solenoid map, namely, for fixed ϵ0 > 0 and
p = (x, y), let

Γ = {p ∈ L+(ũ − ϵ0) ∩Λ : Tpγ u(p) · ∇φ(p) = 0}, (49)

and for each ϵ < ϵ0, consider the set Γ (ϵ) ⊂ Γ ∩ L+(ũ − ϵ). Then
for each p ∈ Γ (ϵ), there exists t < ϵ such that γ u(p) is tangent to
L+(ũ − t). For the planar observable φ we would expect to obtain
(as with the solenoid):

mγ u{γ u(p) ∩ L+(ũ − ϵ)} = O(
√
ϵ − t), (50)

where mγ u is the conditional (Lebesgue) measure on the one-
dimensional unstable manifold. However in this calculation we
have assumed that the tangency between γ u(p) and L(ũ − t) is
quadratic, and that the unstable segment is sufficiently long so
as to cross L(ũ − ϵ) from end to end. For the Hénon map both
of these conditions can fail. In particular, the Hénon attractor
admits a critical set of folds that correspond to points where
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Fig. 11. Point estimates (crosses) and estimation uncertainty (vertical bars) of
the tail index ξ versus block length Nblocklen for the Hénon map (42) under the
observable (44) with α = 2. The horizontal dashed line represents theoretically
expected values according to (46), with the Lyapunov dimension replacing the
Hausdorff dimension, see text. Estimates are obtained by themethod of L-moments
as for Fig. 4, with Nbmax = 50 000 and Nsamp = 100, see Appendix A.

the attractor curvature is large. More precisely the critical set
is formed by homoclinic tangency points between stable and
unstable manifolds. This set has zero measure, but it is dense in
the attractor. Furthermore the attractor has complicated geometry,
where local stable/unstablemanifolds can fold back and forth upon
themselves. However, the regions that correspond to these folds
(of high curvature) occupy a set of small measure. See [43] and
references therein for a more detailed discussion.

To compute the tail index, we conjecture to have the following
formula:

−
1
ξ

= dimH(ν)−
1
2

(51)

where ν is the SRB measure for the Hénon map (at Benedicks–
Carleson parameters). This would follow from the estimate:

ν(L+(ũ − ϵ)) =

 ϵ

0


L+(ũ−ϵ)

dmγ udνΓ

=
√
ϵ · ϵdimH (Γ )+δ(ϵ), (52)

where the factor of
√
ϵ comes from Eq. (37) and δ(ϵ) → 0 as

ϵ → 0. To obtain Eq. (51), wewould need to show that dimH(Γ ) =

dimH(ν)− 1. This is perhaps harder to verify and it will depend on
the regularity of the holonomy map taken along unstable leaves.

Finally we would project this set onto a line in the direction of
∇φ(p), and typically the projectionwould preserve the dimension.

Fig. 11 shows the dependence of the estimates of ξ with
respect to the block length Nblocklen for the Hénon map under
the observable (13). We see that the estimates exhibit strong
oscillations around the value predicted by (46) even for fairly large
block lengths. Fig. 12 shows the dependence of the estimates of
ξ with respect to the block length Nblocklen for the Hénon map
under the observables (45) at θ = 0, 0.5. The horizontal lines
represent the values predicted by (47), where, as above, we have
used the of Lyapunov (Kaplan–Yorke) dimension of the Hénon
attractor instead of the Hausdorff dimension. We see that block
lengths of at least 104 are required for the estimation to reach
the neighbourhood of the value predicted by (47). However, the
estimates still exhibit substantial oscillations around the predicted
values for block lengths as large as 107, although both the
variability of the individual point estimates and the estimation
uncertainty are here much less pronounced than in Fig. 11.

We had already seen the above behaviour in the solenoid map:
namely, the estimates in panel (A) of Fig. 10 also exhibit larger
variance and variability than those in panel (C). In that case,
however, the theoretical value of panel (A) is not conjectural, since
it follows from the theory discussed in Section 4 for observables
such as (31) when the point pM belongs to the attractor.

Hence we do not interpret the variability in Figs. 11 and 12 as a
dismissal of (47)–(46). Rather, we claim that this behaviour is due
to a problematic aspect of the numerical estimation. To illustrate
our claim, we more carefully examine the estimates of the GEV
distribution obtained for block lengths of 5000 and 10000, for
observable (45) with θ = 0. In this case, the observable simply
coincides with the projection on the x-axis: this is very useful for
the visualisation.

