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Abstract - A Lattice Boltzmann model is constructed for
the simulation of water percolation through coffee. The
model describes the dynamics of two fluids (water and air)
through a layer of porous medium (coffee), where the porous
medium may be eroded by the flow of water. Surface tension
between the fluids is included, and a multi-relaxation scheme
is used to improve numerical stability at low viscosities.
Moreover, a probabilistic algorithm is included to model
erosion, transport and deposition of coffee particles.
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I. INTRODUCTION

In this paper we describe a model for the simulation of
water percolation through a coffee bed. The physical pro-
cess of interest takes place inside a professional espresso
machine (typically used in Italian bars) and runs as fol-
lows. The coffee is contained inside a cylindrical domain
bounded by a bottom filter. The percolation consists of two
phases. In the first (wetting) phase the water enters the do-
main from the inlet, which is placed on top of the cylinder,
and falls down under the effect of gravitational force and
of a low pressure gradient. Thereby it wets the coffee and
pushes away the air. In the second phase a strong pressure
gradient is applied to the water from above.
During this process (and particularly in the second phase),
small particles of coffee can detach from larger grains and
can be transported by the fluid. Eventually they can be de-
posited on other grains or on the bottom filter.
A lattice Boltzmann scheme is used to model the dynamics
of the two fluids (water and air). We first extend the ba-
sic D3Q19 lattice Boltzmann model [QIA 92] to the case
of two fluids. Our approach is similar to that of [INA 04],
in that we use an indicator function to model fluid inter-
face dynamics [MIS 06]. On top of this, a surface ten-
sion term for the two fluids is introduced in the model, as
in [KEH 02]. A multi-relaxation time scheme [D’H 02] is
used to improve numerical stability at low viscosity.
Moreover, we take into account transport of coffee parti-
cles. Coffee grains are modeled by lattice cells which are
allowed either to dissolve completely or to ‘lose’ subpar-
ticles in the water, according to a probabilistic rule. The
subparticles in turn may cluster up into a new solid grain.
The algorithm we developed for particle transport is based
on ideas of [CHO 00].

II. LATTICE BOLTZMANN TWO-FLUID MODEL

Denote by ���������
	��
��
 the position of a node on a cubic
3D lattice, and by � the time. In Lattice Boltzmann mod-
els, velocity space is discretized by selecting only a finite
number � of possible velocities ��� with ����� ��������� ��� � .
Each lattice node is linked by the ��� ’s to some of its nearest
neighbors. A mass distribution function ! � �"�#� � 
 is associ-
ated to each of the links � � and represents the mass fraction
that is moving with velocity � � from the node � at time � .
Flow density $ �%�#� � 
 and velocity & �%�#� � 
 , are computed
from the ! � �%�#� � 
 as follows:

$ �%�#� � 
 � '�(*)+ ��,*- ! � �%�#� � 
.� (1)

$ �"�#� � 
 & �"�#� � 
 � '/(0)+ ��,*- ���1!2� �"�#� � 
3� (2)

The model considered here is the D3Q19, where each node
has �#����4 links (see [QIA 92] for notation and terminol-
ogy). In particular, velocities �5� are given by:6 the node self:�5-7� � � � � � � 
 ,6 neighbors at distance 1:� )38 9 � �;: � � � � � 
 ,��< 8 = � � � �>: � � � 
 ,��? 8 @ � � � � � �>: � 
 ,6 neighbors at distance A B :��C 8 D.8 EF8 ) -G� �;: � �>: � � � 
 ,� )H)>8 )I9.8 ) < 8 )J= � �;: � � � �3: � 
 ,� ) ? 8 )I@.8 ) C 8 )KD � � � �3: � �3: � 
 .
We now sketch a description of our two-fluid model,
see [MIS 06] for details and theoretical discussion. The
presence of two fluids (red and blue fluid) in our model
is characterized by two distribution functions: ! � �%�#� � 
 ,�L�M� �F�F���.� ���N� is the usual mass distribution, and O � �%�#� � 

is a ‘color’ distribution from which an indicator function



P �%�Q� � 
 is computed as

P �"�Q� � 
 � RS T � if O �"�#� � 
VU � �� if O �"�#� � 
VW � �X�Y Z\[%[�]^[�_ 8 `�a1(cbd a�efa�gh)9 otherwise,
(3)

where O �"�#� � 
 �ji '/(0)��,*- O � �"�#� � 
 . Red and blue nodes are
those for which

P �"�#� � 
 � � and
P �%�Q� � 
 �k� , respectively.

