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Abstract

A quasi-geostrophic intermediate complexity model of the mid-latitude atmospheric circulation is considered, featuring simplified baroclinic
conversion and barotropic convergence processes. The model undergoes baroclinic forcing towards a given latitudinal temperature profile
controlled by the forced equator-to-pole temperature difference Tr. As Tg increases, a transition takes place from a stationary regime — Hadley
equilibrium — to a periodic regime, and eventually to a chaotic regime where evolution takes place on a strange attractor. The attractor dimension,
metric entropy, and bounding box volume in phase space have a smooth dependence on Tr, which results in power-law scaling properties. Power-
law scalings with respect to Tr are detected also for the statistical properties of global physical observables — the total energy of the system and
the averaged zonal wind. The scaling laws, which constitute the main novel result of the present work, can be thought to result from the presence
of a statistical process of baroclinic adjustment, which tends to decrease the equator-to-pole temperature difference and determines the properties
of the attractor of the system. The self-similarity could be of great help in setting up a theory for the overall statistical properties of the general
circulation of the atmosphere and in guiding — on a heuristic basis — both data analysis and realistic simulations, going beyond the unsatisfactory
mean field theories and brute force approaches. A leading example for this would be the possibility of estimating the sensitivity of the output of
the system with respect to changes in the parameters.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and climate — looked upon as a problem in physics. We

note here that there may be evidence that our understanding

The understanding of climate is a scientific issue as well
as being also of practical importance, since it is connected to
aspects of vital importance for human life and environment.
Recently, climate has also become a politically relevant
issue. In this paper we propose our scientific approach and
some encouraging results concerning the theory of General
Atmospheric Circulation (GAC) — the core machine of weather
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of the dynamical processes determining climate, and its
evolution, is somewhat lagging behind our ability in setting up
(often somewhat gigantic) simulation models of the climatic
system [53] and, as a consequence, from the proposed effort
great benefits can come to our ability to diagnose and/or
construct climate models.

1.1. The climatic system

Climate is defined as the set of the statistical properties of the
climatic system. In its most complete definition, the climatic
system is composed of four intimately interconnected sub-
systems, atmosphere, hydrosphere, cryosphere, and biosphere.
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These subsystems interact nonlinearly with each other on
various time—space scales [51,59]. The atmosphere is the
most rapid component of the climatic system, is very rich in
microphysical structure and composition, and evolves under the
action of macroscopic driving and modulating agents — solar
heating and Earth’s rotation and gravitation, respectively. The
atmospheric circulation is the basic engine which transforms
solar heating into the energy of the atmospheric motions and
determines the bulk of weather and climate as we commonly
perceive them. The atmosphere features both many degrees
of freedom, making it complicated, and nonlinear interactions
of several different components involving a vast range of
time scales, which makes it complex. The dynamics of such
a system is chaotic and is characterized by a very wide
spectrum of natural (i.e. internally generated) variability [48].
The understanding of the physical mechanisms operating
in the atmosphere critically influences important human
activities like weather forecasting, territorial planning, etc.
This is one of the reasons why von Neumann positioned
atmospheric dynamics in the core of the ongoing development
of numerical modeling [14]. The GAC also poses problems
of a general physical nature as a realization of planetary
scale thermodynamic transformations in a rotating, stratified
fluid. Among all the physical processes involved in the GAC,
the baroclinic conversion plays a central role because it is
through this mechanism that rotating, stratified fluids convert
the available potential energy [45], stored in the form of thermal
fluctuations, into the vorticity and kinetic energy of the air
flows. At mid-latitudes of both hemispheres, the baroclinic
conversion process can be taken as the main process responsible
for the destabilization of any hypothetical stationary circulation
(fixed point, in the terminology of dynamical systems
theory) of the atmosphere, in particular that given by the
zonally (longitudinally) symmetric atmospheric circulation
characterized by a purely zonal (west to east) wind (jet) [36].
Note that these theoretically computed stationary circulations
correspond to values of the field variables way out of the
observed range: the zonal solution is characterized by winds
of the order of 100 ms~! and the latitudinal (equator—pole)
temperature difference to the order of 100 K. Both of these
values are about twice as large as what actually observed. Apart
from the classical role of baroclinic instability [12,19] in mid-
latitude weather development [21,22,76], different forms of
baroclinic conversion can be actually observed, both at larger
scales (e.g. in the ultralong planetary waves associated with the
so called low frequency variability [5,6,15,68]) and at smaller
scales (e.g. in the banded sub-frontal structures [55]). The
definition of the basic ingredients in the physical mechanism
of baroclinic conversion is to be considered one the main
successes of the dynamical meteorology of the past century.

1.2. Classical theories of GAC and associated problems

Historically — see the classical monograph by Lorenz [47]
— the problem of GAC has been essentially approached in
terms of analyzing the time-mean circulation. Usual separations
such as between time average and fluctuations or between the

zonal and the eddy field, are somewhat arbitrary, but perfectly
justifiable with arguments of symmetry, evaluation of statistical
moments, etc. The time average—fluctuations separation is often
suggestive of a theory in which the fluctuations growing on an
unstable basic state, identified in the time average, feed back
onto the basic state itself and stabilize it. The central objective
of the classical circulation theory is the closure in the form
of a parameterization of the nonlinear eddy fluxes in terms
of quantities which can be derived from the mean field itself.
Extremely important and interesting theories of this kind — e.g.
baroclinic instability — have been formulated throughout the
whole history of meteorology and have substantially improved
our understanding of the basic dynamical processes underlying
the observed evolution of the atmospheric system. However,
in general this approach is not only unsuccessful, it is just
not feasible. The basic reason is that the stability properties
of the time-mean state do not provide even a zeroth-order
approximation of the dynamical properties of the full nonlinear
system. This has been illustrated by theoretical arguments [24]
and simple counter-examples of physical significance (see
e.g., [54,78]). As a consequence, it is not possible to create
a self-consistent theory of the time-mean circulation relying
only on the time-mean fields, since a parameterization of eddy
fluxes in terms of quantities derivable from the mean field is
useless: the average state does not carry the necessary physical
information.

Alternative approaches have been proposed, e.g. mimicking
the GAC via dynamical systems approach with simplified low
dimensional models, say below 10 degrees of freedom (see
e.g. [34]). However, the physical relevance and mathematical
generality of these approaches has been criticized as
well, whereas the relevance of the space-time geophysical
scaling behavior has been emphasized [69]. Nevertheless, a
comprehensive and coherent picture of the GAC is still far from
being available and the classical time-mean approach has not
been completely abandoned as a paradigm.

1.3. Some consequences of the failure of classical GAC
theories

It is clear that in the context of the classic paradigm of
GAC, the main task of modeling consists in capturing the mean
field: the fluctuations will follow as its instabilities. This point
of view, whether explicit or not, has strongly influenced the
set-up and diagnostics of existing General Circulation Models
(GCMs). As a consequence, the diagnostic studies usually focus
on comparing the temporal averages of the simulated fields
rather than on analyzing the representation of the dynamical
processes provided by the models. Similar issues are related to
the provision of the so-called extended range weather forecasts.
Suppose, in fact, that the forecaster was given the next month
average atmospheric fields: what practical information could
he/she derive from that? Of course, if dynamical information
were stored in the average fields — typically in the form
of dominant regimes of instability derivable from the time-
mean flow — he/she could obtain useful information from the
prediction of such time-mean fields. Unfortunately, as remarked
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above, such a picture has proved to be far from being applicable,
and the problem of extended range forecast is still open even in
terms of clearly formulating what we should forecast in place
of average fields.

1.4. The statistical mechanical point of view

Conspicuous difficulties were encountered [3,44] while
trying to construct a Climate Change theory on the basis
of fluctuation—dissipation theorems [42]. The main problem
is that the climate system may be considered as a forced
and dissipative chaotic system, featuring properties such
as the non-equivalence between the external and internal
fluctuations [49]. The reason for this non-equivalence is that,
by dissipation, the attractor of the system lives on a manifold
of zero volume inside phase space [20] (although a small
amount of noise, which is always present in physical systems,
smooths the invariant measure corresponding to the attractor
[65]): the internal natural fluctuations occur within such a
manifold whereas externally induced fluctuations move the
system out of the attractor with probability one. In this
sense, generalizations of the fluctuation—dissipation theorem
have been recently established for certain systems having a
chaotic attractor. Ruelle [67] has proved a generalization of
the fluctuation—dissipation theorem for Axiom-A attractors
(such systems carry a unique, zero-noise SRB measure [81]).
Furthermore, some specific examples have been provided
in [11] and a further extension to finite perturbations has been
recently obtained [8]. At numerical level, Kramers—Kronig
relations [52] have been recently verified [62] also for the
linear response of the Lorenz-63 system [46], which is non-
hyperbolic. Nevertheless, to the best knowledge of the authors,
rigorous applications of these results to the case of GAC have
never been performed.