The kernel-smoothed density of the block maxima show
various peaks (panel (A1) in Fig. 13). A particularly pronounced
peak occurs nearby x = 1.2727. Examination of the points on
the time series of the block maxima (panel (B1)) and of the points
on the Hénon attractor corresponding to the block maxima (panel
(C1)) reveals that this peak is associated to a pair of branches of
the attractor that exhibit a turning point slightly above 1.2727. This
peak corresponds to a ‘‘corner’’ in the quantile–quantile plot (panel
(D1)) comparing the empirical distribution of the block maxima
to fitted GEV distribution. For values of x at the left of the peak,
the empirical distribution of the block maxima displays a strong
deviation from the fitted GEV distribution.

When the block length is increased to 104 (right column of
Fig. 13), the kernel-smoothed density of the blockmaxima drops to

Fig. 12. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block length Nblocklen for the Hénon map (42) under the observable
(45) with θ = 0 (left) and θ = 0.5 (right). The horizontal dashed lines represent theoretically expected values according to (47). Estimates are obtained by the method of
L-moments as for Fig. 4, with Nbmax = 10 000, and Nsamp = 100, see Appendix A.
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Fig. 13. Diagnostics of the GEV distribution fit for the Hénonmap (42) under observable (45) with θ = 0, withNbmax = 5 ·105 blockmaxima computed over blocks of length
Nblocklen = 5 · 104 (left column, A1–D1) and Nblocklen = 1.2 · 105 (right column A2–D2). (A1, A2) Non-parametric log-densities of the block maxima, obtained by Gaussian
kernel smoothing with bandwidth 0.000002. (B1, B2) Time series of the 5 · 104 block maxima (with the block sequential index on the vertical axis). (C1, C2) Points on the
Hénon attractor corresponding to the block maxima used in (A1) and (A2), respectively. (D1, D2) Quantile–quantile plot of the empirical distribution of the block maxima
(horizontally) versus the fitted GEV distribution.

almost zero at the left of the peak (panel (A2)). Indeed, the portion
of the Hénon attractor corresponding to the block maxima (panel
(C2)) does no longer include the two leftmost brancheswhichwere
found in panel (C1). Moreover, a much smaller fraction of points
now belongs to the branch of the attractor having a turning point
at 1.2727. This also corresponds to the peak in the density being
lower in panel (A2) than in panel (A1). More importantly, this
corresponds to a much better overall fit to the GEV distribution: as
illustrated by the quantile–quantile plot in panel (D2), there still
is some deviation at the lower tail, but it is orders of magnitude
smaller than in panel (D1).

We believe that this is the explanation for the poor convergence
to the theoretical estimates which we have found in Fig. 12, also
see [44] for a related discussion. The fractal structure portrayed
in panels (D1–D2) of Fig. 13 is indeed present at all spatial scales
near the extremal point p̃ = (x̃, ỹ) on the Hénon attractor for
which observable (45) with θ = 0 is maximised. As blocks of
increasing lengths are used, increasingly many attractor branches
are discarded. Near the block length values for which one major
branch is discarded, a better agreement is obtained between the
sample of block maxima and the limiting GEV distribution. These
are the block length values for which we expect the estimated
value of ξ to lie closer to the theoretical prediction in panel (A) of
Fig. 12.

The effect of the variability in the estimates is illustrated in
Fig. 14, where we show estimates of ξ for observable (47) with
several values of θ and with four block lengths. For Nblocklen = 103,
the estimates vary substantially across the range of values of θ
(Fig. 14(A)). Varying θ from 0 to 1 amounts to rotate the level
sets of the observable (47), which are straight lines. Hence, this
amounts to slide the extremal point p̃ for which observable (45)
is maximised on the Hénon attractor (compare with (7)). The
horizontal plateau in Fig. 14(A), occurring approximately for θ
between [0.5, 0.75], corresponds to the extremal point p̃ belonging
to the leftmost tip-like portions of the Hénon attractor: large
variations in θ in this range correspond to small variations in p̃.

