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Abstract. A quasi-geostrophic intermediate complexity model of the mid-latitude atmospheric 
circulation is considered, featuring simplified baroclinic conversion and barotropic conver-
gence processes. The model undergoes baroclinic forcing towards a given latitudinal tempera-
ture profile controlled by the forced equator-to-pole temperature difference TE. As TE in-
creases, a transition takes place from a stationary regime - Hadley equilibrium - to a periodic 
regime, and eventually to a chaotic regime, where evolution takes place on a strange attractor. 
The dependence of the attractor dimension, metric entropy, and bounding box volume in phase 
space is studied by varying  TE. It is found that this dependence is smooth and has the form of 
a power-law scaling. The observed smooth dependence of the system’s statistical properties on 
the external parameter TE  is coherent with the chaotic hypothesis proposed by Gallavotti and 
Cohen, which entails an effective structural stability for the attractor of the system. Power-law 
scalings with respect to TE are also detected for global observables responding to global physi-
cal balances, like the total energy of the system and the averaged zonal wind. The scaling laws 
are conjectured to be associated with the statistical process of baroclinic adjustment, decreas-
ing the equator-to-pole temperature difference. The observed self-similarity could be helpful 
in setting up a theory for the overall statistical properties of the general circulation of the 
atmosphere and in guiding - also on a heuristic basis - both data analysis and realistic simula-
tions, going beyond the unsatisfactory mean field theories and brute force approaches. 

1 Introduction 

The problem of understanding climate is an issue of scientific as well as practical 
interest, since it is connected to aspects of vita importance for human life and envi-
ronment. Recently, climate has also become a politically relevant issue. In this chap-
ter we propose our scientific approach and some encouraging results concerning the 
theory of General Atmospheric Circulation (GAC) - the core machine of weather and 
climate - looked upon as a problem in Physics. Climate is defined as the set of the 
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statistical properties of the climatic system. In its most complete definition, the cli-
matic system is composed of four intimately interconnected sub-systems, atmos-
phere, hydrosphere, cryosphere, and biosphere. These subsystems interact nonline-
arly with each other on various time-space scales  (Lucarini 2002). The atmosphere 
is the most rapid component of the climatic system, features both many degrees of 
freedom, which makes it complicated, and nonlinear interactions of  different com-
ponents involving a vast range of time scales, which makes it complex. The GAC is 
a realization of planetary scale thermodynamic transformations in a rotating, strati-
fied fluid. Among all the physical processes involved in the GAC, the so-called 
baroclinic conversion plays a central role because it is through this mechanism that 
the available potential energy (Margules 1903; Lorenz 1955), stored in the form of 
thermal fluctuations, is converted into the vorticity and kinetic energy of the air 
flows. Apart from the classical role of baroclinic instability (Charney 1947; Eady 
1949) in mid-latitude weather development (Dell’Aquila et al. 2005), different forms 
of baroclinic conversion operate at larger scales (e.g. in the ultra-long planetary 
waves associated with the so called low-frequency variability (Charney and DeVore 
1979; Benzi et al. 1986; Benzi and Speranza 1989; Ruti et al. 2006), and at smaller 
scales (e.g. in the banded sub-frontal structures (Mantovani and Speranza 2002). 
 Historically - see the classical monograph by Lorenz (1967) - the problem of 
GAC has been essentially approached in terms of analyzing the time-mean circula-
tion. Usual separations such as between time average and fluctuations or between the 
zonal and the eddy field, are somewhat arbitrary, but perfectly justifiable with argu-
ments of symmetry, evaluation of statistical moments, etc.. The time average-
fluctuations separation is often suggestive of a theory in which the fluctuations grow-
ing on an unstable basic state, identified with the time average, feed back onto the 
basic state itself and stabilize it. The central objective of the classical circulation 
theory is the closure in the form of a parameterization of the nonlinear eddy fluxes 
in terms of quantities which can be derived from the mean field itself. This approach 
is not only unsuccessful, it is just not feasible, because the stability properties of the 
time mean state do not provide even a zeroth-order approximation of the dynamical 
properties of the full nonlinear system. This has been illustrated by theoretical argu-
ments (Farmer 1983)  and counter-examples of physical significance (Speranza and 
Malguzzi 1988; Malguzzi et al, 1990). As a consequence, even sophisticated ver-
sions of the idea that the GAC dynamics may be defined in terms of the statistics 
derivable from average atmospheric fields have proved unfruitful for guiding the 
interpretation of observations and the development of models. 
 Alternative approaches have been proposed, e.g. mimicking the GAC via dy-
namical systems approach with simplified low-dimensional models, say below 10 
degrees of freedom (Ghil et al. 1985). However, the physical relevance and mathe-
matical generality of these approaches has been criticized as well, whereas the rele-
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vance of the space-time geophysical scaling behavior has been emphasized (Scherzer 
and Lovejoy 2004). Nevertheless, a comprehensive and coherent picture of the GAC 
is still far from being available and the classical time-mean approach has not been 
completely abandoned as a paradigm. 
 It is clear that in the context of the classic paradigm of GAC, the main task of 
modeling consists in capturing the mean field: the fluctuations will follow as its 
instabilities. This point of view, whether explicit or not, has strongly influenced the 
set-up and diagnostics of existing General Circulation Models (GCMs). As a conse-
quence, the diagnostic studies usually focus on comparing the temporal averages of 
the simulated fields rather than on analyzing the dynamical processes provided by 
the models. Similar issues are related to the provision of the so-called extended range 
weather forecasts. Suppose, in fact, that the forecaster was given the next month 
average atmospheric fields: what practical information could he derive from that?  
Of course, if dynamical information were stored in the average fields - typically in 
the form of dominant regimes of instability derivable from the stability analysis of 
time-mean flow - he could obtain useful information from the prediction of such time 
mean fields. Actually, the problem of extended range forecast is still open even in 
terms of clearly formulating what we should forecast in place of average fields. 
 Profound scientific difficulties arise when considering the GAC from a statistical 
mechanics point of view. In spite of several attempts  (see e.g. Leith 1975), it is 
actually impossible to establish straightforward analogues of the fluctuation-
dissipation theorem (Kubo 1966), or of Kramers-Kronig relations (Lucarini et al. 
2005): a forced and dissipative chaotic system is rather different from a Hamiltonian 
system immersed in a thermal bath. It is therefore impossible to construct a Climate 
Change theory on this basis, essentially because the GAC features the non-
equivalence between the external and internal fluctuations (Lorenz 1979). The main 
reason for this non-equivalence is that, because of dissipation, the attractor of the 
system lives on a manifold of zero volume inside its phase space: the internal natural 
fluctuations occur within such a manifold whereas externally induced fluctuations 
would move the system out of the attractor with probability 1. In other words, er-
godicity does not hold in the whole phase space, as usually assumed in equilibrium 
statistical mechanics along the Boltzmann paradigm. In this case, ergodicity - if 
present at all - is restricted to the attractor, which is identified as a Sinai-Ruelle-
Bowen (SRB) measure (Eckmann and Ruelle 1985). This concept lies at the basis of 
the Chaotic hypothesis formulated in a recent set of papers by Gallavotti and 
Cohen (1996; 1999). The project of writing sets of equations directly describing the 
statistics of the system on the attractor (the projection of the original equations of 
motion onto the attractor) has been carried on with great attention in the recent 
past (Lorenz 1980; Fritz and Robinson 2001). But, despite the big efforts, no appli-
cable result has been obtained so far (Foias and Olson 1996). 