A naturally ensuing scientific goal is to derive simplified
equations of motion (minimal models). The project of writing
the equations describing the statistics of the system directly on
the attractor (by projection) has been carried on with great
attention in the recent past, but, despite the big efforts, no
applicable result has been obtained so far and basic difficulties
have emerged [28,31,50].

1.5. The brute force approach

The public attention on Climate Change issues has motivated
in recent years an enormous increase in the number of degrees
of freedom (up to 10 and beyond) of the most recent Global
Circulation Models (GCMs) and in the complexity of the
physical processes included in them [39]. In the absence of
robust and efficient scientific paradigms, a gap was created
between the studies revolving around phenomenological and/or
numerical modeling issues and those focused on fundamental
mechanisms of GAC [35]. Note that the assumption that
adopting models of ever increasing resolution (allowed by the
larger and larger availability of computer power) will eventually
lead to the final understanding of the GAC (a sort of brute
force approach) is not based on any consolidated mathematical

knowledge and may, in fact, be misleading. One basic reason
is that, in the limit of infinite resolution for any numerical
model of fluid flow, the convergence to the statistical properties
of the continuum real fluid flow dynamics is not guaranteed.
At the present stage, most of the leading climate models are
neither consistent nor realistic even in the representation of the
basic time—space spectral properties of the variability of the
atmosphere at mid-latitudes [53].

1.6. Numerical modeling, smoothness and limited variability

In the modeling activity we have to deal with three different
kinds of attractors: the attractor of the real atmosphere; the
reconstruction of the real attractor from observations; the
attractors of the model (maybe more than one) we adopt in
climatic studies. As for the second one, the (presumably)
best reconstructions available are provided by the reanalyses.
Reanalyses are obtained by means of variational adaptation
(in simple quadratic error model—observations measure) of a
climate model trajectory to observations. Note that many of
the operations that are practically performed when executing
reanalysis (e.g., local linearizations in phase space) require
properties of local smoothness in phase space. Presently
there are two alternative main global reanalyses, which
feature distinct statistical properties, albeit obviously in broad
agreement. Details can be found, e.g., in [21,22,68]. As for the
third kind of attractors, the various GCMs almost surely possess
substantially different attractors, which reflects disagreements
in the statistical properties of the atmosphere [53]. In
the fundamental effort of bringing a model into statistical
agreement with the reanalyses (taken as best guess of the real
atmosphere), a key role is played by the smoothness and the
limited variability of the statistical properties of the model as
a function of the tunable parameters. Note that if the statistical
properties of a model feature a too strong dependence on the
tunable parameters, the shooting to the target of the statistical
properties of reanalyses would be prohibitively difficult and ill-
defined.

Actually, the properties of low dimensional prototypes of
atmospheric circulation are rather discouraging in this respect
(see e.g. [9]), since small changes in the values of the model
parameters may cause dramatic variations of the resulting
climate. However, a sort of common wisdom among modelers
has always been that with the increase in the number of degrees
of freedom the statistical properties could somewhat regularize
the discontinuous dependence on external parameters that
characterizes many small dimensionality models. See e.g. [1,2].

1.7. Our approach

Our approach focuses on the following question: once we
abandon the unsatisfactory mean field theories, what may
come next? More specifically, what can we do for developing
a new approach to a theory of GAC which can serve as
a guidance for setting up and diagnosing GCMs? Which
statistical properties may be crucial? In so doing, we are, at
this stage, not seeking realism in the model representation of
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atmospheric dynamics, but rather searching for representations
of key nonlinear processes with the minimum of ingredients
necessary to identify the properties under investigation. We
have decided to choose a rather simplified quasi-geostrophic
(QG) model with just a few hundreds degrees of freedom, able
to capture the central process of the GAC, i.e. the ordinary
baroclinic conversion in the mid-latitude atmospheric jet. Other
atmospheric processes, acting on longer or shorter spatial and
temporal scales, such as those mentioned before, are essentially
excluded. The model is vertically discretized into two layers,
which is the minimum for baroclinic conversion to take
place [58,60], and latitudinally discretized by a Fourier half-
sine pseudospectral expansion up to order JT. We have used
JT = 8, 16, 32, 64, yielding a hierarchy of QG models having
increasing phase space dimension. A fundamental property of
these models is almost-linearity: the eddy field is truncated to
one wavenumber in the longitudinal (zonal) direction, which
entails the evolution equation of the waves to be linear in
terms of the time-varying zonal flow. This provides a dynamical
meaning for the separation between zonal and eddy flow,
where the zonal wind acts effectively as an integrator. The
model considered here has extensively been used in nonlinear
modeling analysis since the *80s [54,78] and, more recently,
has been adopted as a dynamical simulator for analysis of
extremes [26,27]. Of course, today there is a vast choice of
readily available analogous or more realistic models, which
can be run with ease with easily available computer facilities,
but our choice of intermediacy between very low dimensional
models and GCMs allows for a detailed check of all the
statistical properties of the model dynamics.

1.8. The structure of the paper

In Section 2 we present a brief derivation of the evolution
equations for the two-layer QG model. This derivation allows
a clear understanding of the physics involved in the considered
hierarchy of QG equations. The main results of this work are
presented in Sections 3 and 4. We study the sensitivity of the
model behavior with respect to the parameter Tr determining
the forced equator-to-pole temperature gradient, which acts
as baroclinic forcing. The influence of the order of (spectral)
discretization in the latitudinal direction is also analyzed. In
Section 3 we characterize the transition from stationary to
chaotic dynamics and study the dependence on 7r and on
model resolution JT of the dimension of the strange attractor,
of the metric entropy, and of the volume of its bounding box
in the phase space. In Section 4 we analyze the statistical
properties of two physically meaningful observables (functions
of state space variables), namely the total energy of the system
and the latitudinally averaged zonal wind. An inspection of
the latitudinal wind profiles is also presented. In Section 5 a
discussion is given of the properties observed for the present
model in terms of dynamical systems theory and of the relevant
physical implications. In Section 6 we give our conclusive
remarks and perspectives for future works. In the Appendix we
present the set of differential equations examined in this study
and sketch the numerical methods adopted.

180°W

M06
90°E

Fig. 1. Sketch of the actual geographical area corresponding to the simplified
B channel. The local x and y directions and the B-channel width Ly are
indicated. The mid-latitudes range from 1/4Ly to 3/4Ly, corresponding to a
45° latitudinal belt centered at 45° N.

2. The model

The description of the large scale behavior of the atmosphere
is usually based on the systematic use of dominant balances,
which are derived on a phenomenological diagnostic basis, but
whose full correctness at theoretical level is still unclear. When
considering the dynamics of the atmosphere at mid-latitudes,
on spatial and temporal scales comparable with or larger than
those of the synoptic weather (about 1000 km and 1 day,
respectively), the hydrostatic and geostrophic balances are
phenomenologically well established. From the set of ab-initio
dynamic and thermodynamic equations of the atmosphere it is
possible to obtain a set of simplified prognostic equations for
the synoptic weather atmospheric fields in a domain centered at
mid-latitudes — the QG equations — by assuming that the fluid
obeys the hydrostatic balance and undergoes small departures
from the geostrophic balance [13,58,77]. A great number of
physical phenomena are filtered out of the equations by the
QG approximation: various types of waves associated with
strong local divergence, turbulent motions, etc. Again, there
is no doubt that these are small on the time—space scales of
the motions we consider. However, it is still an open question
to what extent they influence or not the statistics of large
scale atmospheric motions and, in case, how to model such a
statistical effect. Note also that in general the QG attractor is
not a good approximation to the attractor of the corresponding
full ab-initio equations, despite the fact that the QG balance
approximation is diagnostically quite good for the dominating
time—space scales of the atmosphere [50].

In this work we consider a B-channel periodic domain,
with € R/27L, denoting the zonal and y € [0, L,] the
latitudinal coordinate (see Fig. 1). As a further approximation,
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Fig. 2. Left: Sketch of the vertical-longitudinal section of the system domain. The domain is periodic in the zonal direction x with wavelength L. At each pressure
level, the relevant variables are indicated. Right: Number of linearly unstable modes at the Hadley equilibrium as a function of the parameter 7 for JT = 8, 16, 32,

64.

we consider only two vertical layers [60]. This is the minimal
system retaining the baroclinic conversion process, which is the
basic physical feature of the QG approximation. We refer to the
left panel of Fig. 2 for a sketch of the vertical geometry of the
two-layer system. In order to avoid problems in the definition of
the boundary conditions of the model, due to the prescription of
the interaction with the polar and the equatorial circulations at
the northern and southern boundary, respectively, we consider
a domain extending from the pole to the equator. Of course,
near the equator the QG approximation is not valid, so that the
representation of the actual tropical circulation is beyond the
scope. The equations of motions are:

D/ (AHI/f1+fo+ﬁy)—fow25;pwo =0, (1)

D} (Agvs+ fo+BY) — fo—— R ) )
D2 <1/f18p1ﬂ3> HZI{O
2

~ (wls;m nC @

where fy is the Coriolis parameter and S its meridional
derivative evaluated at the center of the channel, «
parameterizes the heat diffusion, R and C, are the
thermodynamical constants for dry air, Ay is the horizontal
laplacian operator. Moreover, the streamfunction ; is defined
at pressure levels p = pj—1 = po/4 and p = p;—3 = 3/4po,
while the vertical velocity w is defined at the pressure levels
p = pj=o0 = 0 (top boundary), p = pj=o = po/2, and
p = pj=4 = po (surface boundary). The pressure level
pertaining to the discrete approximation to vertical derivative of
the streamfunction dv,/0p as well as the stratification height
His p = pj=p,and 8p = p3 — p1 = p2 = po/2. Q2 is
the diabatic heating, and D] is the usual Lagrangian derivative
defined at the pressure level p;, D] e = d; + J (/;, ¢), where
J is the conventional Jacobian operator defined as J (A, B) =
0xAdyB — 0yAd,B. The streamfunction at the intermediate
level p, is computed as average between the streamfunctions

of the levels p; and ps, so that the material derivative at the
level p; can be expressed as D? = 1/2(D} + D}).