For block lengths of Nblocklen = 104, (Fig. 14(B)), the estimates
are more uniform across θ . The same holds for Nblocklen = 105 and
106 andwe see a definite bias in the latter case, which has the same
sign and approximately the same value for all θ . Roughly speaking,
choosing block lengths of at least Nblocklen = 104 ensures that
we only select block maxima in branches of the Hénon attractor
which are close to its outer ‘‘peel’’, compare with Fig. 13(C1)–(C2).
However, this does not necessarily guarantee accurate estimation
of the limit value of ξ , for the reason illustrated in Fig. 13(D1)–(D2).

We argue that the same explanation holds for the variability
of the estimates in panel (A) of Fig. 10 and for the even poorer
convergence in Fig. 11. Plots similar to Fig. 13 for the latter case
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Fig. 14. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus θ for the Hénon map (42) under the observable (45) for block lengths
of (A) Nblocklen = 103 , (B) Nblocklen = 104 , (C) Nblocklen = 105 , (D) Nblocklen = 106 . The horizontal dashed lines represent theoretically expected values according to (47).
Estimates are obtained by the method of L-moments as for Fig. 4, with Nbmax = 105 , and Nsamp = 100, see Appendix A.

Fig. 15. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block length Nblocklen for the Lozi map (42) under the observable (44)
with α = 2 and (A) for a point pM belonging to the attractor; (B) for pM = (0.2, 0.01) The horizontal dashed line represents theoretically expected values according to
(46), with the Lyapunov dimension replacing the Hausdorff dimension, see text. Estimates are obtained by the method of L-moments as for Fig. 4, with Nbmax = 50 000 and
Nsamp = 100, see Appendix A.

suggest that as block length is increased, the probability mass
that is lost at the lower tail of the empirical distribution of the
block maxima is redistributed amongst other attractor branches
which lie closer to the point p0M . To illustrate this process we chose
observable (45) for ease of visualisation.

Similar considerations hold for the Lozi map (43). Fig. 15
shows the sensitivity of the numerical estimates of ξ with
respect to the block length used to compute the maxima for
observable (44). For the chosen parameter values, we obtain the
estimate dimL(Λ) = 1.185, in good agreement with the bounds
1.176669 < dimH(Λ) < 1.247848 on the Hausdorff dimension
of the Lozi attractor Λ proved in [45]. When the point pM is

chosen in the attractor of the Lozimap, the estimates display strong
oscillations around the value predicted by the theory (Fig. 15 panel
(A)), as in Fig. 11.We then choose pM = (0.2, 0.01): this point does
not lie on the attractor of the Lozi map, but the nearest point (x̃, ỹ)
on the attractor belongs to one of the straight portions. Also in
this casewe observe oscillations around the theoretically expected
value (Fig. 15 panel (B)), like in Fig. 12.

6. The Lorenz63 and Lorenz84 flows

The theoretical and numerical machinery developed in the
previous sections is now applied to two paradigmatic ordinary
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differential equations, both derived and studied by Ed Lorenz. We
first of all consider the model of [31]:

ẋ = σ(y − x),
ẏ = x(ρ − z)− y,
ż = xy − βz,

(53)

derived from the Rayleigh equations for convection in a fluid layer
between two plates. Here σ is the Prandtl and ρ the Rayleigh
number. We refer to this as the Lorenz63 model and fix σ =

10, β = 8/3 and ρ = 28, which is a fairly common choice in
the vast literature on the Lorenz63 system, see e.g. [46–48]. The
statistics of extremes has been previously analysed in [11], who
found smooth-like variation of the GEV parameters with respect
to changes in the parameter ρ within a suitable range.

We also study a three-dimensional system proposed by Lorenz
in 1984 [32]:

ẋ = −ax − y2 − z2 + aF ,
ẏ = −y + xy − bxz + G,
ż = −z + bxy + xz.