4 Lucarini, Speranza, and Vitolo 
 
 
 
 
 
 In the absence of robust scientific paradigms, a gap was created between the 
studies revolving around phenomenological and/or numerical modeling issues and 
those focused on fundamental mechanisms of GAC (Held 2005). The assumption 
that adopting models of ever increasing resolution will eventually lead to the final 
understanding of the GAC (a sort of brute force approach) is not based on any con-
solidated mathematical and physical knowledge and may, in fact, result misleading. 
One basic reason is that, in the limit of infinite resolution for any numerical model of 
fluid flow, the numerical convergence to the statistical properties (infinite time) of 
the continuum real fluid flow dynamics is not guaranteed. As a matter of fact, we 
note that at the present stage, most of the leading climate models are neither consis-
tent nor realistic even in the representation of the basic time-space spectral properties 
of the variability of the atmosphere at mid-latitudes (Lucarini et al. 2006).  
 Finally, problems arise when auditing climate models, since we have always to 
deal with three qualitatively distinct attractors: the attractor of the real atmosphere; 
the reconstruction of the real attractor from observations; the attractors of the model 
(maybe more than one) we adopt in climatic studies. The first one is obviously un-
known; as for the second one, the (presumably) best reconstructions available are 
provided by the reanalyses (Kalnay 2003). Note that presently there are two alterna-
tive main global reanalyses, which, albeit generally in good agreement, disagree on 
some distinct statistical properties (Dell’Aquila et al. 2005; Ruti et al. 2006). As for 
the third kind of attractors, the various GCMs surely possess substantially different 
attractors, which reflects into disagreements in the statistical properties of the atmos-
phere (Lucarini et al. 2006).  
 This chapter wishes to gives hints for addressing the following question: once we 
abandon the unsatisfactory mean field theories, what may come next?  What may 
lead a new approach to a theory of GAC, which can serve as a guidance for setting 
up and diagnosing GCMs?  Which statistical properties may be crucial?  Therefore, 
we are, at this stage, not seeking realism in the model representation of atmospheric 
dynamics, but rather searching for representations of key nonlinear processes with 
the minimum of ingredients necessary to identify the properties under investigation. 
We have decided to choose a rather simplified quasi-geostrophic (QG) model with 
just a few hundreds degrees of freedom, able to capture the central processes of the 
mid-latitude portion of the GAC. In Sec. 2 we discuss the derivation of the evolution 
equations for the two-layer QG model. In Sec. 3 we characterize the transition from 
stationary to chaotic dynamics in terms of bifurcation theory and study the depend-
ence on TE and on model resolution JT of the dimension of the strange attractor, of 
the metric entropy, and of the volume of its bounding box in the phase space. In 
Sec. 4 we analyze the statistics of two physically meaningful observables, namely 
the total energy of the system and the latitudinally averaged zonal wind. In Sec. 5 we 
give our conclusive remarks and perspectives for future works. 
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2 The Model 

The description of the large scale behavior of the atmosphere is usually based on the 
systematic use of dominant balances, which are derived on a phenomenological 
diagnostic basis, but whose full-correctness at theoretical level is still unclear. When 
considering the dynamics of the atmosphere at mid-latitudes, on spatial and temporal 
scales comparable with or larger than those of the synoptic weather (about 1000 Km  
and 1 day, respectively), the hydrostatic and geostrophic balances are phenome-
nologically well-established.  From the set of ab-initio dynamic and thermodynamic 
equations of the atmosphere it is possible to obtain a set of simplified prognostic 
equations for the synoptic weather atmospheric fields in a domain centered at mid-
latitudes - the QG equations - by assuming that the fluid obeys the hydrostatic bal-
ance and undergoes small departures from the geostrophic balance  (Charney 1948; 
Pedlosky 1987; Speranza and Lucarini 2005). A great number of physical phenom-
ena are filtered out of the equations by the QG approximation: various types of 
waves associated with strong local divergence, turbulent motions, etc.. There is no 
doubt that these are small on the time-space scales of the motions we consider, but it 
is still an open question to what extent they influence or not the statistics of large 
scale atmospheric motions and, in case, how to model such a statistical effect. Note 
that in general the QG attractor is not a good approximation to the attractor of the 
corresponding full ab-initio equations, despite the fact that the QG balance approxi-
mation is diagnostically quite good for the dominating time-space scales of the at-
mosphere (Lorenz 1980).  
 In this work we consider a  β-channel periodic domain, with LRx π2/∈  denoting 
the zonal and y∈[0, Ly] the latitudinal coordinate. As a further approximation, we  
consider only two vertical layers (Phillips 1954). This is the minimal system retain-
ing the baroclinic conversion process, which is the basic physical feature of the QG 
approximation. In order to avoid problems in the definition of the boundary condi-
tions of the model, due to the prescription of the interaction with the polar and the 
equatorial circulations at the northern and southern boundary, respectively (Speranza 
and Malguzzi 1988), we consider a domain extending from the pole to the equator. 
Near the equator the QG approximation is not valid, so that the representation of the 
actual tropical circulation is beyond the scope. The equations of motions are:  
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where f0 is the Coriolis parameter and β its meridional derivative evaluated at the 
center of the channel, κ parameterizes the heat diffusion, R and  Cp are the thermo-
dynamical constants for dry air, ΔH  is the horizontal laplacian operator. Moreover, 
the streamfunction ψj is defined at pressure levels p = pj=1 = p0/4 and  p = pj=3 = 
3/4p0 , while the vertical velocity ω is defined at the pressure levels p=pj=0=0  (top 
boundary), p = pj=2 = p0/2, and p = pj=4 = p0 (surface boundary). The pressure level 
pertaining to the discrete approximation to vertical derivative of the streamfunction 
∂ψg/∂p as well as the stratification height H is p = pj=2, and δp = p3 - p1 = p2 = p0/2. Q2 
is the diabatic heating, and j

tD  is the usual Lagrangian derivative defined at the 
pressure level pj,  •j

tD  =∂t+J(ψj,•), where J is the conventional Jacobian operator 
defined as  J(A,B)=∂xA∂yB-∂yA∂xB. The streamfunction at the intermediate level p2 is 
computed as average between the streamfunctions of the levels p1 and  p3, so that the 
material derivative at the level p2 can be expressed as ( )312 2/1 ttt DDD += . We 
choose the following simple functional form for the diabatic heating:  
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where the temperature T2 is evaluated at the pressure level 2 and is defined via hy-
drostatic relation, which implies that the system is relaxed towards a prescribed tem-
perature profile T* with a characteristic time scale of Nν1 . *T and *τ are respec-
tively defined as follows: 
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so that TE is the forced temperature difference between the low and the high latitude 
border of the domain. In our simulations we assume no time dependence for the 
forcing parameter TE, thus discarding the seasonal effects. Since by thermal wind 
relation  ( ) ( ) pkpuu δψψδ //ˆ/ 3131 −∇×=−

rrr
, we have that the diabatic forcing Q2  in  

causes a relaxation of the vertical gradient of the zonal wind 31 uu − towards the 
prescribed profile ym d/d22 ** τ= , where the constant 2 has been introduced for 
later convenience.  
 By imposing 00 =ω (top of the atmosphere) and assuming 304 ψω HE Δ−=  - 
Ekman pumping (Pedlosky 1987) - and after a rearragement of Eqs. (1)-(3), one 
obtains the evolution equations for the baroclinic field ( )312/1 ψψτ −=  and the 
barotropic field  ( )312/1 ψψφ += : 
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where ( )pHEfE δν 2/2
200=  is the viscous-like coupling between the free atmosphere 

and the planetary boundary layer via Ekman pumping, and the meaning of *τ is made 
clear. Notice that this system only features quadratic nonlinearities. 
 

Variable Scaling Factor Value of the scaling factor 
x, y l 106 m 
t u-1l 105 s 
ψ1, ψ3, φ, τ ul 107 m2s-1 
U, m u 10 ms-1 
λ1, …,λ6JT  ul-1 10-5 s-1 
tp u-1l 105 s 
T ul f0R-1 3.5 K 
E u2l2 5.1 × 1017 J 

 Tab. 1. Variables of the system and their scaling factors.   