On fluid interface nodes we have �ml P �%�c� � 
 lk� .
The O � �"�#� � 
 evolve according to the LBGK equationOh� �%�on ��� � � n � 
 �pOq� �"�#� � 
 ��sr ] � O � �%�#� � 
 �pOutKv� �%�#� � 


3� (4)

where r ] is a relaxation parameter, ��� are the D3Q19 lat-
tice velocities and OutKv� are the equilibrium functions given
by OutKv� �%�#� � 
 � O �%�Q� � 
 !2� �%�#� � 
$ �
By this choice of the equilibrium functions a continuity-
like equation is obtained for O in the macroscopic limit,
see [MIS 06] for an explanation.
The evolution of the !\� �%�#� � 
 is performed by a lattice
Boltzmann equation with either single or multi-relaxation
time (SRT and MRT, respectively, see [D’H 02]). The re-
laxation parameter r �"�w� � 
 determining the kinematic vis-
cosity of the fluid is set for each node and at each time step
depending on the value of

P �%�Q� � 
 :r �%�#� � 
 �xruy P �%�Q� � 
0n rLz � �c� P �"�#� � 


3�
where r y and r z denote the relaxation parameters of each
fluid. In the SRT case, the LBGK equation is used for! � �%�#� � 
 :!2� �"�on �f� � � n � 
 �{!2� �"�#� � 
 ��sr �"�w� � 
.� ! � �"�#� � 
 �{!*tKv� �%�#� � 


3� (5)

Here the equilibrium distribution functions are

!*tKv� �%�#� � 
 �}| � $s~;� n���� � �0� & 
�n 4B � � �*� & 
 9 � � B & 93� �
(6)

for ����� ���F���.� �h�}� , where $���$ �"�#� � 
 and &M��& �%�#� � 

are computed as in (1) and (2) respectively, whereas the
weights |�� depend on the lattice. For the D3Q19 model
we have

|s�h� R�S �T ��� ��� �L�M� ����^��� � �L��� ���������
������ �f��� �L�}� ��������� ��� �

From the kinetic equation (5) and with the above ex-
pression for the equilibrium distributions, if a region is
occupied by only one fluid, using multi-scale analysis
one can recover the Navier–Stokes equations with the
usual [QIA 92] relation between the kinematic viscosity
and the relaxation parameter (either rLy or rLz ) of the fluid:� y 8 z�� �� 9 �o� �r y 8 z � �B*� �
where � 9 � is the lattice sound speed (for the D3Q19 model� � ����� A � ).
Furthermore, a surface tension term is introduced (like
in [KEH 02]), whose actual form depends on the relax-
ation time scheme adopted. In the SRT scheme, this term
is added to the equilibrium distributions !�tKv� �"�#� � 
 and has
the form� �h��|�� 4B*� ���u�2� z� � � �N� � z � � � � � � � � � ��zL� � � z� � �
where Latin indices represent the spatial coordinates and
summation over � and � is implicitly assumed. The param-
eter � measures the surface tension strength, while � is the
gradient of

P
.

In the MRT case the surface tension term is added to
the equilibrium functions of certain linear combinations
(called moments) of the !\� �"�#� � 
 . These moments are com-
puted from the ! � �%�#� � 
 according to the rules described
in [D’H 02].
In the present setting red and blue fluid are water and air,
respectively. In particular, we have:6 if
P �%�#� � 
 ��� , then � is occupied by water,6 if
P �%�#� � 
 �M� , then � is occupied by air,6 if �Nl P �%�#� � 
 l � , then � is on the interface between

water and air.