(54)

This is derived by a Galerkin projection from an infinite dimen-
sional model for the atmospheric circulation at mid-latitudes in
the Northern Hemisphere. The variable x is the strength of the
symmetric, globally averagedwesterly wind current. The variables
y and z are the strength of cosine and sine phases of a chain of
superposed waves transporting heat poleward. The terms in b rep-
resent displacement of thewaves due to interactionwith thewest-
erly wind. The coefficient a, if less than one, allows the westerly
wind current to damp less rapidly than the waves. The time scale
of t corresponds to about 5 days. The terms in F and G are thermal
forcings: F represents the symmetric cross-latitude heating con-
trast and G accounts for the asymmetric heating contrast between
oceans and continents. System (54) has been used in both climato-
logical studies, for example by coupling it with a low-dimensional
model for ocean dynamics [49]. Several works have examined
its bifurcations, mainly in the (F ,G)-parameter plane [50–53].
Almost nothing is known theoretically regarding the structure of
its strange attractors. As in the above references, we fix a = 0.25
and b = 4 and consider the chaotic dynamics occurring at (F ,G) =

(8, 1).
We analyse time series generated by observables computed

along orbits of these flows, sampled every 1t time units. We fix
1t = 0.05 time units for the Lorenz63 and 1t = 0.1 for the
Lorenz84 model. We consider the two observables

φ1(x, y) = 1 − dist(p, pM), with p = (x, y, z) ∈ R3, (55)
φ2(x, y, z) = x. (56)

Observable φ2 has a clear physical meaning in both models: for
(53), the variable x represents the intensity of the convection,
whereas in (54) the variable x represents the strength of the
westerlywind current. As in the previous sections, we examine the
sensitivity of the numerical estimates of ξ with respect to the block
length used to compute the maxima.

We first consider the Lorenz63 system (53). It will be useful to
recall some geometrical facts of the Poincaré map to z = constant
sections. Given the planar sections Σ = {(x, y, 1) : |x|, |y| ≤ 1},
and Σ ′

= {(1, y, z) : |y|, |z| ≤ 1}, the map P : Σ → Σ

decomposes as P = P2 ◦ P1, where P1 : Σ → Σ ′ and P2 :

Σ ′
→ Σ . To describe the form of P , let β = |λs|/λu, β

′
=

|λss|/λu, where λs, λss and λu are the eigenvalues of the linearised
Lorenz63 flow at the origin, with λs = −8/3, λss = −22.83 and
λu = 11.83 for our choice of parameters. Then it can be shown that
P1(x, y, 1) = (1, xβ

′

y, xβ), and P2 is a diffeomorphism; see [54].
Thus the rectangleΣ+

= {(x, y, 1) : x > 0, |y| ≤ 1} gets mapped

into a region P1(Σ+) with a cusp at y = 0. The cusp boundary
can be represented as the graph |y| = zβ

′/β
≈ z8. The flow has a

strong stable foliation, andwe form the quotient space Σ = Σ/ ∼

by defining an equivalence relation p ∼ q if p ∈ γ s(q), for a
stable leave γ s. Hence the map P : Σ → Σ can be reduced to
a uniformly expanding one-dimensional map f : Σ → Σ , with a
derivative singularity at x = 0. Here Σ is identified with [−1, 1],
and f ′(x) ≈ |x|β−1 near x = 0.

The Lorenz flow admits an SRBmeasure ν which can be written
as ν = νP × Leb (up to a normalisation constant). The measure
νP is the SRB measure associated to the Poincaré map P , and the
measure is exact dimensional, i.e. the local dimension is defined
ν-a.e., see [55]. Using the existence of the stable foliation, and the
SRB property of ν, we can write νP as the (local) product νγ u × νγ s

where νγ u is the conditional measure on unstable manifolds, and
νγ s is the conditionalmeasure on stablemanifolds.We can identify
each measure νγ u (via a holonomy map) with that of the invariant
measure νf associated to f . Themeasure νf is absolutely continuous
with respect to Lebesgue measure, but it has zero density at the
endpoints of Σ , that is

νf ([1 − ϵ, 1]) ≈ ϵ1/β ≈ ϵ4.4 as ϵ → 0. (57)

From this analysiswe cannowconjecture the values of ξ . Following
the reasoning as applied in Section 4 the conjectural values of ξ are

−
1
ξ

= dimH(ν), for observable (55), (58)

−
1
ξ

=
1
β

+
1
2

+ d̃s where d̃s ≪ 1 for observable (56). (59)

The constant d̃s comes from the dimension of νs which is
(numerically) seen to be small due to the strong stable foliation.
As in Section 5, we replace the Hausdorff dimension with the
Lyapunov dimension, which we numerically estimate at dimLΛ ≈