 The two-layer QG system  can be brought to the non-dimensional form, which is 
more usual in the meteorological literature and is easily implementable in computer 
codes. This is achieved by introducing length and velocity scales  l  and  u  and per-
forming a non-dimensionalization of both the system variables ( )Ttyx ,,,,, τφ  (as 
described in Tab. 1) and of the system constants (Tab. 2); in our case appropriate 
values are  610ml =  and  110 −= msu .  
 In this work we consider a simplified spectral version of Eqs. (6)-(7), where 
truncation is performed in the zonal Fourier components so that only the zonally 
symmetric component and one of the non-symmetric components are retained. The 
derivation is reported in Speranza and Malguzzi (1988). The main reason for this 
choice is that we wish to focus on the interaction between the zonal wind and waves, 
thus neglecting the wave-wave nonlinear interactions. Since quadratic nonlinearities 
generate terms with Fourier components corresponding to the sum and difference of 
the Fourier components of the two factors, we can exclude direct wave-wave interac-
tions provided that we only retain a single wave component (see, e.g.,  Lucarini et al. 
(2005) for a general discussion of these effects in a different context). Note that if 
cubic nonlinearities were present, direct self wave-wave interaction would have been 
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possible (Malguzzi and Speranza 1981; Benzi et al 1986). In the present case, the 
wave can self-interact only indirectly through the changes in the values of the zon-
ally symmetric fields. This amounts to building up equations which are almost-
linear, in the sense that the wave dynamics is linear with respect to the zonally sym-
metric parts of the fields (i.e., the winds). The wavelength of the only retained wave 
component is 6/xL , since we intend to represent the baroclinic conversion proc-
esses, which in the real atmosphere take place on scales of 6/xL or smaller 
(Dell’Aquila at al. 2005). In so doing we are retaining only one of the classical in-
gredients of GAC, i.e. the zonal wind-wave interaction. 
  

Parameter Dimensional Value Non-dimensional value Scaling factor 
Lx 2.9 × 107 m 29 l 
Ly 107 m 10 l 
H2 7.07 × 105 m 7.07 × 10-1 l 
f0 10-4 s-1 10 ul-1 
b 1.6 × 10-11 m -1s -1 1.6 ul2 
ν E 5.5 × 105 m 2s-1 5.5 × 10-2 ul 
νN 1.1 × 10-6 s -1 1.1 × 10-1 ul-1 
κ 2.75 × 10 m2s-1 2.75 × 10-1 ul 
TE 28 K to 385 K 8 to 110 ul f0R-1 

Tab. 2. Parameters of the system and their scaling factors. The system is equivalent to what 
presented in Malguzzi and Speranza (1988) with the following correspondences: 

 Both φ  and τ  are thus determined by 3 real fields: the zonally symmetric parts 
and the real and imaginary part of the only retained zonal Fourier component. A 
pseudospectral decomposition with JT modes is then applied to the resulting 6 real 
fields in the y -direction, yielding a set of JT×6 ordinary differential equations in 
the spectral coefficients. For the truncation order JT we have used the values  

64,32,16,8=JT . This is the prototypal model we use as laboratory for the analysis 
of the GAC. The only form of realism we are trying to achieve here is that the statis-
tical properties of the nonlinear cycle baroclinic instability - barotropic & baroclinic 
stabilization are represented. 

3 Dynamical and statistical characterization of the model attractor 

The system of equations (6)-(7) has a stationary solution describing a zonally sym-
metric circulation, characterized by the stationary balance between the horizontal 
temperature gradient and the vertical wind shear. This solution corresponds on the 
Earth system to the idealized pattern of the Hadley equilibrium (Held and Hou 
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1980). There is a value of the equator-to-pole temperature gradient H
ET such that if 

H
EE TT < the Hadley equilibrium is stable and has a virtually infinite basin of attrac-

tion, whereas if H
EE TT > it is unstable. 

 In the stable regime with H
EE TT < , after the decay of transients, the fields φ , τ , 

and T are time-independent and feature zonal symmetry - they only depend on the 
variable y. Moreover, they are proportional by the same near-to-unity factor to the 
corresponding relaxation profiles. In particular, this implies that all the equilibrium 
fields are proportional to the parameter TE. 
 

JT H
ET  crit

ET  
8 7.83 9.15 
16 8.08 8.42 
32 8.28 8.52 
64 8.51 8.66 

Tab. 3. Values of TE  such that the Hadley equilibrium loses stability via Hopf bifurcation 
( H

ET ) and where the onset of the chaotic regime occurs ( crit
ET ). 

 When increasing the values of the control parameter TE beyond H
ET , the equilib-

rium becomes unstable - as first pointed out on vertically continuous models (Char-
ney 1947; Eady 1949) and on the two two-layer model (Phillips 1954) - with respect 
to the process of baroclinic conversion. This allows for the transfer of available po-
tential energy of the zonal flow stored into the meridional temperature gradient into 
energy of the eddies, essentially transferring energy from the latter component to the 
first two components of the energy density expression, later presented in Eq. (10). 
The observed value of H

ET increases with the considered truncation order JT (see 
Tab. 3). A finer resolution allows for more efficient stabilizing mechanisms, because 
they act preferentially on the small scales. Such mechanisms are the barotropic stabi-
lization of the jet, increasing the horizontal shear through the convergence of zonal 
momentum, which is proportional to the quadrature of the spatial derivatives of the 
fields φ  and τ (Kuo 1973), and the viscous dissipation, which is proportional to the 
Laplacian of the fields φ  and τ . This is a clarifying example that, in principle, it is 
necessary to include suitable renormalizations in the parameters of a model when 
changing the resolution  JT, in order to keep correspondence with the resulting dy-
namics (Lorenz 1980). In our case the values of  H

ET   obtained for the adopted reso-
lutions are rather similar. A stable periodic orbit branches off from the Hadley equi-
librium as TE increases above  H

ET . The attracting periodic orbit persists for TE in a 
narrow interval, where it disappears through a saddle-node bifurcation taking place 
on an attracting invariant two-torus. For slightly larger values of TE, i.e. for  

crit
EE TT > , a strange attractor develops by so-called quasi-periodic breakdown of a 
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doubled torus. This is one of the most typical routes for onset of chaos (weak turbu-
lence) in fluid dynamics experiments and low-dimensional models, compare (Broer 
et al. 2002; Randriamampianina et al. 2005) and references therein. The invariant 
objects involved in the transition to low-dynamical chaos correspond to well-known 
fluid flow patterns. In particular, the two-torus attractor in phase space yields an 
amplitude vacillation in the flow (Randriamampianina et al. 2005). For 8=JT , a 
different route to chaos takes place, involving a quasi-periodic Hopf bifurcation of 
the two-torus (instead of a quasi-periodic period doubling), whereby an invariant 
three-torus is created. The question remains open whether the signature of the bifur-
cations of the system, of the kind exploited in the context of physical oceanography 
in a recent book (Dijkstra 2005), is present in the geometrical structure of the fully 
developed strange attractor and is potentially useful for computing the statistical 
properties.  

3.1 Lyapunov Exponents and Dimension of the Strange Attractor 

To characterize the dynamical properties of the strange attractors of the truncated 
system we study of the Lyapunov exponents  (Oseledec 1968; Eckmann and Ruelle 
1985), which are denoted, as customary, by  Nλλλ ,...,, 21  , with  Nλλλ ≥≥≥ ...21 , 

JTN ×= 6  . The maximal exponent  1λ   becomes positive as  ET   crosses the torus 
breakdown value  crit

ET  , and then increases monotonically with  ET  . Despite the 
schematic approach adopted in this work, the obtained Lyapunov spectra are qualita-
tively similar to what reported in Vannitsem (1997) and Snyder and Hamill (2003), 
where a much larger number of degrees of freedom was considered. The distribution 
of the exponents approaches a smooth shape for large  TE, which suggests the exis-
tence of a well-defined infinite baroclinicity model obtained from  as a (possibly, 
singular perturbation) limit for TE →∞. We will analyze elsewhere this mathematical 
property, which is possibly of physical interest as well. 
 The Lyapunov exponents are used to compute the Lyapunov dimension (also 
called Kaplan-Yorke dimension, see Eckmann and Ruelle (1985) and Kaplan and 
Yorke (1979) and metric entropy (also known as Kolmogorov-Sinai entropy (Eck-
mann and Ruelle 1985)). The Lyapunov dimension is defined by 

,|| 11 +=∑+= ki
k
iL kD λλ  where k  is the unique index such that 01 ≥∑ = j

k
j λ  and 

01
1 <∑ +
= i

k
i λ . Under general assumptions on the dynamical system under examination,  
LD  is an upper bound for the Hausdorff dimension of an attractor. The estimates for 

the dimension of an attractor obtained by computing the correlation and information 
dimensions (Farmer et al 1983) become completely meaningless when the Lyapunov 
dimension increases beyond, say, 20. In particular, the correlation and information 
algorithms tend to drastically underestimate the dimension. This is a well-known 
problem: for large dimensions, prohibitively long time series have to be used. Ruelle 
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(1990) suggests as a rule of thumb that a time series of d10 statistically independent 
data are needed in order to estimate an attractor of dimension d. Therefore, computa-
tional time and memory constraints in fact limit the applicability of correlation-like 
algorithms only to low-dimensional attractors. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Left: Lyapunov dimension of the attractor of the model as a function of TE. All the 
straight lines are parallel and the domain of validity of the linear fit is apparently homothetic. 