III. A CELLULAR AUTOMATA FOR EROSION,
TRANSPORT AND DEPOSITION OF

SUBPARTICLES

The coffee is modeled as a randomically generated porous
medium, consisting of solid nodes. The remaining (fluid)
nodes evolve by the rules described in the previous section.
In the lattice Boltzmann part of our algorithm, coffee nodes
obey to the same bounce-back rule as the solid nodes on the
walls of the cylinder.
In order to study the interaction between the water flow
and the coffee, we allow the coffee nodes to evolve as well,
according to a three-stage algorithm. All coffee nodes ini-
tially contain a fixed number of subparticles. The water
flow may erode subparticles away from a coffee node, it
may transport subparticles, and it may deposit them onto
another coffee node or over the bottom filter:



Erosion: if one of the fluid nodes that are neighbors of a
coffee node is wet (i.e., partly occupied by water), a num-
ber of subparticles may jump from the coffee node to the
wet node; a small fraction of coffee nodes may dissolve
completely, thereby becoming fluid nodes;

Transport: subparticles contained inside a wet node travel
along with the water flow, with the same velocity of the
water contained in the node;
Deposition: if the velocity of a wet node is directed to-
wards a neighboring solid node, then the subparticles (pos-
sibly) contained in the wet node may jump to the coffee
node; moreover, if a sufficient number of subparticles ac-
cumulates inside a wet node, the latter turns into a coffee
node.

In the next three sections, each of the above three stages is
described in more detail.

A. Erosion

Roughly speaking, the erosion algorithm is performed on
a coffee node only if the neighboring fluid nodes contain a
sufficient percentage of water. To be more precise, recall
that, if ¡ is a fluid node, then

P � ¡ � � 
 is the ‘color’ function
indicating whether node ¡ is predominantly occupied by
air or water (compare (3)). Then a fluid node is declared
wet if

P � ¡ � � 
 is larger than a fixed threshold
P*¢ t ` .Let � and ¡ be two neighboring nodes, where � is a coffee

and ¡ is a wet node. In few words, the erosion algorithm
consists in examining the velocity & of the fluid inside ¡ :
if & is directed towards � then the water flow may detach
a number of subparticles from � and bring them to ¡ , ac-
cording to a probabilistic rule. Subparticles can not move
from solid to solid nodes.
Now, the details of the algorithm are given. Denote by£ �%�#� � 
 the number of subparticle located in the node � (be
it solid or fluid) at time � , and by ¤ �"�#� � 
 the indicator¤ �%�#� � 
 ��¥ � if � is a fluid node at time �� if � is a solid node at time � .
Let ¦ be the maximum number of subparticles that can be
contained in a node. At the initial step we fix £ �%�#� � 
 ��¦
for coffee nodes, while £ �%�#� � 
 �M� for fluid nodes.
Let � be a coffee node. Notice that � cannot be wet itself,
therefore we resort to estimating the average water contentP �3§ �%�#� � 
 of the neighboring fluid nodes:P �3§ �%�#� � 
 � i )ID��, ) ¤ �%�¨n � � 
 P �%�¨n � � 
i )ID��, ) ¤ �%�¨n � � 
 �
The erosion process is performed on coffee node � only
if the neighboring fluid nodes are wet in average, i.e., ifP �3§ �%�#� � 
V© P ¢ t ` .

We define two classes of coffee nodes: those that may
dissolve completely in the water, thereby becoming fluid
nodes, and those that may lose up to a fixed maximum num-
ber ¦ t y of subparticles. If a node of the latter type has lost
all of the ¦ t y subparticles, then the erosion algorithm is
no longer applied to it, unless some subparticles are subse-
quently deposited on it by the deposition algorithm.
The erosion process is modeled by associating a probabilityª t y �"�#� � 
 to each coffee node � . Initially, ª t y �"�#� � 
 is set
to 1 and it is decreased each time the minimum number of
subparticles inside a non-fluidizable coffee node is reached.
The following rule is used: the probability ª t y� �%�#� � 
 for
coffee node � to release subparticles to fluid node �sn � � ,
with ��«�¬5� �F�F���.� �­�^® , is given by:ª t y� �%�#� � 
 �¯±°\² � � � ¤ �%�on � � � � 
 ª t y �"�#� � 
 & �%�on � � � � 
 � �\³� � ³ � � � (7)