We choose the following simple functional form for the
diabatic heating:
0, =vyC p (T*

20* -
1) = Ncpfolfz (L_lﬂl 1ﬁ3>’(4)

dp dp

where the temperature 7 is evaluated at the pressure level 2 and
is defined via hydrostatic relation, which implies that the system
is relaxed towards a prescribed temperature profile 7* with a
characteristic time scale of 1/vy. T* and 7* are respectively
defined as follows:

T R T,
T = ~£ cos Ty , = —2E cos y , 5)
2 L, fo 4 L,

so that T is the forced temperature difference between the low
and the high latitude border of the domain. In our simulations
we assume no time dependence for the forcing parameter T,
thus discarding the seasonal effects. Since by thermal wind
relation (ii; — ii3) /8p = k x V/ (1 — y3) /8p, we have that
the diabatic forcing Q» in (4) causes a relaxation of the vertical
gradient of the zonal wind u 1 —u3 towards the prescribed profile
2m* = 2dt*/dy, where the constant 2 has been introduced for
later convenience.

By imposing wyp = 0 (top of the atmosphere) and
assuming wqg = —EgApgY¥3 (Ekman pumping [58]), and after
a rearrangement of Egs. (1)-(3), one obtains the evolution

equations for the baroclinic field T = 1/2 (¥ — v¥3) and the
barotropic field ¢ = 1/2 (Y1 + ¥3):
A 2 A 2
AT — H—223tf+f T, H¢+,3)’+H_22¢
+J (¢, An7)
2VE 2K ZVN
=——An(p—1)— —SAut+— (t —17), (6)
H? H} H}
WAup+J (9, Aud + By) + J (v, Ap7)
2v
=—H—EAH (¢ —1) (7)

2
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Table 1
Variables of the system and non-dimensionalization factors

Variable Scaling factor Value of scaling factor
X I 100 m

y 1 10 m

t w1 1095

V1 ul 107 m? s~
Y3 ul 107 m2s~!
) ul 107 m? s~!
T ul 107 m? s~!
Al ul 107 m? s~!
Bl ul 107 m? s~!
AZ ul 107 m2 s~!
B2 ul 107 m2 s~!
m u 10ms~!

U u 10 ms™!
mpy u 10 ms™!
Uy, u 10 ms~!
Wy 1 1070 m~!
Lag u=l 105 s

Iy ul™! 1075571
tp uli 105 s

T ulfoR™! 35K

E u?12(sp)g~! 5.1 %1077

For A,ll, B,%, A%, Brzl, mp, Uy, and wy,, the index n ranges from 1 to JT. For Aj,
n=1,...,6xJT.

where vp = foEoH22 / (28) is the viscous-like coupling
between the free atmosphere and the planetary boundary layer
via Ekman pumping, and the meaning of t* is made clear.
Notice that this system features only quadratic nonlinearities.

The two-layer QG system (6) and (7) can be brought to the
non-dimensional form, which is more usual in the meteorolog-
ical literature and is easily implementable in computer codes.
This is achieved by introducing length and velocity scales / and
u and performing a non-dimensionalization of both the system
variables (x, y, t, ¢, T, T) (as described in Table 1) and of the
system constants (Table 2); in our case appropriate values are
/=10m°andu = 10 ms™ 1.

In this work we consider a simplified spectral version of Egs.
(6) and (7), where truncation is performed in the zonal Fourier
components so that only the zonally symmetric component
and one of the non-symmetric components are retained. The

Table 2
Values of the parameters used in this work and adimensionalization factors

derivation is reported in [54,78]. The main reason for this
choice is that we wish to focus on the interaction between
the zonal wind and waves, thus neglecting the wave—-wave
nonlinear interactions. Since quadratic nonlinearities generate
terms with Fourier components corresponding to the sum and
difference of the Fourier components of the two factors, we
can exclude direct wave—wave interactions provided that we
only retain a single wave component (see, e.g., [52] for a
general discussion of these effects in a different context). Note
that if cubic nonlinearities were present, direct self-wave—wave
interaction would have been possible [5]. In the present case,
the wave can self-interact only indirectly through the changes
in the values of the zonally symmetric fields. This amounts
to building up equations which are almost-linear, in the sense
that the wave dynamics is linear with respect to the zonally
symmetric parts of the fields (i.e., the winds). The wavelength
of the only retained wave component is L, /6, since we intend
to represent the baroclinic conversion processes, which in the
real atmosphere take place on scales of L, /6 or smaller [21]. In
so doing we are retaining only one of the classical ingredients
of GAC, i.e. the zonal wind—wave interaction.

Both ¢ and 7 are thus determined by three real fields: the
zonally symmetric parts and the real and imaginary part of
the only retained zonal Fourier component. A pseudospectral
decomposition with JT modes is then applied to the resulting
6 real fields in the y-direction, yielding a set of 6 x JT
ordinary differential equations in the spectral coefficients. For
the truncation order JT we have used the values JT =
8,16, 32, 64.

This is the prototypal model we use as laboratory for
the analysis of the GAC. The only form of realism we are
trying to achieve here is that the statistical properties of the
nonlinear cycle baroclinic instability — barotropic & baroclinic
stabilization are represented.

3. Dynamical and statistical characterization of the model
attractor

The purpose of this section is to show that the zonal
wind—wave system captures the nonlinear process of baroclinic
conversion and barotropic—baroclinic stabilization displaying
simple (self-scaling, in fact), smooth, robust global behavior

Parameter Dimensional value Non-dimensional value Scaling factor Value of scaling factor
Ly 2.9 x 10’ m 29 I 10 m

Ly 10’ m 10 l 105 m

X 27/(4.833 x 100) m~! 13 ! 1070 m™!

H 7.07 x 10° m 7.07 x 107! l 10°m

fo 1074 ! 10 ul=1 1075571

B 1.6 x 1071 m~1 ¢! 1.6 ul=2 107 p=1g-t
Vg 5.5 x 10° m2 s~1 5.5x 1072 ul 107 m2s~!

K 2.8 x 105 m? s~! 2.8 x 1072 ul 107 m? s~

VN 1.1x 1076571 1.1x 107! ul=! 1075571

Tg 28-385K 8-110 ulfoR™! 35K

Our system is equivalent to that of Malguzzi and Speranza [78], where the following correspondences hold 1/(H22) <~ F, (ZUE)/(H22) <~ vg/2, (2K)/(H22) — Vg,

and vy < vg.
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Table 3
Approximate values of the parameter Tr where the Hadley equilibrium loses
stability via Hopf bifurcation (Tb{{ ) and where the onset of the chaotic regime

occurs (Tgm) for each of the considered orders of truncation JT'

H it

JT T} T
8 7.83 9.148
16 8.08 8.415
32 8.28 8.522
64 8.51 8.663

See text for details.

for parameter values of physical relevance. In Section 3.1 we
briefly sketch the routes to chaos in our model. The scaling
laws in the fully chaotic regime are then analyzed by studying
the Lyapunov exponents (Section 3.2) and the bounding box
(Section 3.3).

3.1. Bifurcations at the transition to chaos

The system of equations (6) and (7) has the following
stationary solution for zonally symmetric flows:

dN =10, @®)
2 Pz (y) | 2wy

T + e (t(y)—t"(»)=0. )

Considering the functional form (5) for t* (y), the following
temperature profile 7 (y) is realized:

Ty
TE Cos (L_y>

™" (y)
T; =7 5= 5.

i (E) eE(E)
This solution describes a zonally symmetric circulation
characterized by the stationary balance between the horizontal
temperature gradient and the vertical wind shear, which
corresponds on the Earth system to the idealized pattern of the
Hadley equilibrium [36,58].