2.06. We take this value to be the estimate of the local dimension
of ν. In contrast with the solenoid and Hénon maps, the tail
index associated to observable (55) comes from an estimate of the
measure of ν(L+(ũ− ϵ))which we assume scales as the product of
the three factors:

√
ϵ · ϵdu · ϵ8ds . Here the factor

√
ϵ comes from

the measure ν conditioned on Λ ∩ L+(ũ − ϵ) in the (central)-
flow direction, while the factor ϵdu comes from the νP -measure
conditioned on unstable manifolds that terminate at the cusp. In a
generic case we would expect du = 1. However, since we are near
the cusp (namely near the boundary ∂Σ) we have du = 1/β = 4.4
due to the zero in the density of νf , see (57). Finally we have a
contributing factor ϵ8ds that comes from the strength of the cusp
at P(∂Σ), with ds the local dimension of νγ s . We would expect
typically that ds ≈ 0.06, but it could be much smaller if we are
in the vicinity of the cusp.

For the numerical simulationswe first consider observable (55),
where pM is a point chosen in the attractor by the same procedure
used before, namely selecting the final point of an orbit of
length 103 time units. The estimates converge to the theoretically
expected values of −1/ dimLΛ ≈ −0.5, see Fig. 16(A). Note
that convergence is attained already for a block length of one
thousand, unlike what has been observed for the Hénon and Lozi
maps.We also obtain convergence to the conjectured value (59) for
observable (56), see Fig. 16(B). Also in this case the convergence is
much faster than for the Hénon and Lozi maps.

For the Lorenz84 system (54), Lorenz detected a Hénon like
structure in a Poincaré section with the plane y = 0, see [32,
Figures 7and 8]. If this conjectural structure was correct, then
the attractor would coincide with the two-dimensional unstable
manifold of a saddle-like periodic orbit of the flow of (54).

Assuming that there exists an SRB measure ν supported on this
attractor, and that there is a local product structure so that ν can



M.P. Holland et al. / Physica D ( ) – 15

Fig. 16. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block lengthNblocklen for the Lorenz63 flow (53) (A) under the observable
(55) where pM is chosen as the final point of an orbit of length 103 time units starting from an arbitrary point, and (B) under observable (56). Horizontal lines represent
theoretical values. Estimates are obtained by the method of L-moments as for Fig. 4, with Nbmax = 20 000 and Nsamp = 100, see Appendix A.

Fig. 17. Point estimates (crosses) and estimation uncertainty (vertical bars) of the tail index ξ versus block lengthNblocklen for the Lorenz84 flow (54) (A) under the observable
(55) where pM is chosen as the final point of an orbit of length 103 time units starting from an arbitrary point, and (B) under observable (56). Horizontal lines represent
theoretical values according to (60) (A) and (61) (B). Estimates are obtained by themethod of L-moments as for Fig. 4, withNbmax = 20 000 andNsamp = 100, see Appendix A.

be written as νγ u × νγ s (as with Lorenz63), then following the
reasoning of Section 4 the conjectural values of ξ are

−
1
ξ

= dimH(ν), for observable (55). (60)

−
1
ξ

=
dimH(νγ u)

2
+ dimH(νγ s) for observable (56),

with dim(γ u) = 2. (61)

In this conjecture, it is assumed that the level sets L+(ũ − ϵ)meet
the unstable manifolds via generic quadratic tangencies (unlike
Lorenz63). The estimates for observable (55) display oscillations
around the theoretical value (60), see Fig. 17(A). This behaviour is
similar to what was observed for the Hénon and Lozi maps, see
Figs. 11 and 15(A). The estimates in Fig. 17(B) display oscillations
around the value (61): again this is similar to what was observed
in the Hénon and Lozi maps, see Figs. 12 and 15(B).