where � ³ is the direction opposite to ��� .
Equation (7) means that the fluid in node �¨n ��� is able to
detach subparticles from node � only if the fluid velocity
in �pn ��� has a positive projection on � ³ (the latter is the
direction from �on ��� to � ).
The number £ t y� �%�#� � 
 of subparticles that may jump onto��n � � (with probability ª t y� �%�#� � 
 ) is proportional to the
projection of & �"�on � � � � 
 along �\³ :£ t y� �%�#� � 
 � & �"�¨n �5� � � 
 � � ³ � � � ³ �´\µ �.¶ ¦ µ �3¶ �%��
3�
Here ´\µ �3¶ is a constant representing the largest modulus of
the velocities involved in the problem, whereas ¦ µ �.¶ �%��
 isthe maximum number of subparticles that may be detached
from the node. The constant ¦ µ �3¶ �%��
 is fixed at the be-
ginning, depending on whether � is fluidizable or not:

Fluidizable: these coffee nodes can dissolve completely,
thereby becoming fluid. Therefore,¦ µ �3¶ �"��
 ��¦ �
Fluidizable nodes are a fixed percentage of the total number
of coffee nodes.

Non–fluidizable: these are allowed to lose up to ¦ t y sub-
particles, hence we set¦ µ �.¶ �%��
 �}¦ t y �
Fluidizable coffee nodes turn into fluid nodes whenever
the number of subparticles contained in them decreases
below a threshold value ¦¸· . The reverse process is also
allowed to occur by the deposition algorithm, see below
for details.



B. Transport

We now describe how the eroded subparticles are trans-
ported by the water flow. The transport algorithm is es-
sentially the same proposed in [CHO 00], with minor mod-
ifications to adapt it to coffee percolation.
Consider a subparticle located on a fluid node � . In one
time step the subparticle should ideally jump to position�¹n & �"�#� � 
 , where & �%�#� � 
 again denotes the fluid velocity.
However, the ‘landing point’ �ºn & �"�#� � 
 typically does not
coincide with a lattice node. Enforcing this by discretizing
the landing point on the lattice would yield physically un-
correct transport velocities of the subparticles. Therefore
we resort to a probabilistic rule: subparticles may jump to
any of the neighboring fluid nodes with a probability which
is proportional to & �"�#� � 
 . Moreover, the rule is designed in
such a way that subparticles can move to a fluid node only
if the latter contains some water.
The algorithm details follow. Given & �"�#� � 
 we need to
compute the destination node for each of the £ �%�V� � 
 sub-
particles located in � . Here, subparticles can jump to any
of the 27 nearest neighbors of � : they are not bound to
move on the 19 directions �5� , �u�}� ���F���.� �­� , of the D3Q19.
Hence, also neighbors at distance A � are involved, pointed
to by the additional directions� )IE.8 9 - 8 93)38 9
9F8 9 < 8 9
=F8 9 ? 8 9H@ � �1: � �3: � �>: � 
3�
Denote by ª � �%�#� � 
 the probability that a subparticle in �
moves to neighbor �Gn � � at time � , where �u�}� ���F�F�F� B � . At
first, ª � �"�#� � 
 is computed only for ���»� �F���F�.�H� depending
on the projection of flow velocity & �%�#� � 
 on direction � �
and on the average water content in the direction � � . The
latter is defined as a weighted average of

P � ¡ � � 
 where ¡
ranges in all the fluid nodes �%�on � ³ 
 such that ��� � � ³ © � :
P � �%�#� � 
 �}¼ ) P �"�½n � � � � 
*n ¼ 9 )ID+³ ,�C P �"�½n �2³ � � 
F� � �¾� �2³ 
n ¼ < 9H@+³ , )IE P �%�¨n ��³ � � 
.� � �*� �2³ 
.�

where ¼ ) ��¿��\4 , ¼ 9 �À�2�24 and ¼ < �À�2� �5� . In this way,
nearest neighbors give larger contributions. Hence, for �u�� ���F���.�
��� ª � �"�#� � 
 is computed asª � �%�#� � 
 � P � �%�#� � 
 ¯m°\² � � � & �%�#� � 
 � �5� 
3�
The remaining probabilities ª � �"�#� � 
 with ���Á� ���F�F�F� B �
are defined as linear combinations of the ª � �"�#� � 
 ’s with�V��� �F���F�.�H� . In practice, they are not explicitly computed
and the algorithm runs as follows. For each of the £ �"�#� � 

subparticles contained in � a boolean variable ÂqÃ� �"�#� � 
 ,

¼±��� ���F�F�F� £ �%�V� � 
 , is computed:

Â Ã� �"�#� � 
 ��¥ � with probability ª � �%�#� � 
� with probability �Q� ª � �"�#� � 
.�
with �u��� �F���F�F�H� . Then the destination node of subparticle¼ retained in node � at time � is given by�on @+ ��, ) Â Ã� �"�#� � 
 � � �
The transport algorithm also interacts with the deposition
scheme. As a result, the transport procedure is not neces-
sarily applied to each of the £ �%�V� � 
 subparticles located in� at time � . In particular, in certain situations the subparti-
cles can not move to one or more of the destination nodes,
see the next section for details. In this case, a fraction of
these ‘blocked’ subparticles may accumulate in � , prelud-
ing to the creation of a new solid node.
The above process is implemented by defining a variableª¾µ �"�#� � 
 «xÄ � � �.Å , which indicates the fraction of subparti-
cles that are allowed to move. Specifically, the transport
algorithm is executed on £ �%�#� � 
 ª�µ �"�#� � 
 subparticles.
Initially, ª¾µ �"�#� � 
 is set to 1 for all fluid nodes. Then
at each time step ª¾µ �%�#� � 
 is set to a value such that�¸� ª¾µ �"�#� � 
 is proportional to the number of ‘blocked’
subparticles.

C. Deposition

During its motion a subparticle may jump onto a solid
node. This can only happen if the destination node is not
full of subparticles, i.e., if it contains less than ¦ subpar-
ticles (due to the erosion mechanism). If the destination
node is full, the subparticle remains in the fluid node and
starts to ‘accumulate’ there. This opens the possibility for
the formation of a new coffee node.
Let � be the fluid node from which subparticles are mov-
ing and ¡ their solid destination node. We distinguish two
cases:

The solid node is not full: £ � ¡ � � 
 lÁ¦ . All incoming
subparticles are added to the node ¡ .
The solid node is full: £ � ¡ � � 
 ��¦ . In this case incoming
subparticles can not be deposited on ¡ , so they remain in � .
We keep track of their deposition in � by adding their num-
ber to a variable £ �.ÆJÆ �%�#� � 
 (initially set to 0 for all nodes).
This variable is then used to decrease the fraction of mov-
ing subparticles of � . Indeed the percentage ª*µ �"�#� � 
 of
subparticles that can be transported is computed as:ª µ �%�#� � 
 � ¯±°2² � � � �Q� £ �.ÆJÆ �"�#� � 
¦ � �



In this way, the larger is the number of accumulated sub-
particles in � , the harder is, for subparticles in � , to move.

When the number of subparticles retained by a fluid
node exceeds a given threshold value ¦ � , the fluid node
becomes a coffee node.

D. Interaction between subparticles and fluid models

In the present setting, the subparticle component of the
model (erosion, transport and deposition algorithm) affects
the fluid dynamics only in one way: because of the in-
duced change in the domain configuration. In particular,
fluid nodes can turn into coffee nodes and also a fixed per-
centage of coffee nodes can become fluid.
We fix threshold values ¦m· and ¦ � (see at the end of the
previous section and of Sec. III-A). The first is the number
of subparticles below which a fluidizable coffee node turns
fluid; the second is the number of subparticles a fluid node
has to exceed in order to turn solid.

From fluid to solid: consider a fluid node � . If £ �%�#� � 
Ç©¦ � , then � becomes a coffee node and the evolution rule for
Lattice Boltzmann algorithm is switched to bounce back.