There is a value of the equator-to-pole temperature gradient
Tg’ such that if Tg < TEH the Hadley equilibrium (8)
and (9) is stable and has an infinite basin of attraction,
whereas if Tp > bel it is unstable. In the stable
regime with Tp < T/, after the decay of transients, the
fields ¢, 7, and T are time independent and feature zonal
symmetry — they only depend on the variable y. Moreover,
they are proportional by the same near-to-unity factor
to the corresponding relaxation profiles, compare (8)—(10).
In particular, this implies that all the equilibrium fields are
proportional to the parameter Tf.

When increasing the values of the control parameter Tg
beyond TH the equilibrium described by (8) and (9) becomes
unstable: a complex conjugate pair of eigenvalues of the
linearization of (A.4)—(A.9) at the equilibrium (8) and (9)
cross the imaginary axis and their real part turns positive.
This suggests the occurrence of a Hopf bifurcation. The
corresponding physical scenario is the following: for high
values of the meridional temperature gradient the Hadley
equilibrium is unstable with respect to the process of baroclinic

(10)

conversion, which allows the transfer of available potential
energy of the zonal flow stored into the meridional temperature
gradient into energy of the eddies [12,19].

A stable periodic orbit branches off from the Hadley
equilibrium (8) and (9) as Tg increases above Téf . The
attracting periodic orbit persists for a narrow interval of Tf,
and for slightly larger values of Tk, ie. Tg > Tt g
strange attractor appears. Describing in detail the route to
the formation of the strange attractor is beyond the scope
of the present paper: this problem will be tackled elsewhere.
Suffice here to say that, in the case of JT = 16, 32 and
64, this route involves the breakdown of a two-torus attractor
of the flow and is very similar to those described in [9,61].
The observed values of TEI and Tgf“ typically increase with
the considered truncation order JT. Results are reported in
Table 3 for the choice of constants reported in Table 2. A finer
resolution allows for more efficient stabilizing mechanisms,
which counteract the baroclinic instability, because they act
preferentially on the small scales. Such mechanisms are the
barotropic stabilization of the jet, increasing the horizontal
shear through the convergence of zonal momentum, which
is proportional to the quadrature of the spatial derivatives
of the fields ¢ and 7, and the viscous dissipation, which is
proportional to the laplacian of the fields ¢ and 7. This is a
clarifying example that in principle it is necessary to include
suitable renormalizations in the parameters of a model when
changing the resolution J7', in order to keep correspondence
with the resulting dynamics [50]. In our case the values of Tgl
and Tlgﬁt obtained for the adopted resolutions are nevertheless
rather similar. In a related framework, see [29] for a detailed
discussion of the effects of changing the truncation order for
the structure of the bifurcations of a model.

We suspect that plenty of unstable periodic orbits and
invariant tori coexist with the attractor of model (A.4)—(A.9)
for sufficiently large Tr. Indeed, from the right panel of
Fig. 2 we deduce that the Hadley equilibrium undergoes
several other bifurcations after the first one. Since the
number of unstable eigenvalues of the Hadley equilibrium
increases at each Hopf bifurcation, the periodic orbits that
branch off have unstable manifolds of increasingly high
dimension. Moreover, these unstable periodic orbits in turn
undergo Hopf bifurcations, where unstable two-tori branch off,
compare [78, Sec. 5]. It seems, therefore, that the phase space
quickly gets crowded with high dimensional unstable invariant
manifolds.

3.2. Lyapunov exponents and dimension of the strange
attractor

To characterize the dynamical properties of the strange
attractors of (A.4)—(A.9) we resort to the study of the Lyapunov
exponents [20,57], denoted by A1 > Ay > --- > An, N =
6 x JT. The maximal exponent A; becomes positive as Tg
crosses the torus breakdown value Tgri‘, and then increases
monotonically with Tg.

The spectrum of the Lyapunov exponents is plotted in the
left panel of Fig. 3 for three different values of Tg, again with
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Fig. 3. Left: Spectrum of the Lyapunov exponents for Tg = 9, T = 30, and Tg = 110. Units as for A ; and Tg, as described in Table 1. Right: Lyapunov dimension
of the attractor of (A.4)—(A.9) as a function of T for JT = 8, 16, 32, and 64. All the straight lines are parallel and the domain of validity of the linear fit is apparently

homothetic.

JT = 32. Note that despite the great simplifications adopted
in this work, the obtained Lyapunov spectra are qualitatively
similar to what reported in [75,80], where a much larger number
of degrees of freedom was considered. The distribution of the
exponents approaches a smooth shape for large 7r and a similar
shape is observed for JT = 64 (not shown). This suggests the
existence of a well-defined infinite baroclinicity model obtained
from (6) and (7) as a (possibly, singular perturbation) limit
for T — oo. We will analyze elsewhere this mathematical
property.

3.2.1. Dimension of the strange attractor

The Lyapunov exponents are used to compute the Lyapunov
dimension (also called Kaplan—Yorke dimension, see [20,
41]) and metric entropy (also known as Kolmogorov—Sinai
entropy [20]). The Lyapunov dimension is defined by

k
Y
j=1
D; =k+

Y

Aks1l’

where k is the unique index such that 21;21 Aj = 0 and

Z’;‘S Aj < 0. Under general assumptions on the dynamical
system under examination, Dy is an upper bound for the
Hausdorff dimension of an attractor.

We have also computed (not shown) other numerical
estimates for the dimension of an attractor: the correlation
and information dimensions [25]. However, these estimates
become completely meaningless when the Lyapunov dimension
increases beyond, say, 20, and issues of reliability arise
also below 10. In particular, the correlation and information
algorithms drastically underestimate the dimension. This is a
well-known problem: for large dimensions, prohibitively long
time series have to be used. Ruelle [66] suggests as a rule
of thumb that a time series of 107 statistically independent
data are need in order to estimate an attractor of dimension d.
Therefore, computational time and memory constraints in fact
limit the applicability of correlation-like algorithms only to low
dimensional attractors.

Both the number of positive Lyapunov exponents and the
Lyapunov dimension increase with Tr. As shown in the right

panel of Fig. 3, for all the considered values of JT, it is possible
to distinguish three regimes of variation of Dy, as a function of
TE:

e For small values of (Tg — TgM), Dy o (Tg — T, with y
ranging from ~0.5 (JT = 8) to ~0.7 (JT = 64). The range
of Tr where this behavior can be detected increases with JT.

e For larger values of Tg a linear scaling regime Dy ~
BTE + const. is found. For all JT, the linear coefficient is
remarkably close to § ~ 1.2. The domain of validity of the
linear approximation is apparently homothetic.

e For Tg larger than a JT-dependent threshold, there occurs
a sort of phase—space saturation as the Lyapunov dimension
begins to increase sublinearly with Tr. Note that while for
JT = 8 the model is in this regime in most of the explored
Tg-domain (Tg 2 20), for JT = 64 the threshold is reached
only for T 2 108. Further discussions on this point will be
given in Sections 3.3 and 4.

3.2.2. Metric entropy

The metric entropy & (p) of an ergodic invariant measure p
expresses the mean rate of information creation, see [20] for
definition and other properties. If a dynamical system possesses
a SRB invariant measure p, then Pesin’s identity holds:

h(p) =) 4.

Aj>0

12)

However, existence of an SRB measure is rather difficult to
demonstrate for a given non-hyperbolic attractor [20,64]. At
practical level it is enough to invoke the beneficial role of a
small numerical noise [65]; we then refer to the sum of the
positive Lyapunov exponents as metric entropy.

The maximal Lyapunov exponent and the metric entropy as
functions of Tg are compared for JT = 8, 16, 32, and 64 in
Fig. 4. It turns out that, for fixed JT, 1| increases sublinearly
with Tg, whereas the metric entropy has a marked linear
dependence i ~ B(Tp — T, with B ranging from ~0.15
(T = 8) to ~0.5 (JT = 64). Moreover, for a given value of
Tk, the metric entropy increases with JT, whereas for Tg fixed,
A1 decreases for increasing values of JT. From the dynamical
viewpoint, this means on one hand that the maximal sensitivity
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Fig. 4. Left: Maximal Lyapunov exponent on the attractor of (A.4)-(A.9) as a function of T for JT = 8, 16, 32, 64. Right: Metric entropy. Linear dependences

h~ B(Tg — Tgit) occur for all values of JT.

of the system to variations in the initial condition along a single
direction is largest for JT = 8. On the other hand, there are
many more active degrees of freedom for JT = 64 and they
collectively produce a faster forgetting of the initial condition
as time goes on.

A more precise assessment of the time scales of the system
and of predictability fluctuations could be gained by computing
generalized Lyapunov exponents and performing the related
multifractal diagnostics [4,7,18], which is outside the scope of
this paper.