Right: metric entropy. Linear dependences )( crit
EE TTh −≈ β  occur for all values of JT. 

 The number of positive Lyapunov exponents - unstable dimension (Eckmann and 
Ruelle 1985) - increases with  TE, which implies that the Lyapunov dimension also 
does so. This is confirmed by a plot of the Lyapunov dimension as a function of TE 
shown in Fig. 1 left. For small values of )( crit

EE TT − , we have that 
γ)( crit

EEL TTD −∝ , with γ  ranging from 5.0≈  (JT = 8) to 7.0≈ (JT = 64). The 
range of  TE where this behavior can be detected increases with JT. For larger values 
of ET  a linear scaling regime of .constTD EL +≈η   is found in all cases. The linear 
coefficient is for all  JT remarkably close to 2.1≈η . The domain of validity of the 
linear approximation is apparently homothetic - see the simple geometric construc-
tion in Fig. 1 left. For TE larger than a JT-depending threshold, there occurs a sort of 
phase-space saturation as the Lyapunov dimension begins to increase sublinearly 
with TE. Note that while for JT = 8 the model is in this regime in most of the ex-
plored TE - domain (TE  ≥ 20), for  JT = 64  the threshold is reached only for TE ≥ 108. 
In this latter regime of parametric dependence the system is not able to provide an 
adequate representation of the details of the dynamics of the system. 
 The metric entropy )(ρh of an ergodic invariant measure ρ expresses the mean 
rate of information creation, see Eckmann and Ruelle (1985) for definition and other 
properties. If a dynamical system possesses a SRB invariant measure ρ , then )(ρh  
is equal to the sum of the positive Lyapunov exponents. Existence of an SRB meas-
ure is hard to prove for a given nonhyperbolic attractor. It has been only proven for 
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low-dimensional cases such as the Henon (Wang and Young 2001) or Lorenz (Viana 
2000) strange attractors. We assume the existence of a unique SRB measure, coher-
ently with the chaotic hypothesis proposed by Gallavotti and Cohen (1996; 1999), 
and refer to the sum of the positive Lyapunov exponents as metric entropy. 
  
 
 
 
 
 
 
 

 

Fig. 2. Left: Log-Log plot of tp = 1/λ1 versus crit
EE TT − . Right: Volume of the Bounding Box 

VBB versus crit
EE TT − . For a description of the power-law fits, see text.  

The mean predictability time for infinitesimal perturbations tp = 1
1
−λ as a function of 

TE is plotted for JT = 8, 16, 32, 64 in Fig. 2 left, while the metric entropy is presented 
in Fig. 1 right. It turns out that, for fixed JT, 1λ increases sublinearly with TE, 
whereas for ET fixed, 1λ decreases for increasing values of JT. Consequently, for 
fixed JT the predictability time decreases monotonically with TE. We note that, for 
all values of JT, if 14>ET  we have that tp < 10, which corresponds in physical units 
to a predictability time  tp < 12  days. Moreover, in the range TE ≥ 12, tp is propor-
tional to γ)( crit

EE TT − , with γ  ranging within  ]8.0,85.0[ −−  depending on the con-
sidered value of JT. The metric entropy has a marked linear dependence  

)( crit
EE TTh −≈ β , with β ranging from  ≈ 0.15 (JT = 8) to  ≈ 0.5  (JT = 64). More-

over, for a given value of ET , the metric entropy increases with JT. From the dy-
namical viewpoint, this means on one hand that the maximal sensitivity of the sys-
tem to variations in the initial condition along a single direction is largest for JT = 8. 
On the other hand, there are more active degrees of freedom for JT = 64 and they 
collectively produce a faster forgetting of the initial condition with time. 
 A more precise assessment of the time scales of the system and of predictability 
fluctuations may be gained by computing generalized Lyapunov exponents and per-
forming the related multifractal diagnostics (Benzi et al. 1985, Paladin and Vulpiani 
1987, Crisanti et al. 1993). which is outside the scope of this work. 
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3.2 Bounding Box of the Attractor 

The bounding box of a set of points in an N-dimensional space is defined as the 
smallest hyperparallelepiped containing the considered set (Smith 2000). When the 
Hadley equilibrium is the attractor, the volume BBV = 0, while it is non-zero if the 
computed orbit is attracted to a periodic orbit, a two-torus or a strange attractor. In all 
cases BBV , which measures the bulk size of the attractor in phase space, grows with 
TE. Actually, each of the factors in the product  increases with TE, so that expansion 
occurs in all directions of the phase space. This matches the expectations on the 
behavior of a dissipative system having a larger input of energy. 
 In the right panel of Fig. 2 we present a plot of )log( BBV  as function of TE for the 
selected values of =JT 8 , 16 , 32 , and 64 . In the case 8=JT , BBV  obeys with 
great precision the power-law γ)( crit

EEBB TTV −∝  in the whole domain 9≥ET . The 
best estimate for the exponent is 40∼γ . Given that the total number of Fourier 
components is 486 =× JT , this implies that the growth of the each side of the 
bounding box is on the average proportional to about the th6/5  power of 

)( crit
EE TT − . For 16≥JT , two distinct and well defined power-law regimes occur: 

⎩
⎨
⎧

≥−
≤−∼=−∝

,5.1,6/5
,5.1,3/1,)( crit

EE

crit
EEcrit

EEBB TT
TTNTTV εεγγ    (8) 

where N = 6 × JT is the number degrees of freedom. We emphasize that in all cases 
the uncertainties on γ , which have been evaluated with a standard bootstrap tech-
nique, are rather low and total to less than 3% of the best estimate of γ . Moreover, 
the uncertainty of the power-law fit greatly worsens if we detune the value of 

crit
ET by, say, 0.3, thus reinforcing the idea that it is meaningful to fit a power-law 

against the logarithm of )( crit
EE TT − . 

 The proportionality between the exponent and the number of degrees of freedom 
suggests considering separately the various sides of the bounding box hyperparal-
lelepiped, i.e., each of the factors in the product. For all values of JT, each side in-
creases as Ncrit

EE TT /)( γ− , so that the hyperparallelepiped obeys a sort of self-similar 
scaling with TE.  
 The comparison for various values of JT of factors in  corresponding to the same 
spectral component for the same value of crit

EE TT −  provides insight about the sensi-
tivity to model resolution. The factors related to the the gravest latitudinal modes, 
such as agree with high precision, thus suggesting that the large scale behavior of the 
system is only slightly affected by variation of model resolution. When considering 
the terms related to the fastest latitudinally varying modes allowed by the lower 
resolution model, those obtained for JT = 32 are larger than the corresponding fac-
tors obtained for JT = 64. This is likely to be the effect of spectral aliasing: the dy-
namics contained in the scales which are resolved in the higher-resolution models are 
projected in the fastest modes of the model with lower resolution. 
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4 Statistics of the total energy and zonal wind 

4.1 Total energy 

The total energy of the system )(tE  is a global observable of obvious physical sig-
nificance, statistically obeying a balance between the external forcing and the inter-
nal and surface dissipation. The horizontal energy density of the two-layer QG sys-
tem can be expressed as follows:  

( ) ( ) ( ) .2,, 2
2
2

22
⎥
⎦

⎤
⎢
⎣

⎡
+∇+∇= ττφδ

Hg
ptyxe

rr
      (9) 