7. Discussion and conclusions

This paper has presented an extension of the currently
available extreme value theory for dynamical systems to types of
observables which are more similar to those found in applications.
Namely, the observables considered here are not (necessarily)
functions of the Euclidean distance from a point which is
generic with respect to the invariant measure of the chaotic
system. Formula (36) and its generalisation (61) were derived
under generic assumptions on the geometry of the invariant
manifolds underlying the strange attractor. Current research by the

authors aims at formulating explicit conditions under which such
formulas hold, both for uniformly and non-uniformly hyperbolic
systems. Preliminary findings suggest the following. Suppose we
have a system with an attractor Λ ⊂ Rd that supports a
Sinai–Ruelle–Bowen (SRB) measure ν. Moreover suppose that Λ
admits a local product structure so that ν can be locally regarded
as the product measure νγ u × νγ s , where νγ u (resp. νγ s ) are the
conditional measures on unstable (resp. stable) manifolds. Since
ν is SRB, the measures νγ u are equivalent to the Riemannian
measures on the unstable manifolds, and their local dimension du
is an integer. The local dimension of νγ s is typically non-integer. For
sufficiently smooth observables φ : Rd

→ R that have maxima of
Λ, we conjecture that the tail index ξ is given by the formula:

−
1
ξ

=
du
2

+ ds. (62)

The factor du
2 comes from assuming that the level sets meet the

unstable manifolds in generic (quadratic) tangencies. The factor ds
is the local dimension of νγ s . We believe that this dimension ds is
equal to the dimension of the tip set Γ as defined by Eq. (35). Most
of our examples had dimH(Γ ) < 1, but in general this could be
larger than 1. If this is so, then the projection of Γ onto a line in the
direction of ∇φ(p̃) would typically have dimension equal to one,
and the intersection ofΓ with each level setwould (typically) be an
uncountable set of positive Hausdorff dimension. Thus in addition
to studying regularity of unstable holonomies, a careful analysis of
the attractor’s geometry would be required when estimating the
ν-measure of the level regions nearby the extremal point p̃.
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It is of interest to verify the above formula for maps where
du is larger than one: such is the case for the so-called quasi-
periodic Hénon-like attractors [56–58], which are contained in the
closure of the 2Dunstablemanifold of a saddle-like invariant circle.
For flows, this situation corresponds to du = 3, see e.g. [52].
Also, the Lorenz63 example presented in Section 6 shows beyond
doubt that the geometry of the attractor can play a substantial
role in determining the limit GEV distribution. In that case the
level sets of the observable do not meet the attractor via quadratic
tangencies: instead, the level sets meet the attractor at cusps
where the measure νγ u has a zero. Therefore relation (62) fails
to hold and the alternative formula (59) is derived. This situation
bears a resemblance to the configuration Fig. 1(C) for Thom’s map,
which leads to formula (17) for the tail index. Similarly, a modified
formula for ξ is expected to hold for the Lozi map under the
observable φ(x, y) = x, for which the extremal point p̃ coincides
with a cusp-like point in the attractor.

As far as applications are concerned, this paper both points at
the further development of useful methodologies and also raises
a number of significant questions. We envisage the development
of estimation methods for the parameters of the GEV distribution
which take into account the information provided by formulae
such as (62). Given a concrete system, parameter estimationwould
be complemented by an analysis of the structure of the attractor
to determine appropriate values for du and ds. Specifically, du
could be estimated by examining Poincaré sections of the attractor
and/or finite time Lyapunov exponents. Calculation of Lyapunov
exponents would then yield ds through the relation dimL(Λ) =

du + ds, which follows from the local product structure of the
invariant measure. Such analysis would also aim to ascertain
whether a formula like (62) or appropriate modifications like (59)
should be used. This information could be fed into the parameter
estimation procedure in an appropriate Bayesian setting.

In the presence of parameter-dependent systems, these for-
mulae provide an explanation for the smooth-like dependence of
extreme value statistics with respect to changes in the control pa-
rameters. This phenomenon was first observed in [8,9] and the
implications for parameter estimation in non-stationary systems
were discussed in [11]. This phenomenon critically depends on the
structure of the observables: indeed, for observables like (5) we
expect formulae like (62) or (59), which could depend smoothly
on control parameters through smooth-like dependence of the at-
tractor dimension on control parameters. On the other hand such
smooth-like dependence is rather unlikely to occur for the observ-
ables considered so far in the theoretical work, which are of the
form (4). Indeed, SRB measures in geophysical systems are usually
singular with the Lebesguemeasure in phase space, due to dissipa-
tion. Therefore, even if the point pM is generic for the SRB measure
for a given value of the control parameters, this situation is typi-
cally not stable under parameter variation. If pM is fixed, then one
would expect jumps in the value of ξ whenever pM ‘‘drops off’’ or
‘‘drops into’’ the attractor, see the discussion for Figs. 6 and 10.