3.3. Bounding box of the attractor

The bounding box of a set of points in an N-dimensional
space is defined as the smallest hyperparallelepiped containing
the considered set [74]. For clarity, in the N-dimensional phase
space, where N = 6 x JT, the volume Vpp is computed as:

N=6xJT
Ve = l_[ [l max (zx (1) — min (g (t))] (13)
k=1 tr max tr max

Here the z; denote the 6 x JT variables spanning the phase
space of the system, in our case the Fourier coefficients A ;, A?,

le., B]2., mj,and U;, with j =1, ..., JT. The condition t > #;
allows for the transients to die out. Typically, #; is rather safely
fixed to 1500, which correspond to about five years.

When the Hadley equilibrium is the universal attractor, the
volume Vpp is zero, while it is non-zero if the computed orbit
is attracted to a periodic orbit, a two-torus or a strange attractor.
We observe that the volume of the bounding box is not an
indicator of chaoticity, but only provides a measure of the bulk
size of the attractor in phase space. In our case, it turns out
that Vpp always grows very regularly with Tg. Specifically,
each of the factors in the product (13) increases with Tg, so
that expansion occurs in all directions of the phase space. This
matches the basic expectations on the behavior of a dissipative
system having a larger input of energy.

In the right panel of Fig. 5 we present a plot of log(Vpp) as
function of Tg for the selected values of JT = 8, 16, 32, and 64.
In the case JT = 8, Vpp obeys with great precision the power

Table 4
Power-law fits of the volume of the bounding box as Vgp o« (Tg — Tgm)y in

two different ranges of Tg — Tgm for each of the considered orders of truncation
JT

JT yllog(Tg — T < 0.5] yllog(Tg — T > 0.5]
8 40+1 40+1

16 33+3 80+1

32 662 160+£1

64 13344 32041

See text and Fig. 5 for details.

law Vgg o (Tg — T§1Y)? in the whole domain Tg > 9. The
best estimate for the exponent is y ~ 40. Given that the total
number of Fourier components is 6 x JT = 48, this implies
that the growth of the each side of the bounding box is on the
average proportional to about the 5/6th power of (Tg — Tgm).

For higher values of JT, two sharply distinct and well-
defined power-law regimes occur. For JT = 16, in the lower
range of (Tg — Tgm) — corresponding in all cases to Tg <
Tgm + 1.5 — the volume of the bounding box increases with
about the 35th power of (Tg — Tgrit), while in the upper range
of (Tg — T&Y — for Tg > T + 1.5 — the power-law
exponent abruptly jumps up to about 80. For JT = 32 the
same regimes can be recognized, but the values of the best
estimates of the exponents are twice as large as what obtained
with JT = 16. Similarly, for JT = 64 the best estimates of the
exponents are twice as large as for JT = 32. The results on
the power-law fits of Vpp o (Tg — Tgrit)y are summarized
in Table 4. We emphasize that in all cases the uncertainties
on y, which have been evaluated with a standard bootstrap
technique, are rather low and total to less than 3% of the best
estimate of y. Moreover, the uncertainty of the power-law fit
greatly worsens if we detune the value of T,f-ri‘ by as little as
0.3, thus reinforcing the idea that fitting a power law against
the logarithm of (T — Tbcfi‘) is a robust choice.

When considering separately the various sides of the
bounding box hyperparallelepiped (not shown), i.e., each of
the factors in the product (13), we have that for JT = § all
of them increase as about (Tg — T&)3/ in the whole range.
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Fig. 5. Left: Volume of the bounding box Vpp of the attractor as a function of the detuning parameter 7r — Tgm for JT = 8, 16, 32, 64. For description of the

power-law fits, see the text and Table 4. Right: Value of the corresponding sides of the bounding box pertaining to the variables A}. for JT = 32 (red lines) and 64
(magenta lines). Notice the two power-law regimes mentioned in the text. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

For JT = 16, 32, and 64, in the lower range of Tg each
side of the bounding box increases as about the 1/3rd power
of (Tg — Tgm), while in the upper range of Tr each side
of the bounding box increases as about the 5/6th power of
(T — Tgit). Selected cases are depicted in the right panel
of Fig. 5. So for a given value of truncation order J7, the
ratios between the ranges of the various degrees of freedom
are essentially unchanged when varying T, so that the system
obeys a sort of self-similar scaling with Tg.

Summarizing, for sufficiently high truncation order (JT >
16) a robust parametric dependence is detected for the volume
of the bounding box as a function of Tf:

Vg o (Tg — TEYY,  y =€N

1/3, Tg— T <15,
~ L 14
€ {5/6, Tp — TS > 1.5, 14

where N = 6 x JT is the number degrees of freedom.

The comparison, for, say, JT = 16 and 32, of factors
in (13) having the same order for the same value of Tp — Tgm
provides insight about the sensitivity to model resolution. In
the following discussion, we examine the variables Al but

similar observations apply to all other variables A?, B}, BJZ.,
U;, and m;. The factors related to the gravest modes, such
as [max(A}. (1) — min(A} (t))], agree with high precision,
thus suggesting that the large scale behavior of the system
is only slightly affected by variation of model resolution.
When considering the terms related to the fastest latitudinally
varying modes allowed by both truncation orders, such as
[max(Aj. (1) — min(A} ()] with 17 < j < 32, we have that
those obtained for JT = 32 are larger than the corresponding
factors obtained for JT = 64, and the distance between pairs
of the same order increases with j. See the right panel of
Fig. 5. This is likely to be the effect of spectral saturation:
the dynamics contained in the scales which are resolved in the
higher resolution models are projected in the fastest modes of
the model with lower resolution. The same effect is observed

when comparing, for JT = 16 and 32, coefficients of the same
order such as [max(A} (1)) — min(A}. ()] with9 < j < 16.
The JT = 8 case does not precisely match this picture.

4. Statistical properties of the total energy and zonal wind

In terms of studying the model (A.4)—(A.9), the analysis
of the statistics of observables having a direct physical
significance is complementary to the investigation performed
in Section 3.2, where we have considered properties of special
relevance for a dynamical system-oriented analysis. Today,
concepts and tools borrowed from dynamical systems theory
have widespread applications in the context of modern weather
forecast methods, where specific strategies are considered
for the local exploration of the phase space of atmospheric
models [40]. Since we want to deal with easily readable
global physical quantities, we consider the fotal energy and the
average zonal wind of the model.

4.1. Total energy

The total energy of the system E(¢) is a global observable
of obvious physical significance, statistically obeying a balance
between the external forcing and the internal and surface
dissipation. The horizontal energy density of the two-layer QG
system can be expressed as follows:

e(x,y.1) = %” [% ()
+ 5 (99s) + s = )
2

i [(w)z (9 Hi] |

Here the factor §p/g is the mass per unit surface in each layer,
the last term and the first two terms inside the brackets represent

| |

15)
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the potential and kinetic energy, respectively, thus featuring a
clear similarity with the functional form of the energy of a
harmonic oscillator. Note that in (15) the potential energy term
is half of that reported in [58], which contains a trivial algebraic
mistake in the derivation of the energy density, as discussed
with the author of the book. We then consider as observable the
total energy E(¢), evaluated by integrating the energy density
expression (15):

Ly pLy
E(@) = / / e(x,y, t)dxdy
0o Jo

L, X
= 6/ ) /X e(x,y,t)dxdy.
0 0

Potential energy is injected into the system by zonally
symmetric baroclinic forcing t*, part of it is transformed
into wave kinetic energy by baroclinic conversion, and kinetic
energy is eventually dissipated by friction such as that
determined by Ekman pumping. This constitutes the Lorenz
energy cycle [45,59], which has been analyzed for this system
in [78]. In Table 1 we report the conversion factor of the total
energy between the non-dimensional and dimensional units.

For the Hadley equilibrium, the time-independent expres-
sion for the total energy is:

(16)

2
Sp RTE 1
PR T 2
1+ £ (%)

(”2 " )
X — —
2 21"
L} H;

The total energy is proportional to Tb% and is mostly (95%)
stored as potential energy, which is described by the second
term of the sum in (17).

In Fig. 6 we present the results obtained for the various
values of JT used in this work. In the left panel we present
the JT = 64 case, which is representative of that obtained

E(Z)ZEZ

A7)

also in the other cases. The time-averaged total energy is
monotonically increasing with 7g, but when the system enters
the chaotic regime, m is much lower than the value for the
coexisting Hadley equilibrium. This behavior may be related
to the much larger dissipation fuelled by the chaos-driven
activation of the smaller scales. In the chaotic regime E(¢) is
characterized by temporal variability, which becomes more and
more pronounced for larger values of Tg.

In the right panel of Fig. 6 we compare the cases JT = 8,
16, 32 with respect to JT = 64. The overall agreement of E@),
where X denotes the time average of the field X, is good but
progressively worsens when decreasing JT: for JT = 32, the
maximal fractional difference is less than 0.01, while for JT =
8 it is about one order of magnitude larger. Differences among
the representations given by the various truncations levels also
emerge in power-law fits such as E (1) o Tllf . In the regime
where the Hadley equilibrium is attracting, this fit is exact, with
exponent y = 2. For Tg — Tl,ffit < 1.5and Tg > T/ (the value
of the first Hopf bifurcation, see Table 3), for all the values of JT
the power-law fit is good, with y = 1.90%0.03, so that a weakly
subquadratic growth is realized. For Tp — Tg-rit = 1.5, only
the JT = 32 and 64 simulations of E(r) obey with excellent
approximation a weaker power law, with y = 1.52 4 0.02 in
both cases, while the cases JT = 8 and 16 do not satisfactorily
fit any power law.