Here the factor gpδ is the mass per unit surface in each layer, the last term and the 
first two terms inside the brackets represent the potential and kinetic energy, respec-
tively, thus featuring a clear similarity with the functional form of the energy of a 
harmonic oscillator. Note that in Eq. (10) the potential energy term is half of what 
reported in Pedlosky (1987), which contains a trivial mistake in the derivation of the 
energy density, as discussed with the author of the book. We consider as observable 
the total energy )(tE , evaluated by integrating the energy density expression: 

 .),,(6),,()(
2

0000
dxdytyxedxdytyxetE yxy LLL

∫∫∫∫ == χ
π

    (10) 

 Potential energy is injected into the system by zonally symmetric baroclinic forc-
ing *τ . Part of it is transformed into wave kinetic energy by baroclinic conversion, 
and kinetic energy is eventually dissipated by friction such as that determined by 
Ekman pumping. This constitutes the Lorenz energy cycle (Lorenz 1955), which has 
been analized for this system in Speranza and Malguzzi (1988). In Tab. 1 we report 
the conversion factor of the total energy between the non-dimensional and dimen-
sional units. For the Hadley equilibrium, the time-independent expression for the 
total energy is: 
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The total energy is proportional to 2
ET  and is mostly (95%) stored as potential en-

ergy, which is described by the second term of the sum in Eq. (11). In Fig. 3 we 
present the results obtained for the various values of JT used in this work. In the left 
panel we present the JT = 64 case, which is representative of what obtained also in 
the other cases. The time-averaged total energy is monotonically increasing with TE, 
but when the system enters the chaotic regime, )(tE  is much lower than the value 
for the coexisting Hadley equilibrium. This behavior may be related to the much 
larger dissipation fueled by the activation of the smaller scales. In the chaotic regime 

)(tE  is characterized by temporal variability, which becomes more and more pro-
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nounced for larger values of TE. The overall agreement among the results obtained 
for )(tE  by choosing various JT values is good but progressively worsens when 
decreasing JT: for JT = 32, the maximal fractional difference is less than 0.01, while 
for JT = 8 it is about one order of magnitude larger. Differences among the represen-
tations given by the various truncations levels also emerge in power-law fits such as 

γ
ETtE ∝)( . In the regime where the Hadley equilibrium is attracting, this fit is exact, 

with exponent 2=γ . For 5.1≤− crit
EE TT  and H

EE TT > (the value of the first Hopf 
bifurcation, see Tab. 3), for all the values of JT the power-law fit is good, with 

03.090.1 ±=γ , so that a weakly subquadratic growth is realized. For 
5.1≥− crit

EE TT , only the JT = 32  and 64  simulations of )(tE  obey with excellent 
approximation a weaker power-law, with 02.052.1 ±=γ  in both cases, while the 
cases JT = 8 and 16 do not satisfactorily fit any power-law. The agreement worsens 
in the upper range of ET , which points at the criticality of the truncation level when 
strong forcings are imposed. Nevertheless, the observed differences are strikingly 
small between the cases, say, JT = 8 and JT = 64, with respect to what could be 
guessed by looking at the Lyapunov dimension, entropy production, and bounding 
box volume diagnostics analyzed in the previous sections.  
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Left: )(tE  obtained from model integrations for JT = 64 (magenta line) and for Hadley 
equilibrium (black line). Right:  )()( tmtU =  obtained from model integrations for JT = 64 

(magenta line) and for Hadley equilibrium (black line). See text for details. 

4.2 Zonal wind 

W consider ( )),(),(2/1),( 31 tyutyutyU +=  and ( )),(),(2/1),( 31 tyutyutym −= , 
which represent the zonal average of the mean and of the halved difference of the 
zonal wind at 1pp =  and 3pp =  at latitude y, respectively. The latitudinal average 

〉〈 ),( tyU  is then proportional to the total zonal momentum of the atmosphere, 
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whereas 〉〈 ),( tym , by geostrophic balance, is proportional to the equator-to-pole 
temperature difference. Computation of the latitudinal average at the time-
independent Hadley equilibrium is straightforward:  

( ) ( ) ( ) .
1

1
2 2

0
yN L

E

y

T
Lf

RyUym
π

ν
κ+

==       (12) 

Since we cannot have net, long-term zonal forces acting on the atmosphere at the 
surface interface, the spatial average of the zonal wind at the 3pp = must be zero. 
Therefore, the outputs of the numerical integrations must satisfy the constraint 

( ) ( ) ,,, tyUtym =  where X   denotes the time-average of the field  X. In the right 
panel of Fig. 3 we plot the outputs for JT = 64, which, similarly to the total energy 
case, is well representative of all the JT cases. The constraint  is obeyed within nu-
merical precision. The average winds are monotonically increasing with TE, but, 
when the system enters the chaotic regimes, the averages 〉〈=〉〈 ),(),( tyUtym  have a 
smaller value than at the corresponding Hadley equilibrium, and they display sublin-
ear growth with TE. Moreover, for crit

EE TT >   the temporal variability of the time 
series 〉〈 ),( tym  and 〉〈 ),( tyU  increases with TE. The variability of 〉〈 ),( tym  is lar-
ger than that of 〉〈 ),( tyU , probably because the latter is related to a bulk property of 
the system such as the total zonal momentum. 
 The overall agreement between the various truncation levels progressively wors-
ens for smaller JT, similarly to what observed for the total energy of the system.  In 
particular, differences emerge as one attempts power-law fits of the form 

γ
ETtyUtym ∝〉〈=〉〈 ),(),( . For the Hadley equilibrium regime we have 1=γ . For 

10≤ET  and above the first Hopf bifurcation, for all values of JT the power-law fit is 
good, with 005.0875.0 ±=γ . For 5.1≥− crit

EE TT , only the simulations with JT = 32 
and 64 obey a power-law (with 02.058.0 ±=γ ) with excellent approximation.  
 This implies that while the time-averaged meridional temperature difference 
between the northern and southern boundary of the system increases monotonically 
with TE, as to be expected, the realized value is greatly reduced by the onset of the 
chaotic regime with respect to the corresponding Hadley equilibrium. This is the 
signature of the negative feedback due to the following mechanism: when the pole-
ward eddy transport of heat is realized, it causes the reduction of the meridional 
temperature gradient, thus limiting by geostrophy the wind shear, which causes in 
turn a reduction of baroclinically-induced eddies towards the marginal stability. This 
process can be considered to be the statistical generalization of the classical baro-
clinic adjustment (Stone 1978). The latter implies that the system balances near an 
average state which corresponds to a fixed point which is neutral with respect to 
baroclinic instability. Theoretical justifications for this type of adjustment often rely 
on the idea that a variational principle holds for the relationship between the basic 
state gradient and the heat and momentum fluxes. This is the case, e.g., of classical 
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convection, for which it can be proved that the most unstable mode is the one carry-
ing heat most efficiently in the direction of the basic state gradient.  In fact, such a 
variational principle does not hold for ordinary baroclinic instability, as it can be 
proved that the most rapidly growing baroclinic mode is not the one with the largest 
heat flux. But in this model, as opposed to the general case, the variational assump-
tion in question is essentially correct, since only one zonal wave is considered  
(Speranza and Malguzzi 1988). Nevertheless, the adjustment mechanism does not 
keep the system close to marginal stability since for crit

EE TT > both the instantaneous 
and the time-averaged fields of the system are rather different from those realized for 

H
EE TT ≈ , near the edge of the Hadley equilibrium. This denies the possibility that 

the time-mean circulation is maintained by eddies which can be parameterized in 
terms of the time-mean fields. 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Time-averaged profiles )(yU  (solid lines) and )(ym  (dashed lines). The black line 
indicates the )()( ymyU =  Hadley equilibrium profiles. Red (blue) line refers to the JT = 8 

(JT = 32) case. TE is indicated. Vertical scale on the left figure is 1/2 of that of the right figure. 