As far as the questions are concerned, the main one appears to
be the extremely slow convergence displayed by the Hénon-like
attractors considered here (see e.g. Figs. 11, 15 and 17). Such a
slow convergence has been previously observed in more complex
atmospheric models, see [59]. Does such a slow convergence take
place in state-of-the-art global climate models? This might pose a
very serious methodological problem for those studies aiming at
quantifying climatic change in extremes, for example changes in
the behaviour of hurricanes, wind storms and extreme rainfall.

These problems even raise the following provocative question:
how relevant are limit laws for extreme behaviour, if it takes
too long for the limit to be attained for any practical purpose?
This question may have different answers. One possibility is that
novel modelling approaches could be developed to provide more

reliable estimates of extreme behaviour, not necessarily restricted
to the standard limit laws such as the GEV or the Generalised
Pareto distributions [6]. Alternatively, novel parameter estimation
procedures might be developed, that incorporate corrections or
modifications to account for the phenomena illustrated for Hénon-
like attractors, also see Fig. 13. The results of this paper seem to
suggest that whatever the final answer(s), the methods will have
to take into account the geometry and the fractal nature of the
strange attractors underlying the dynamics. We believe that these
questions and problems will be the subject of significant research
efforts in the near future.
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Appendix. Parameter estimation for the GEV distribution

We now describe the procedure which we have used to es-
timate the parameters µ, σ , ξ of the GEV distribution (2). Con-
sider Nbmax values x1, . . . , xNbmax which we assume to form a
random sample from (2). For the systems under consideration,
it often turns out that the theoretically expected value of ξ is
smaller than −0.5. In such cases, the standard maximum likeli-
hood approach cannot be used, because the maximum likelihood
estimator is not regular [6]. We therefore resort to the method of
L-moments [60]. For the GEV distribution, the L-moments estima-
tion equations are

λ1 = µ−
σ

ξ
(1 − Γ (1 − ξ)), (A.1)

λ2 = −
σ

ξ
(1 − 2ξ )Γ (1 − ξ), (A.2)

λ3

λ2
= 2

1 − 3ξ

1 − 2ξ
− 3, (A.3)

see Table 1 in [60]. Given the sample x1, . . . , xNbmax , we use the
R package Lmoments (http://cran.r-project.org/) to estimate the
first three L-moments λi, i = 1, 2, 3. Eq. (A.3) is then solved for
ξ by a Newton method, starting from the initial estimate ξ̂ =

−7.859z−2.9554z2, with z = 2/(3+
λ3
λ2
)−log 2/ log 3, see Table 2

in [60]. Once an estimate of ξ is obtained, this is plugged into (A.2),
which is solved for σ . Lastly (A.1) is solved for µ.

For the numerical computations,which also include quantifying
the estimation uncertainty, we adopt the following procedure.
Positive integers Nbmax,Nblocklen and Nsamp are fixed: here Nbmax is
the total number of block maxima to be computed and Nblocklen is
the length of the data blocks over which each maximum has to be
extracted. We first discard a transient of 105 iterates with the map
under consideration (e.g. the Hénon or the solenoid map). Then a
total of Nbmax · Nblocklen iterates with the map is computed and the
Nbmax blockmaxima are extracted. This sample is divided intoNsamp
sub-samples, each containing Nbmax/Nsamp values. We then apply
the above L-moment estimation procedure to each sub-sample,
thereby obtaining Nsamp distinct parameter estimates

{(µs, σs, ξs) | s = 1, . . . ,Nsamp}. (A.4)

http://www.complexitynet.eu/
http://cran.r-project.org/
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The sample means of the estimates (A.4):

µ̂ =
1

Nsamp

Nsamp
s=1

µs, σ̂ =
1

Nsamp

Nsamp
s=1

σs,

ξ̂ =
1

Nsamp

Nsamp
s=1

ξs

(A.5)

are taken as the final GEV parameter estimates and the standard
deviations

s2µ =
1

Nsamp

Nsamp
s=1

(µs − µ̂)2,

s2σ =
1

Nsamp

Nsamp
s=1

(σs − σ̂ )2,

s2ξ =
1

Nsamp

Nsamp
s=1

(ξs − ξ̂ )2

(A.6)

are taken as estimates of uncertainty for the final values (A.5).
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