The agreement worsens in the upper range of Tg, which
points at the criticality of the truncation level when strong
forcings are imposed. Nevertheless, the observed differences
are strikingly small between the cases, say, JT 8 and
JT = 64, with respect to what could be guessed by looking
at the Lyapunov dimension, metric entropy, and bounding box
volume diagnostics analyzed in the previous sections.

4.2. Zonal wind

LetU(y,t) = 1/2 (u1(y, t) + u3(y, t)) be the zonal average
of the mean of the zonal wind at the two pressure levels p;
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and p3 and m(y,t) = 1/2(u1(y,t) —us(y, t)) be the zonal
average of the halved difference of the zonal wind at the two
pressure levels p; and p3. We here examine the latitudinal
average, denoted by (e), of U and m:

1 (L 2 & vl
<U<y,z>>=2/ Uy,ndy== 3 —, (18)
0 T j=1jodd 7

1 [t 2 &l
(m(y,t)):Z/ m(y,ndy ==Y —. (19)
0 T j=1jodd /

We have that (U (y, t)) is proportional to the total zonal momen-
tum of the atmosphere, whereas (m(y,t)), by geostrophy, is
proportional to the zonally averaged temperature difference be-
tween the northern and the southern boundaries of the domain.
Computation of such space averages at the time-independent
Hadley equilibrium is straightforward:

R Tg 1

:f()L? 2°
P ()

(m(y)) = (UK))

(20)

Since we cannot have net, long-term zonal forces acting on the
atmosphere at the surface interface, the spatial average of the
zonal wind at the pressure level p3 must be zero. Therefore, the
outputs of the numerical integrations must satisfy the constraint
(m(y,t)) = (U(y,t)), which is automatically satisfied at the
Hadley equilibrium. The results of the integration — where
such constraint is obeyed within numerical precision — are
presented in Fig. 7. In the left panel we plot the outputs
for JT = 64, which, similarly to the total energy case, is
well representative of all the JT cases. The average winds are
monotonically increasing with Tk, but, when the system enters
the chaotic regimes, the averages (m(y,t)) = (U(y, t)) have
a much smaller value than at the Hadley equilibrium, and they
display sublinear growth with Tg. Moreover, for Tg > Tgrit the
temporal variability of the time series (m(y, t)) and (U (y, t))
increases with Tg. The variability of (m(y,t)) results to be

slightly larger than that of (U (y, t)), probably because the latter
is related to a bulk mechanical property of the system such as
the total zonal momentum.

The effects of lowering JT are illustrated in Fig. 7 right.
The overall agreement, expressed by a small value of the
fractional differences, progressively worsens for smaller JT.
Notice the similarity of the functional shapes with Fig. 6 right.
The results in Fig. 7 right can be summarized as follows:
the coarser-resolution models have higher total temperature
difference between the two boundaries for values of Tg up to
about 30 and lower temperature differences for higher values
of Tg. This implies that while for T < 30 the latitudinal heat
transport increases with JT as a positive trade-off between the
higher number of unstable baroclinic modes (within a sloppy
linear thinking) or, better, smaller scale baroclinic conversion
processes taking place in a higher dimensional attractor, and the
enhancement of the barotropic and viscous stabilizing effects,
for Tg 2 30 the converse is true.

Again, differences between the various truncations levels
emerge as one attempts power-law fits of the form (m(y, t)) =
(U(y, 1)) x Tg . For the Hadley equilibrium regime we have
y = 1. For Tg < 10 and above the first Hopf bifurcation, for all
values of JT the power-law fit is good, with y = 0.875+£0.005.
For T — Tgrit 2 1.5, only the simulations with JT = 32 and
64 obey a power law (with y = 0.58 £ 0.02) with excellent
approximation, while the realizations of the JT = 8 and 16
cases do not fit any power law.

Since we are dealing with a QG system, these observations
on the wind fields imply that while the time-averaged
meridional temperature difference between the northern and
southern boundary of the system increases monotonically
with T, as to be expected, the realized value is greatly
reduced by the onset of the chaotic regime with respect to
the corresponding Hadley equilibrium. This is the signature
of the negative feedback due to the following mechanism:
when the poleward eddy transport of heat is realized, it
causes the reduction of the meridional temperature gradient,
thus limiting by geostrophy the wind shear, which causes in
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turn a reduction of baroclinically induced eddies towards the
marginal stability [79]. This process can be considered to be
the nonlinear generalization of the baroclinic adjustment [79],
which implies that the system statistically balances near an
average state which corresponds to a fixed point which is
neutral with respect to baroclinic instability. This type of
adjustment often relies on the (sometimes hidden) idea that a
variational principle holds concerning the relationship between
the heat & momentum fluxes and the basic state gradient
as, for example, in classical convection for which it can be
proved that the most unstable mode is the one carrying heat
most efficiently across the basic state gradient. In fact, such
a variational principle does not hold for ordinary baroclinic
instability, as it can be proved that the most rapidly growing
baroclinic mode is not the one with the highest heat flux. But
in this model, as opposed to the general case, the variational
assumption in question is essentially correct, since only one
zonal wave is considered, and so the fastest growing unstable
wave is also the wave transporting northward the largest amount
of heat [76,78]. Nevertheless, the adjustment mechanism does
not keep the system close to marginal stability since for T >
Tgm both the instantaneous and the time-averaged fields of
the system are completely different from those realized at the

Hadley equilibrium. Also, this result denies the possibility that
the time-mean circulation is maintained by eddies which can be
parameterized in terms of the time-mean fields.

By examining more detailed diagnostics on the winds,
such as the time-averaged latitudinal profiles of U(y) and
of m(y) (Fig. 8), relevant differences are observed between
JT = 8 and the other three cases. Results are presented for
JT = 8 and JT = 32, the latter being representative also
of JT = 16 and 64. We first note that already for 7T = 9
and 10, such that only a weakly chaotic motion is realized,
the U (y) and m(y) profiles feature in both resolutions relevant
qualitative differences with respect to the corresponding Hadley
equilibrium profile, although symmetry with respect to the
center of the channel is obeyed. The U (y) and m(y) profiles
are different (the constraint (m(y,t)) = (U(y,t)) being still
satisfied), with U (y) > m(y) at the center and U (y) < m(y) at
the boundaries of the channel. Nevertheless, like for the Hadley
equilibrium, both U (y) and m(y) are positive and are larger at
the center of the channel than at the boundaries. Consequently,
at pressure level p; there is a westerly flow at the center of the
channel and easterly flows at the two boundaries, and that at
pressure level p3 the wind is everywhere westerly and peaks at
the center of the channel. Such features are more pronounced
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for the JT = 32 case, where the mechanism of the convergence
of zonal momentum is more accurately represented.

For larger values of Tg, the differences between the two
truncation levels become more apparent. For JT = 8§, the
observed U(y) and m(y) profiles tend to flatten in the center
of the channel and to become more similar to each other.
Therefore, somewhat similarly to the Hadley equilibrium case,
the winds at the pressure level p; tend to vanish and all
the dynamics is restricted to the pressure level p3. The m(y)
profiles for JT = 32 are quite similar to those of JT = 8§,
even if they peak and reach higher values in the center of the
channel and are somewhat smaller at the boundaries. So when
a finer resolution is used, a stronger temperature gradient is
realized in the channel center. The U (y) profiles obtained for
JT = 32 are instead very different. They feature a strong,
well-defined peak in the channel center and negative values
near the boundaries. Therefore, the winds in the upper pressure
level are strong westerlies, and peak in the center of the
channel, while the winds in the lower pressure level feature a
relatively strong westerly jet in the center of the channel and
two compensating easterly jets at the boundaries. The fact that
for higher resolution the wind profiles are less smooth and have
more evident jet-like features is related to the more efficient
process of eddy zonal momentum flux convergence [43,72],
which keeps the jet together, and is related to barotropic
stabilization [56]. Examination of the latitudinal profiles in
Fig. 8 clarifies our choice to extend the latitudinal domain of the
model beyond the geometrically and geographically realistic
mid-latitude channel. Due to this, the wind fields in the central
portion of the domain (the latter corresponds to mid-latitudes
and is of primary interest in this work), are rather different than
at the boundary regions.