 By examining more detailed diagnostics on the winds, such as the time-averaged 
latitudinal profiles of )(yU  and of )(ym  (Fig. 4), relevant differences are observed 
between JT = 8 and the other three cases. Results are presented for JT = 8 and JT = 
32, the latter being representative also of JT = 16 and 64. We first note that already 
for 10=ET , such that only a weakly chaotic motion is realized, the )(yU  and )(ym  
profiles feature in both resolutions relevant qualitative differences with respect to the 
corresponding Hadley equilibrium profile, although symmetry with respect to the 
center of the channel is obeyed. The )(yU  and  )(ym  profiles are different (the 
constraint  being still satisfied), with )()( ymyU >   at the center and )()( ymyU <  at 
the boundaries of the channel. Nevertheless, like for the Hadley equilibrium, both 

)(yU  and )(ym  are positive and are larger at the center of the channel than at the 
boundaries. Consequently, at 1pp =  there is a westerly flow at the center of the 
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channel and easterly flows at the two boundaries. At 3pp = the wind is everywhere 
westerly and peaks at the center of the channel. Such features are more pronounced 
for the JT = 32 case, where the mechanism of the convergence of zonal momentum 
is more accurately represented. 
 For larger values of TE, the differences between the two truncation levels become 
more apparent. For JT = 8, the observed )(yU  and )(ym  profiles tend to flatten in 
the center of the channel and to become more similar to each other. Therefore, 
somewhat similarly to the Hadley equilibrium case, the winds at 1pp =  tend to van-
ish and all the dynamics is restricted to 3pp = . The )(ym  profiles for JT = 32 are 
quite similar to those of JT = 8, even if they peak and reach higher values in the 
center of the channel and are somewhat smaller at the boundaries. So when a finer 
resolution is used, a stronger temperature gradient is realized in the channel center. 
The )(yU  profiles obtained for JT = 32 are instead very different. They feature a 
strong, well-defined peak in the channel center and negative values near the bounda-
ries. Therefore, the winds in the upper pressure level are strong westerlies, and peak 
in the center of the channel, while the winds in the lower pressure level feature a 
relatively strong westerly jet in the center of the channel and two compensating east-
erly jets at the boundaries. The fact that for higher resolution the wind profiles are 
less smooth and have more evident jet-like features is related to the more efficient 
mechanism of barotropic stabilization, which, through zonal wind convergence, 
keeps the jet together (Kuo 1973).  

5 Summary, Conclusions and Future Developments 

We have described the construction and the dynamical behavior of an intermediate 
complexity model of the atmospheric system. We take as prototypal model for the 
GAC a QG two-layer model where the mid-latitude atmosphere is taken as being 
composed of two-layers and the beta-plane approximation is considered. 
 A single zonal wave solution is assumed and by a spectral discretization in the 
latitudinal direction, the latter equation is reduced to a system of N=6 × JT ordinary 
differential equations, where JT+1 is the number of nodes of the (latitudinally speak-
ing) fastest varying base function. We have considered the cases JT = 8, 16 , 32, and 
64. Although obviously relevant ingredients of geometrical (horizontal convergence 
due to the Earth curvature, latitudinal boundary conditions at the margins of the mid-
latitudes, circumpolar vortex, etc.) and dynamical (stabilization mechanisms such as 
the so-called barotropic governor (Nakamura 1993) nature of the real atmospheric 
circulation are still missing in this simplified theoretical representation, the model 
features some fundamental processes determining the general circulation of the Earth 
atmosphere. In particular, the acting processes are the baroclinic conversion, trans-
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forming available potential energy into waves; the nonlinear stabilization of the 
zonal jet by eddy momentum convergence from non-symmetric disturbances; and the 
thermal diffusion and Ekman pumping-driven viscous dissipation.  
 When a larger pool of available energy is provided, the dynamics of the system is 
richer, since the baroclinic conversion process can transfer larger amounts of energy 
to the disturbances. Correspondingly, by increasing the parameter TE, which param-
eterizes the baroclinic forcing, the overall behavior of the system is greatly altered. 
The attractor changes from a fixed point to a strange attractor via a finite number of 
bifurcations, starting with a Hopf bifurcation at H

EE TT = determining the loss of 
stability of the Hadley equilibrium, and a final two-torus breakdown at crit

EE TT = .  
 The strange attractor is studied by means of the Lyapunov exponents. The 
Lyapunov spectra obtained for JT = 32, 64 resemble what obtained in more complex 
QG models (Vannitsem 1997; Snyder and Hamill 2003). A striking feature of this 
dynamical system is the smooth dependence on TE of all of its dynamical properties. 
The metric entropy, representing the overall total dynamical instability, increases 
linearly with TE for  crit

EE TT >  for all examined values of  JT, and is increases with 
JT. The Lyapunov dimension LD  increases with both TE and JT. In particular, by 
increasing TE, initially the dimension grows with a sublinear power-law 

γ)( crit
EEL TTD −∝ , followed by a linear scaling regime, while for large TE, LD   

saturates. The fact that the dimensionality of the attractor increases with the total 
energy of the system (they are both monotonically increasing with TE) suggest that 
the system has a positive temperature, in a statistical mechanical sense. For 16≥JT , 
each side of the bounding box of the attractor increases as 3/1)( crit

EE TT −∝ for  
5.1≤− crit

EE TT and as 6/5)( crit
EE TT −∝ for larger values of TE, while for JT = 8 only 

the latter regime is present. Therefore, the ratios of the ranges of the various degrees 
of freedom remain essentially unchanged when varying TE, yielding a self-similar 
scaling property.  
 When the system enters the chaotic regime, the average total energy and average 
zonal winds have lower values than those of the corresponding unstable Hadley 
equilibrium, because the occupation of the faster-varying latitudinal modes fuels 
Ekman pumping-driven viscous dissipation, which acts preferentially on the small 
scales. The total energy and the average wind field obey with excellent approxima-
tion a subquadratic and sublinear power-laws γ

ET∝ , respectively, and are in quanti-
tative agreement for all values of JT, essentially because these quantities are repre-
sentative of global balances. 
 If general enough, the scaling properties could be of great help in setting up a 
theory for the overall statistical properties of the GAC and in guiding - on a heuristic 
basis - both data analysis and realistic simulations. A leading example for this would 
be the possibility of estimating the sensitivity of the output of the system with re-
spect to changes in the parameters. Physical insight into the relevant mechanisms can 
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be obtained by considering the main feedback mechanisms setting the average statis-
tical properties of the system, e.g. when changing the forcing TE from 

crit
EEE TTT >= 0 to EEE TTT Δ+= 0 . The change in TE directly causes an increase in the 

wind shear through Newtonian forcing and indirectly an increase in the value of the 
mean zonal momentum through Ekman pumping. The increase in the wind shear 
enhances the baroclinic conversion and so the eddy components. In turn, the eddy 
stresses act as feedback by depleting baroclinity and by increasing the momentum 
through barotropic convergence, which closes the feedback loop. In the chaotic re-
gime, these feedback mechanisms act as a statistical baroclinic adjustment process, 
which reduces the average value of the equator-to-pole temperature difference. This 
process is not reducible to the stationary balances of the classical theory of GAC, 
since it takes place when the system lives in a strange attractor. This situation cer-
tainly corresponds more closely, at least at the conceptual level, to the equilibration 
occurring in the atmosphere. Preliminary calculations performed by the authors to-
gether with Vannitsem (unpublished results) suggest that the power-laws presented 
here hold also on simplified yet global models of the atmospheric circulation, so the 
obtained scalings laws might be very helpful in establishing a sort of bulk climate 
theory for the atmospheric disturbances.  
 The fact that all the considered dynamical indicators and physical quantities 
feature a smooth, simple dependence with respect to the forcing parameter TE and a 
limited variation is at first striking if one keeps in mind the phenomena typically 
occurring in low-dimensional systems. The latter often feature attractor crises,  
which are bifurcations in which the size and shape of a strange attractor drastically 
changes across a suitable parameter value (see Robert et al. (2000) and references 
therein). A particular type of crisis occurs when a saddle-node bifurcation takes place 
on the strange attractor, which is destroyed, and an attracting equilibrium or periodic 
orbit is created. This phase-locked attractor persists for an interval - window of pe-
riodicity - of parameter values, outside of which the strange attractor reappears. Such 
windows of periodicity are known to occur in many systems and are even dense in 
the parameter space of certain one-dimensional models (Broer et al. 2002). Although 
bifurcations certainly occur as TE varies in the fully chaotic regime (e.g., at the val-
ues where a Lyapunov exponent crosses zero and becomes positive), these bifurca-
tions do not induce sharp variations or crises. Moreover, we strongly doubt that there 
is a way to explain the smooth behaviour of the system by relating it to the bifurca-
tion where the strange attractor is created, since the latter occurs for much lower 
values of TE. Also compare the discussion in Speranza and Malguzzi (1988) 
 Moreover, when beyond a certain threshold of a parameter new physical proc-
esses come into play or a given process reaches a qualitatively distinct statistical 
balance, we do not expect to find a global uniform parametrically-controlled self-
scaling of the system statistical properties. The change in the slope observed for 
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value of  5.1≈− crit
EE TT  may then be interpreted as a somewhat fundamental 