From solid to fluid: Let � be a fluidizable coffee node. If£ �%�#� � 
 lÈ¦É· then � becomes a fluid node. This means
that the kinetic equation (5) (or the corresponding MRT
version) is subsequently used to update the mass distribu-
tion functions ! � and the (4) to update the color distribution
functions O � . Mass distribution functions ! � are set to the
value !*tKv� �%�#� � 
 in (6) with $±��$ - (the initial value of $ in
all of the domain) and &�� � � � � � � 
 . Similarly, the color
distribution functions Ou� are set to OutIv� � O 
 with ON� P �3§ .
Cycle of a non–fluidizable solid node: Consider a non–
fluidizable coffe node � . Initially it contains ¦ subparticles
and it may lose no more than ¦ t y subparticles by the ero-
sion procedure, with ª t y �%�#� � 
 ��� . If the mininum num-
ber of subparticles ¦Ê��¦ t y is reached, � remains a coffee
node (i. e. it evolves according to the bounce back rule) but
it does not execute the erosion procedure. If other subparti-
cles deposit onto it ( £ �%�V� � 
c© ¦À�N¦ t y ) it may be eroded
again, but the probability ª t y �"�#� � 
 is halved each time the
minimum number of subparticles ¦À�N¦ t y is reached.

We remark that the presence of subparticles in the water
flow (transport algorithm) does not affect the viscosity
of the fluid in the present setting. This question will
be addressed in future research, by using experimental
measurements of the viscosity alteration.

IV. EXPERIMENTAL MEASUREMENTS, AND
PARAMETER SETTING FOR THE SIMULATIONS

To prepare a ‘good’ espresso is not an easy task. Many
variables can affect the quality of the coffee, such as wa-
ter pressure and temperature, the amount of ground coffee,
how hard it is pressed and (not less important) the practice

of the barman. Evidently some of these parameters cannot
be controlled in a scientific way, but, for those that can, a
few optimal conditions have been empirically determined:

water temperature : inside the machine it should be about
88 Ë C;

pressure : it should be a function of time with profile as
shown in Fig. 1;

quantity of coffee : 7 g;
duration : the whole process should take 30 seconds;

production : at the end, we should have about 25 ml of
coffee in the cup.

In the rest of this section we report data and results of ex-
perimental measurements concerning espresso machines,
performed at the Nuova Simonelli company.

The pressure profile in Fig. 1 highlights two stages in the
process: in the first, which is called pre–brewing (or wet-
ting) phase, water pressure is set to 1 bar and remains at
this level during 4 seconds, then, in the second phase, it in-
creases linearly up to 9 bar in about 6 seconds and keeps
this value until the end of the process.

The pre–brewing phase is very important in order to obtain
a good coffee. Indeed, the water, falling slowly through the
coffee, melts the essential oils and other subtances that give
taste and aroma. During this phase, however, not all of the
coffee bed is wet by the water. It has been measured that
the percentage of coffee reached by the water is bounded
between 60 Ì and 64 Ì .

It has been experimentally measured that the porosity of
a coffee bed typically is about 60 Ì and that the imposed
pressure at inlet induces a corresponding water velocity at
inlet, which initially is ´ ) �Í� � ���f�ÉÎo�f¤ and then it in-
creases up to ´ 9 �}� � � � �VÎ¨�\¤ , see Table I.

Commercial filters used in espresso machines have two
shapes (cylinder and cone frustum) and two sizes (one- or
two-cups filters). We only consider cylindrical filters with
radius Ïj�ÀB � � cm and ÏÐ� ��� � cm for single and dou-
ble coffee respectively, whereas height Ñ½��� � 4 cm in both
cases. The bottom filter consists of a metal plate with cir-
cular holes that allow the coffe to exit and fall in the cup.
The number and dimensions of holes may vary, depending
on the filter sizes and shapes described above.

Experimentally estimated parameters, such as water and air
viscosity, inlet velocity and so on, are given in Table I. The
corresponding Lattice Boltzmann parameters used in the
numerical simulations (see next section) are reported in Ta-
ble II.

For what concerns particle erosion, transport and de-
position the parameters used in the Lattice Boltzmann
simulations are reported in Table III, where ÒL· is the
percentage of fluidizable coffee nodes with respect to the
total number of coffee nodes.
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Fig. 1. Pressure profile at inlet as a function of time.