5. Parametric smoothness and self-scaling of the attractor
properties with respect to 7 : Modeling the atmospheric jet

If general enough, the scaling properties discussed in
Sections 3 and 4 could be of great help in setting up a theory for
the overall statistical properties of the GAC and in guiding — on
a heuristic basis — both data analysis and realistic simulations. A
leading example for this would be the possibility of estimating
the sensitivity of the model output with respect to changes in
the parameters. Physical insight into the relevant mechanisms
can be obtained by considering the main feedback mechanisms
setting the average statistical properties of the system, e.g. when
changing the forcing Tg from Tg = Tg > Tgit to Tg =
Tg + ATg. The change in Tg directly causes an increase in
the value of m; through Newtonian forcing and indirectly an
increase in the value of U; through equilibration driven by
Ekman pumping. The increase in the value of m; enhances the
baroclinic conversion and so the values of AL, Az-, B! and B2
The eddy stresses, due to the quadratures of the A and B fields,
act as feedback by decreasing the value of the m fields through
depletion of baroclinicity and by increasing the value of U
fields through barotropic convergence, so that the feedback loop
is closed. In the chaotic regime, these feedback mechanisms
can be thought as constituting the above mentioned generalized

type of statistical baroclinic adjustment process, which reduces
the average value of the equator-to-pole temperature difference.
This process is not reducible to the stationary balances of the
classic theory of GAC, since it takes place when the system
lives in a strange attractor and for sure adheres more closely
at conceptual level to the equilibration of the atmosphere,
given the chaotic nature of the latter. The power laws obtained
are the macroscopic realization of the envisioned statistical
baroclinic adjustment process, which determines the nature and
the statistical properties of the system attractor. Preliminary
calculations performed by the authors together with Vannitsem
(unpublished results) suggest that the power laws presented
here hold in general also on simplified yet global models of the
atmospheric circulation, so the obtained scalings laws might be
very helpful in establishing a sort of bulk climate theory for the
atmospheric disturbances. Apart from the diagnostic indicators
examined in the previous sections, other statistical properties
such as, notably, the distribution of extremes of some field
variables of the system display similar properties of smoothness
and limited variation, as well as being expressed as power-law
scalings of Tg [26]. The smoothness property proves to be of
especially great help when dealing with statistical inference in
the presence of imposed trends in a non-autonomous version of
the dynamical system here considered [27].

The fact that all the considered dynamical indicators
(Lyapunov exponents and dimension, volume of the attractor
bounding box) and physical quantities (total energy and mean
zonal wind) feature a smooth, simple dependence with respect
to the forcing parameter Tr and a limited variation is at first
striking if one keeps in mind the phenomena typically occurring
in systems having low dimensional non-hyperbolic strange
attractors. Examples are provided by equations modeling
laser systems: parameter regions where chaotic output occurs
are very often interspersed with windows of periodicity, see
e.g. [32]. In many such cases, the system properties are
discontinuous at the boundaries of the phase-locking intervals,
since the attracting orbit vanishes (typically through a saddle-
node bifurcation) and a strange attractor appears at once.
Other examples of discontinuous dependence on external
parameters are contained in the enormous literature on attractor
crises (see [63] and references therein). Analogous types of
bifurcations occur in many systems having low dimensional
strange attractors: the list includes Hénon-like families [30,73],
climate models (see e.g., [9] and references therein), infinite
dimensional systems [24]. Also compare [20] and references
therein.

The general, crucial point is here that the effect of a lack
of smoothness, or anyway of a very sensitive dependence
of model statistical properties on the external parameters, or
on details of the model representation, would be detrimental
for our ability in setting up a GAC theory, as well as
entailing dramatic consequences on our ability to model the
atmosphere for practical purposes as well. For the present
model (A.4)—(A.9), no window of periodicity or any other
statistical pathology were detected in the smooth scaling range
(say, Tg > 16), independently of the truncation order. We
have also tried slightly different spectral discretization schemes
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and integration methods (such as leapfrog or Runge—Kutta
4), but this feature persisted in all cases. The behavior
of the system matches the conjectures stated in [1] for
general dissipative systems, basically proposing that in spite
of the lack of structural stability, the topological changes
induced in the attractor by parameter variations are not
catastrophic if the dimension of the system is high enough.
The implication of the conjectures is that, as the dimension
of a dissipative dynamical system is increased, the number
of positive Lyapunov exponents increases monotonically, the
Lyapunov exponents tend towards continuous change with
respect to parameter variation and the number of observable
periodic windows decreases. In substance, it would appear that
the modelers paradigm described in the introduction could have
some rigorous justification. Persistent chaos and smooth-like
dependence of the SRB measure with respect to an external
parameter thus appears to be typical of high dimensional
systems [2]. One of the first remarks hinting at this general
property is in [24].

6. Summary, conclusions and future developments

We have described the construction and the dynamical
behavior of an intermediate complexity model of the
atmospheric system. We take as numerical laboratory for the
GAC a quasi-geostrophic (QG) model where the mid-latitude
atmosphere is taken as being composed of two layers and the
B-plane approximation is considered.

A single zonal wave solution is assumed and by a spectral
discretization in the latitudinal direction, the latter equation
is reduced to a system of N = 6 x JT ordinary differential
equations, where JT + 1 is the number of nodes of the
(latitudinally speaking) fastest varying base function. We have
considered the cases JT = 8, 16, 32, and 64. Although
relevant ingredients of geometrical and dynamical nature
of the real atmospheric circulation are still missing in this
simplified theoretical representation, our model features some
fundamental processes determining the general circulation of
the Earth atmosphere. In particular, the acting processes are the
baroclinic conversion, transforming available potential energy
into waves; the nonlinear stabilization of the zonal jet; and
the thermal diffusion and Ekman pumping-driven viscous
dissipation. It is clear that realism in the representation of the
atmosphere is not an issue in this work.

When a larger pool of available energy is provided,
the dynamics of the system is richer, since the baroclinic
conversion process can transfer larger amounts of energy to
the disturbances. Correspondingly, by increasing the parameter
TE, which describes the forced equator-to-pole temperature
gradient and parameterizes the baroclinic forcing, the overall
behavior of the system is greatly altered. The attractor changes
from a fixed point to a strange attractor via a finite number
of bifurcations, starting with a Hopf bifurcation at Tg = TE’
determining the loss of stability of the Hadley equilibrium, and
a final two-torus breakdown at T = Tgrit. The observed route
to chaos is qualitatively the same for JT = 16, 32, and 64, and

the values T/ and Tgrit weakly depend on JT (Table 3), while
some differences are observed for JT = 8.

The strange attractor is studied by means of the Lyapunov
exponents. The Lyapunov spectra obtained for JT = 32, 64
resemble what obtained in more complex QG models [75,
80]. A striking feature of this dynamical system is the rather
smooth dependence on the parameter Tg of all of its dynamical
properties. No windows of periodicity have been detected in
the chaotic range and this is quite uncommon especially when
comparing with low dimensional chaotic systems, such as the
Hénon—Pomeau mapping [37,73] or the Lorenz flow [46]. The
metric entropy, representing the total dynamical instability,
increases linearly with Tg for T > Tgrit for all examined
values of JT, and is larger for larger values of JT. The Lyapunov
dimension Dy increases with both Tr and JT. In particular, by
increasing T, initially the dimension grows with a sublinear
power law Dy o (Tg — Tgm)y, followed by a linear scaling
regime, while for large Tg, Dy saturates. The fact that the
dimensionality of the attractor increases with the total energy
of the system (they are both monotonically increasing with
TE) suggests that the system has a positive temperature, in a
statistical mechanical sense. For JT > 16, each side of the
bounding box of the attractor increases as «x (Tg — Tgri‘)l/ 3 for
Te —Tgit < 1.5and as « (TE—TI‘:irit)S/6 for larger values of Tg,
while for JT = 8 only the latter regime is present. Therefore,
the ratios of the ranges of the various degrees of freedom remain
essentially unchanged when varying Tg, yielding a self-similar
scaling property.

We emphasize that from the point of view of representing the
dynamical properties of the atmosphere, bifurcations are often
studied with two goals:

e identifying sharp regime transitions;
e obtaining reduced models by projection of the equations on
the center manifold corresponding to the bifurcation.

In the present model, no sudden and sharp variations (crises)
of the attractor have been detected sufficiently far from TE”",
i.e., in the range of physically relevant parameter values: here
the properties of the attractor vary quite smoothly with the
external parameter Tg. Furthermore, the large dimensionality
of the chaotic attractor leaves little hope that the dynamics can
be reduced by projection on some center manifold. Therefore, it
seems very unlikely that the signature of the bifurcations at the
transition to chaos, of the kind exploited e.g. in the context of
physical oceanography in a recent book [23], may be detectable
in the fully developed strange attractor and may be useful for
computing some of its statistical properties.

Our investigation has focused also on observables of more
immediate physical interest. When the system enters the chaotic
regime, the average total energy and average zonal winds
have lower values than those of the corresponding unstable
Hadley equilibrium, because the occupation of the faster
varying latitudinal modes fuels Ekman pumping-driven viscous
dissipation, which acts preferentially on the small scales. The
total energy and the average wind field obey with excellent
approximation a subquadratic and sublinear power laws o< T},
respectively, and are in quantitative agreement for all values
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of JT, essentially because these quantities are representative of
global balances.