changeover from a quasi-linear baroclinic activity to a fully chaotic regime. A possi-
ble source of large - anyway likely to be smooth - and non-self-similar variations of 
the statistical properties of the attractor with respect to external parameters is reso-
nant behavior, i.e. the preferential occurrence of certain physical processes for a 
bounded range of values of a given parameter. In the case of atmospheric dynamics, 
this effect might be more relevant than the occurrence of windows of periodicity, 
although in a range of variability which is different from what explored here, namely 
the low-frequency variability (Malguzzi and Speranza 1981; Benzi et al. 1986; Benzi 
and Speranza 1989; Ruti et al. 2006).  
 The chaotic hypothesis (Gallavotti and Cohen 1996; 1999) and the conjectures in 
(Albers and Sproot 2006) express similar concepts: despite the fact that the available 
theoretical and phenomenological evidence indicates that structural stability of sys-
tems having strange attractors is not typical, from the physical/numerical point of 
view typical chaotic systems behave as though they were structurally stable under 
perturbations if the dimension is sufficiently high. This fundamental assertion has 
both diagnostic and prognostic consequences: from the diagnostic viewpoint, the 
conjectures in (Albers and Sproot 2006) state that systems of the considered type 
display smooth-like dependence on external parameters; from the prognostic view-
point, the chaotic hypothesis allows establishing fluctuation-dissipation theorems and 
Onsager relations in certain models for developed turbulence (Gallavotti and Cohen 
1999). We propose that the windows of periodicity, if existing at all, are so narrow to 
be not detectable, and that the SRB measure varies continuously on the parameter set  
where a strange attractor exists. 
 An interesting approach is understanding the statistical properties of the waves as 
a function of the zonal wind fields, taken, as a first approximation, as external sto-
chastic inputs with given statistical properties parameterized in terms of TE. This 
amounts to considering the zonal wind as a sort of integrator of the wave distur-
bances, which is consistent with the almost-linearity of the evolution equations of the 
wave components of the model considered in this study. Such a framework, which 
assumes the possibility of neglecting the direct wave-wave interactions, seems to be 
well justified (Schneider 2006). The evolution equations for the wave fields, indi-
cated as x

r , can be represented to be of the form xtMx
r&r )(= , where M is a random 

square matrix (Crisanti et al. 1993) whose statistical properties depend on those of 
the U and  m fields. Therefore, the study of the statistics of M, e.g. eigenvalues, ei-
genvectors, singular values, singular vectors, as a function of  TE may inform us on 
the properties of the generated waves, which can be associated to the destabilizing 
and stabilizing physical processes. The acknowledgement of the inadequacy of the 
paradigm of neutral atmospheric waves and of the need of a detailed description of 
the statistics of growth and decay of the waves would have far-reaching impacts. In 



22 Lucarini, Speranza, and Vitolo 
 
 
 
 
 
fact, when considering the spectral representation of the mid-latitude waves of the 
real or realistic (i.e. resulting from models such as GCMs) atmosphere, we find 2D 
wavenumber-frequency spectral densities that only vaguely correspond, in a statisti-
cal sense, to well-defined dispersion relations )(kωω = , since at all frequencies the 
spectral width is relatively wide, essentially because of the finite life cycle of the 
waves (Dell’Aquila et al. 2005; Lucarini et al. 2006). Moreover, such a random-
matrix approach might serve also to understand at mathematical level the power-law 
scalings and thus making a sense of the self-similarity of the system's properties. 
Note that due to the absence of direct wave-wave interactions, this approach is 
somewhat dual with respect to a turbulence-oriented approach. 
 Further main, necessary directions of future work along the proposed line of 
approach to GAC can be summarized as follows: 

• Analyzing the debated properties in more articulated numerical models. An 
important issue  may be the separation of the properties of the  baroclinic 
mid-latitude jet system from the low-frequency variability; using more real-
istic atmospheric models comprising bottom orography, a physically inter-
esting experiment to be performed with the purpose of finding the break-up 
of self-similarity is to parameterically tune and detune the onset of the oro-
graphic baroclinic energy conversion (Buzzi et al. 1984, Ruti et al. 2006). 

• Consolidating and explaining the knowledge  - see Schneider (2006) - that  
in the real atmosphere the dynamics of traveling baroclinic disturbances is  
dominated by the wave-zonal flow interaction and the role of the  wave-
wave interaction is minor. This may be crucial for modeling in detail the ex-
tratropical storm tracks (Hoskins and Valdes 1990). 

References 

D. J. Albers, J. C. Sprott: Structural stability and hyperbolicity violation in high-dimensional 
dynamical systems, Nonlinearity 19 (2006), 1801–1847. 

R. Benzi, G. Paladin, G. Parisi, A. Vulpiani: Characterisation of intermittency in chaotic 
systems. J. Phys. A 18 (1985), 2157–2165. 

R. Benzi, P. Malguzzi, A. Speranza, A. Sutera: The statistical properties of general atmos-
pheric circulation: observational evidence and a minimal theory of bimodality. Quart. J. 
Roy. Met. Soc. 112 (1986), 661–674. 

R. Benzi, A. Speranza: Statistical properties of low frequency variability in the Northern 
Hemisphere. J. Climate 2 (1989), 367–379. 

C. Bonatto, J. C. Garreau, J.A.C. Gallas: Self-similarities in the frequency-amplitude space of 
a loss-modulated CO

2
 laser, Phys. Rev. Lett. 95 143905 (2005). 



Statistical Properties of a Minimal Model of the Atmospheric Circulation 23
 
 
 
 
 

 
 
 
 
 

H.W. Broer, C. Simó, R. Vitolo: Bifurcations and strange attractors in the Lorenz-84 climate 
model with seasonal forcing, Nonlinearity 15 (2002), 1205–1267. 

A. Buzzi, A. Trevisan, A. Speranza: Instabilities of a baroclinic flow related to topographic 
forcing, J. Atmos. Sci. 41 (1984), 637–650. 

J.G. Charney: The Dynamics of Long Waves in a Baroclinic Westerly Current, J. Atmos. Sci. 
4 (1947), 136–162. 

J.G. Charney: On the scale of atmospheric motions. Geofys. Publik. 17 (1948), 251–265. 
J.G. Charney, J.C. Devore: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. 

Sci. 36 (1979), 1205–1216. 
E.G.D. Cohen and G. Gallavotti: Note on Two Theorems in Nonequilibrium Statistical Me-

chanics, J. Stat. Phys. 96 (1999), 1343–1349. 
A. Crisanti, G. Paladin and A. Vulpiani: Products of Random Matrices in Statistical Physics, 

Springer, New York, 1993. 
E.T. Eady: Long waves and cyclone waves, Tellus 1 (1949), 33–52. 
J.-P. Eckmann, D. Ruelle: Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57 

(1985), 617–655. 
A. Dell’Aquila, V. Lucarini, P.M. Ruti, S. Calmanti: Hayashi spectra of the northern hemi-

sphere mid-latitude atmospheric variability in the NCEP–NCAR and ECMWF reanalyses, 
Clim. Dyn. 25 (2005), 639–652. 