TABLE I
EXPERIMENTAL PARAMETERS IN PHYSICAL UNITS.Ó>Ô Ó3Õ Ö­× Ö3Ø Ù TÚ�Û Ø.Ü3ÝHÞ Ú�Û Ø3Ü3ÝHÞ Ú�ß Ü Û Þ Ú�Û Ü3Ý
Þ Ú�Û Ü3Ý
Þ Ú ÝHÞà
áVâºàIã­ä�å àIã­ä�å

0.011 0.037 0.067 30

V. NUMERICAL SIMULATION RESULTS

Two Lattice Boltzmann simulations were performed with
the parameter setting described in the previous section, by
considering two filter types, for single and double cup. The
spatial discretization is the same in both simulations, result-
ing in a subdivision of the radius into 47 and 67 lattice units
for single and double filter respectively. At the bottom of
the domain ( � �M� ), squared holes are placed. The number
and dimensions of the holes are choosen in agreement with
the filter type examined.
With the above setting our model gives a good prediction
of the interface motion. Indeed, during the pre–brewing
phase we get a �f� Ì of coffee bed reached by the water
(see Fig. 2), in agreement with the experimental data.
Moreover, the volume of coffee coming out from the filter
as a function of time has been experimentally measured.
In order to compare these measurements with the values

TABLE II
PARAMETERS, IN LATTICE UNITS, USED IN THE

SIMULATIONS.æ^Ô æ�Õ Ö­× Ö.Ø Ù T æ^ç
1.991 1.859 0.00367 0.0123

à3è éwâºàIã ä^ê ë âÉàIã.ì
1.95

TABLE III
PARAMETER SETTING FOR THE SUBPARTICLES

ALGORITHM.ß ß�í;î ï�ð ßLñ ß�ð
100

àIã àIã.ò
75 25

Fig. 2. Level of the water in the coffee bed at the end of the pre–
brewing phase (i. e. at time ócô�õ seconds) in a single cup
filter.

predicted by the model, we need to compute the coffee flow
throught the bottom filter:ö � � 
 ��÷^øºÄ $ �%�#� � 
 & �"�#� � 
 �.ù Å­ú�¤

û �Ðü+Ã , ) $ �%� Ã � � 
 ´\ý �%�Lþ�� � 
 � � 9 �
Here

�
is the portion of the bottom filter occupied by the

holes and ù is the unit outward normal vector to the surface

�
. In the discrete approximation of

ö � � 
 , ÿ is the total
number of non–solid lattice nodes placed at the bottom of
the filter and � � is the minimal physical distance between
two adjacent lattice nodes.
In Fig. 3 and Fig. 4 a comparison between experimental
and model results is shown for single and double filter re-
spectively. In particular, asterisks mark averages on a set
of measurements, the vertical bars show the minimum and
maximum measured values and solid line denotes the re-
sults of the corresponding Lattice Boltzmann simulation.
Concerning erosion, transport, and deposition of subparti-
cles, a suitable experimental variable that could be mea-
sured is the variation of the ‘coffee grain concentration’,
i.e., the volume fraction occupied by the coffee grains in-
side horizontal slices of the coffee bed, which is a function
of height (distance from the bottom of the filter). Initially,
coffee concetration is almost uniform, but the water flow
tends to transport coffee particles toward the bottom of the
filter causing an accumulation. Accurate experiments to
determine the magnitude of this variation are still in course.
However, preliminary results indicate the formation of a
rather compact layer next to the bottom of the filter, while
the coffee concentration is lower near the top.
In Fig. 5 simulation results for a single cup filter are shown.
Three layers, of thickness 3 mm each, are considered and
the variation of coffee concentration in each layer is com-
puted as function of time. In the case of a double cup filter
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Fig. 3. Volume of coffee exiting from single cup filter.
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Fig. 4. Volume of coffee exiting from double cup filter.

the model results show a similar behavior.
In conclusion, the model correctly describes the main
dynamical features of percolation through a coffee bed.
The simulation results show a promising agreement with
experimental data. Further experimental work is still
needed to validate the numerical scheme and accurately
set free parameters. The present model may provide a
valid tool to investigate new or alternative settings for
the physical parameters and configuration of the espresso
machines, such as different filter shapes or inlet pressure
profiles.
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Fig. 5. Variation in time of coffee concentration inside three hor-
izontal layers of the coffee bed for a single cup filter.
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