We do not expect to find a global uniform parametrically
controlled self-scaling of the system statistical properties when,
beyond a certain parameter threshold, new physical processes
come into play, e.g. in our case allowing for a different and
differently efficient way of converting available into kinetic
energy. The change in the slope observed in all cases for
value of Tp — Tgrit ~ 1.5 may then be interpreted as a
changeover from a quasi-linear baroclinic activity to a fully
chaotic regime. A possible source of break-up of self-similarity
of the statistical properties of the attractor with respect to
external parameters is resonant behavior, i.e. the preferential
occurrence of certain physical processes for a bounded range
of values of a given parameter. In the case of atmospheric
dynamics, this effect might more relevant than the above
mentioned onset of windows of periodicity, although in a range
of variability which is different from what explored in this
paper, namely the low frequency variability [5,6,68]. In this
context, using more realistic atmospheric models comprising
bottom orography, a physically interesting experiment to be
performed with the purpose of finding the break-up of self-
similarity is to parametrically tune and detune the statistical
onset of the orographic baroclinic energy conversion [10,16,
68], which is in nature a rather different process from the
conventional baroclinic conversion, acting on much larger
scales (order of 10000 km in the real atmosphere).

We summarize the main conclusions regarding the physical
properties analyzed in this work as follows:

1. the model displays statistical properties having sufficiently
smooth and slow dependence in the parameter space —
no crises — as well as robust with respect to model
representation. The observed persistent chaos and smooth-
like dependence of the measure might be related to recently
established conjectures, such as the chaotic hypothesis
proposed by Gallavotti and Cohen [17,33] and the ideas
proposed in [1,2]. This leaves hope, in the case such
properties are confirmed in more articulated models, for the
possibility that well-defined tuning of realistic models could
allow for a successful representation of the baroclinic wave
component of the mid-latitude variability. Other components
of atmospheric variability, in particular the low frequency
variability, may, instead, be characterized by more critical
properties, such as resonance, non-propagating behavior,
etc.;

2. all of the statistical properties of the model are not
only smooth, but can be expressed as power-law scalings
with respect to Tg. Therefore, it is possible to invert
the functional relationship for, e.g., the mean zonal wind

(U), and parameterize, at least piecewise, all of the other
statistical properties with respect to (U). In general, the
self-similarity could be of great help in setting up a
theory for the overall statistical properties of the general
circulation of the atmosphere and in guiding — on a heuristic
basis — both data analysis and realistic simulations, going
beyond the unsatisfactory mean field theories and brute

force approaches. A leading example for this would be the

possibility of estimating the sensitivity of the output of
the system with respect to changes in the parameters. The
analysis of scaling properties is emerging as new paradigm
in the study of geophysical systems [69].

3. Self-similarity might result from statistical equilibration of
the baroclinic conversion process, which provides a modern,
statistical version of classical theories of the baroclinic
jet. The observed equilibration somewhat resembles the
deterministic baroclinic adjustment envisaged in the *70s,
but takes place through more complex processes occurring
in the strange attractor. Given the almost-linear nature of
the wave-zonal flow interaction, it is possible to establish
a simple closure of the properties of propagation and
instability of the waves with respect to a parameterized
zonal wind, which acts as integrator providing a time-
varying index of refraction.

Three are the main, necessary directions of future work along
the proposed line of approach to GAC:

1. Consolidating and explaining the knowledge (see [70])
that in the real atmosphere the dynamics of traveling
baroclinic disturbances is dominated by the wave-zonal flow
interaction and the role of the wave—wave interaction is
minor. Exploiting the potential of such a finding in modeling
in detail the so called extratropical storm tracks [38] (see
http://data.giss.nasa.gov/stormtracks/ for a nice tutorial),
which are the everyday atmospheric manifestation of the
baroclinic dynamics we are debating.

2. Along the previous line, analyzing mathematically for this
model the action of the zonal wind as an integrator of the
wave disturbances. This can be accomplished by writing
the approximate evolution equations for the wave fields,
indicated generically as X, in the form X = M (¢)X, where
M is a stochastic matrix [18] written in terms of the U and
m fields. The statistical properties of M may inform us on
the physical processes responsible for the wave dynamics.
The generation and decay processes are quite relevant for the
mid-latitudes of the real atmosphere, because we have 2D
wavenumber—frequency spectral densities that only vaguely
correspond, in a statistical sense, to well-defined dispersion
relations w = w(k), since at all frequencies the spectral
width is relatively wide [21,22,53].

3. Analyzing all the debated properties in more articulated
numerical models. Some preliminary results in this sense
have been found by the authors and Vannitsem (unpublished
results). An important technical issue in this context may be
the separation of the properties of the baroclinic mid-latitude
jet system from the low frequency variability.

Acknowledgments

The authors wish to thank M. Felici, G. Gallavotti, V. Gupta,
S. Lovejoy, P. Malguzzi, L. Smith, A. Tsonis, and S. Vannitsem
for scientific hints and encouragement, and the two reviewers
for relevant suggestions aimed at the improvement of the paper.
V.L. wishes to thank ISAC-CNR for kind hospitality and the


http://data.giss.nasa.gov/stormtracks/

V. Lucarini et al. / Physica D 234 (2007) 105-123 121

Centro di Cultura Scientifica A. Volta (Como, Italy) for partial
financial support.

Appendix. Evolution equations of the single zonal wave
two-layer model and numerical methods

As explained in Section 2, for the purposes of this study
we retain the zonally symmetric component plus only one
wave component in the zonal direction of the fields ¢ (x, y, f)
and t(x, y, t). Since we intend to represent schematically the
baroclinic conversion processes, which in the real atmosphere
take place on scales of the order of L, /6 [21,22], we select the
wave component having wave vector x = 6 x 2w /L,. We then
have:

y
d(x,y,t) = —/ U(z,t)dz + Aexp (ixx) +c.c., (A.1)
/2
y
T(x,y,t) = —/ m(z,t)dz + Bexp (ixx) + c.c.. (A.2)
/2

By substituting (A.1) and (A.2) into equations (6) and (7) and
projecting onto the zonal Fourier modes of order n = 0 and
n = 6, we obtain a set of partial differential equations for the
6 real fields A!, A%, B!, B2, U, m, where A! and A? are the
real and imaginary parts of A, and similarly for B. Vanishing
boundary conditions are chosen at y = 0, Ly, for all fields. In
the case of U and m this amounts to setting no-flux boundary
conditions for the zonally symmetric component of ¢ and 7,
along the lines of Phillips [60]. A Fourier half-sine expansion
of the fields is then carried out along y, with time-varying
coefficients:

JT .
. (T]Y
x =Y x;sin( 22
. JSIH(L ),
j=1 y

where X represents each of the fields Al A2, B!, B2, U, and m,
and for the truncation order J7 we have used the values JT = 8,
16, 32, 64. With this definition, and because of (A.1) and (A.2),
the latitudinal average of t and ¢ vanishes in all cases, so
that the energy density (15) does not depend on the latitudinal
average of 7, which has no physical relevance. By using the
expansion (A.3) and projecting on the basis functions sm(’” 2y,

(A3)

we then obtain a set of 6 x JT ordinary differential equations for
A}, A?, B}, B]Z, U;, m;. Particular care must be taken for the
nonlinear (quadratic) terms appearing in (6) and (7). Such terms

result into sums of quadratic products of the time-dependent

12 pl/2,
J

by quadratlc products of the basis functions sm(jij ) and

variables A ; Uj, m; times y-dependent factors given

their derivatives. We define a pseudospectral operator II; ()
for projecting such quadratic y-dependent terms onto the j-th
basis function sin 22 I Y through Fourier collocation: the factors
are evaluated pointwise at the JT equally spaced collocation
points yi, ..., yjr in the y-domain. Then, an inverse Discrete
Sine Transform is carried out, yielding the Fourier coefficients
of the nonlinear terms, thus obtaining the projection. The
software library £ftw3, publicly available at www.fftw.org,
has been adopted. The resulting system of ordinary differential

equations, which constitutes the base model of our study,
is:
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where the explicit expression of the projected nonlinear
terms is not presented here because of space limitation. The
numerical solution of the system (A.4)—(A.9) is computed
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with a standard Runge—Kutta—Fehlberg(4,5) algorithm [71]
with adaptive step size, where the approximated solution
is carried by the order five method. The local truncation
error is kept below 1 - e — 6. The step size adjustment
procedure is similar to that of DOPRI5, available at
(www.unige.ch/ hairer).

For the computation of the averages X, time series of
315360 adimensional time units (1000 years in natural units)
have been computed for all values of JT, after discarding a
transient of 5 years. The observables E(¢), U(y, t), and m(y, t)
have been sampled every 0.216 time units (four times a day),
thereby obtaining time series of 1460000 elements.
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