H. A. Dijkstra: Nonlinear Physical Oceanography, Springer, New York, 2005. 
J.D. Farmer: Chaotic attractors of an infinite-dimensional dynamic system, Physica D 4 

(1982), 366–393. 
J.D. Farmer, E. Ott, and J.A. Yorke: The dimension of chaotic attractors, Physica D 7 (1983), 

153–180. 
M. Felici, V. Lucarini, A. Speranza, R. Vitolo: Extreme Value Statistics of the Total Energy in 

an Intermediate Complexity Model of the Mid-latitude Atmospheric Jet. Part I: Stationary 
case, J. Atmos. Sci., in press (2006) 

C. Foias, E.J. Olson: Finite Fractal Dimension and Holder-Lipschitz Parametrization, Indiana 
Uni. Math. J. 45 (1996), 603–616 

P.K. Friz, J.C. Robinson: Parametrising the attractor of the two-dimensional Navier–-Stokes 
equations with a finite number of nodal values, Physica D 148 (2001), 201–220 

G. Gallavotti: Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem, J. 
Stat. Phys. 84 (1996), 899–926. 

M. Ghil,, R. Benzi, G. Parisi (Eds.), Turbulence and Predictability in Geophysical Fluid Dy-
namics and Climate Dynamics, North-Holland, Amsterdam, 1985. 

D. Schertzer, S. Lovejoy: Uncertainty and Predictability in Geophysics: Chaos and Multifrac-
tal Insights in The State of the Planet: Frontiers and Challenges in Geophysics, American 
Geophysical Union, Washington, 2004. 

I.M. Held: The Gap between Simulation and Understanding in Climate Modeling, Bull. Am. 
Meteor. Soc. (2005), 1609–1614. 



24 Lucarini, Speranza, and Vitolo 
 
 
 
 
 
I.M. Held, A.Y. Hou: Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmos-

phere, J. Atmos. Sci. 37 (1980), 515–533 
M. Hénon, Y. Pomeau: Two strange attractors with a simple structure, in Turbulence and 

Navier-Stokes equations 565 (1976), Springer-Verlag, 29–68. 
B.J. Hoskins, P.J. Valdes: On the existence of storm-tracks, J. Atmos. Sci. 47 (1990), 1854–

1864. 
E. Kalnay: Atmospheric modeling, data assimilation and predictability, Cambridge Univ. 

Press, Cambridge, 2003. 
J. Kaplan, J. Yorke: Chaotic behaviour of multidimensional difference equations, in Func-

tional Differential Equations and Approximations of Fixed Points, Springer LNM (1979), 
204–227. 

R. Kubo: The Fluctuation Dissipation Theorem, Rep. Prog. Phys. 29 (1966), 255–284. 
H.L. Kuo: Dynamics of quasigeostrophic flows and instability theory, Adv. Appl. Mech. 13 

(1973), 247–330. 
C.E. Leith: Climate response and fluctuation dissipation, J. Atmos. Sci. 32 (1975), 2022-2026. 
E.N. Lorenz: Available potential energy and the maintenance of the general circulation, Tellus 

7, (1955), 157–167. 
E.N. Lorenz: The Nature and Theory of the General Circulation of the Atmosphere, World 

Meteorol. Organ., Geneva, 1967. 
E.N. Lorenz: The predictability of a flow which possesses many scales of motion, Tellus 21, 

(1969), 289–307. 
E.N. Lorenz: Forced and Free Variations of Weather and Climate, J. Atmos. Sci. 36 (1979), 

1367–1376. 
E.N. Lorenz: Attractor sets and quasi-geostrophic equilibrium, J. Atmos. Sci. 37 (1980), 1685–

1699. 
V. Lucarini: Towards a definition of climate science, Int. J. Environ. Pollut. 18 (2002), 409–

414. 
V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E. Vartiainen: Kramers-Kronig Relations in Opti-

cal Materials Research, Springer, Heidelberg, 2005. 
V. Lucarini, S. Calmanti, A. dell’Aquila, P.M. Ruti, A. Speranza: Intercomparison of the 

northern hemisphere winter mid-latitude atmospheric variability of the IPCC models, 
Clim. Dyn. DOI: 10.1007/s00382-006-0213-x (2006) 

P. Malguzzi, A. Speranza: Local Multiple Equilibria and Regional Atmospheric Blocking, J. 
Atmos. Sci. 9, 1939–1948. 

P. Malguzzi, A. Trevisan, A. Speranza: Statistics and predictability for an intermediate dimen-
sionality model of the baroclinic jet, Ann. Geoph. 8 (1990), 29–35. 

R. Mantovani, A. Speranza: Baroclinic instability of a symmetric, rotating, stratified flow: a 
study of the nonlinear stabilisation mechanisms in the presence of viscosity, Nonlinear 
Processes in Geophysics 9 (2002), 487–496. 

M. Margules: Die energie der Stürme. Jahrb. Zentralanst. Meteor. Wien, 40 (1903), 1–26. 



Statistical Properties of a Minimal Model of the Atmospheric Circulation 25
 
 
 
 
 

 
 
 
 
 

N. Nakamura: Momentum flux, flow symmetry, and the nonlinear barotropic governor, J. 
Atmos. Sci. 50 (1993), 2159–2179. 

V.I. Oseledec: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dy-
namical systems, Trudy Mosk. Mat. Obsc. (Moscow Math. Soc.) 19 (1968), 19. 

G. Paladin, A. Vulpiani: Anomalous scaling laws in multifractal object. Phys. Rep. 156 
(1987), 147–225. 

J. Pedlosky: Geophysical Fluid Dynamics. 2nd ed., Springer-Verlag, 1987. 
N.A. Phillips: Energy transformations and meridional circulations associated with simple 

baroclinic waves in a two-level, quasi-geostrophic model, Tellus 6 (1954), 273–286. 
A. Randriamampianina, W.-G. Früh, P. Maubert, P.L. Read: DNS of bifurcations to low-

dimensional chaos in an air-filled rotating baroclinic annulus, preprint at http://www-
atm.physics.ox.ac.uk/user/read/ (2005). 

C. Robert, K. T. Alligood, E. Ott, J. A. Yorke: Explosions of chaotic sets, Physica D: Nonlin-
ear Phenomena, 144(1-2) (2000), 44–61. 

D. Ruelle: Deterministic chaos: the science and the fiction, Proc. R. Soc. London A 427 
(1990), 241–248. 

P.M. Ruti, V. Lucarini, A. Dell’Aquila, S. Calmanti, A. Speranza: Does the subtropical jet 
catalyze the mid-latitude atmospheric regimes? , Geophys. Res. Lett. 33: L06814 (2006). 

T. Schneider: The general circulation of the atmosphere, Ann. Rev. Earth Plan. Sci 34 (2006) 
655–688, DOI:10.1146/annurev.earth.34.031405.125144. 

L.A. Smith: Disentangling Uncertainty and Error: On the Predictability of Nonlinear Systems, 
in Nonlinear Dynamics and Statistics, A. Mees ed., Birkhauser, Boston (2000) 31–64. 

C. Snyder, T.M. Hamill: Leading Lyapunov vectors of a turbulent baroclinic jet in a quasi-
geostrophic model, J. Atmos. Sci. 60 (2003), 683–688 

A. Speranza, V. Lucarini: Environmental Science: physical principles and applications, in 
Encyclopedia of Condensed Matter Physics, F. Bassani, J. Liedl, P. Wyder eds., Elsevier, 
Amsterdam, in press (2005). 

A. Speranza, P. Malguzzi: The statistical properties of a zonal jet in a baroclinic atmosphere: a 
semilinear approach. Part I: two-layer model atmosphere, J. Atmos. Sci. 48 (1988), 3046–
3061. 

P.H. Stone: Baroclinic adjustment, J. Atmos. Sci. 35 (1978), 561–571. 
S. Vannitsem, C. Nicolis: Lyapunov vectors and error growth patterns in a T21L3 quasi-

geostrophic model, J. Atmos. Sci. 54 (1997), 347–361. 
M. Viana: What’s new on Lorenz strange attractors? , Math. Intelligencer 22-3 (2000), 6–19. 
Q. Wang, L.-S. Young: Strange Attractors with One Direction of Instability, Comm. Math. 

Phys. 218 (2001), 1–97 


