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Chapter 1

Introduction

The present work fits within the study of nonlinear deterministic dynamical systems
depending on parameters. These systems are used for modelling in many disciplines,
such as biology, mechanics, meteorology, physics and economy. The general goal is to
understand the qualitative behaviour of these systems, and in particular:

1. The asymptotic, long term dynamics, where the system has settled down on an
attractor.

2. The transitions between attractors due to variations of certain parameters (bi-
furcations).

We focus on discrete dynamical systems, generated by iteration of smooth invertible
maps (diffeomorphisms). The orderly asymptotic dynamics takes place on attractors
that have a simple geometry, like fixed points, periodic orbits, and invariant circles or
tori. Usually the chaotic dynamics lives on strange attractors with a fractal structure.
The purpose of this work is to understand the geometry of certain types of strange
attractors, as well as the bifurcations leading to their formation.

1.1 The structure of three-dimensional strange

attractors

The research presented in this thesis has been motivated by the following question:

What is the structure of strange attractors for three-dimensional diffeo-
morphisms?

The term ‘strange attractor’ first appeared in the work of Ruelle and Takens [NRT,
RT]. Evolutions starting near a strange attractor rapidly converge towards it, and
are characterised by chaotic behaviour: two evolutions starting from nearby points
typically separate exponentially fast [BC, ER, GH, MV]. Strange attractors car-
rying chaotic dynamics have been described in many experimental and numerical
investigations, in models coming from various fields of research: biology [Kuz], eco-
nomics [Hom], mathematics [ASFK, BST, Tat], mechanics [GH], meteorology [Lor,
SNN, Vee, VOV], laser physics [WKL].
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(A)
p

(B)

Figure 1.1: Structure of Hénon-like strange attractors. (A) Two-dimensional projec-
tion of an attractor occurring in a three-dimensional diffeomorphism P . The small
box pointed by an arrow is magnified in the lower left corner. (B) A saddle fixed
point p of P , plotted with its one-dimensional unstable manifold. The same windows
are used in the two plots; the same holds for the magnifications. Notice the striking
similarity.

The structure of strange attractors of two-dimensional diffeomorphisms is fairly
well understood [BC, DRV, MV, Sim, Via1, LSY]. In particular, Hénon-like strange
attractors [MV, Via1] are characterised by the property that there exists a periodic
point p of saddle type such that the strange attractor coincides with the closure of
the unstable manifold clos W u(Orb(p)), where Orb(p) denotes the orbit of p. For
an illustration of this, see Figure 1.1. In Figure 1.1 (A) an attractor of a three-
dimensional diffeomorphism P is plotted, and in (B) a saddle fixed point p of P ,
with its one-dimensional unstable manifold. The occurrence of this type of strange
attractors has been proved for a class of diffeomorphisms called Hénon-like [MV, Via1].
The first numerical example of this type of attractors was given in [Hen].

A periodic point is the simplest invariant set for a diffeomorphism P . The ‘next’
object in terms of geometrical and dynamical complexity is an invariant circle, i.e.,
a closed smooth curve which is mapped onto itself by P . The diffeomorphism P
generically has two types of dynamics on an invariant circle C : quasi-periodic or
Morse-Smale [Arn, BHS, GH, Kuz]. In the first case, repeated application of P on
a point of C is equivalent to rotating the point along C in a rigid fashion. In the
second case, the circle C contains a finite number of attracting periodic orbits, and
the same number of repelling periodic orbits. Under iteration of P , any point of C not
belonging to the repelling periodic orbits converges to one of the attracting periodic
orbits.

This leads us to the central question:

Given a diffeomorphism P and an invariant circle C of saddle type, are
there strange attractors contained in the closure closW u(C )?

This problem forms the basis of the third Chapter. There we consider a diffeomor-
phism T of the solid torus R2 × S1 into itself. The diffeomorphism is obtained by
the weak coupling of a planar Hénon-like map [MV] with a diffeomorphism of the
circle S1 which is a perturbation of a rigid rotation. When the dynamics on S1 is
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of Morse-Smale type, by using a theorem of Dı́az-Rocha-Viana [DRV], we prove that
Hénon-like strange attractor occur for the diffeomorphism T . In Figure 1.2 (A) we
display one of the attractors of the diffeomorphism T in the period three case, where
the picture is obtained by numerical simulation.

For a subset of parameter values, a different result is obtained for T . In this case,
T is a perturbation of the product map given by a planar diffeomorphism K with a
rigid rotation on S1, where K satisfies the properties:

1. K is dissipative, i.e., it contracts area;

2. K has a saddle fixed point with a transversal homoclinic point [PT].

Under these hypotheses, we prove that the coupled diffeomorphism T has an invariant
circle C of saddle type, such that the following property holds: the stable and unstable
manifolds of C bound an open region U such that the orbits of all points in U are
attracted to the closure of the unstable manifold W u(C ). This shows the occurrence of
an attractor inside clos W u(C ). When the dynamics on C is quasi-periodic, numerical
evidence suggests that this attractor is strange; compare Figure 1.2 (B). The latter
property remains conjectural and is topic of future research.

Remark 1.1. When speaking about numerical evidence for strange attractors in a
concrete system, one should be aware of the following:

1. Most theoretical results concerning Hénon-like strange attractors are of a per-
turbative nature, meaning that these only hold in settings which are sufficiently
close to a one-dimensional situation [BC, MV, LSY]. Furthermore, no explicit
bounds are given for the size of the allowed perturbation.

2. The above theoretical results yield the occurrence of strange attractors for a
nowhere dense parameter set S of positive Lebesgue measure. Given a spe-
cific, numerical parameter value, there is no algorithm to check whether this
parameter value belongs to the set S or not.

This implies that, in general, the above theory does not guarantee that a numerically
observed strange attractor actually exists in the examined system. For example, de-
spite many efforts it still remains unproven whether the attractor numerically studied
by Hénon a quarter of a century ago [Hen] is a Hénon-like strange attractor. There-
fore, the structure and the properties expressed in [BC, MV, Via1, LSY] are considered
as a general paradigm for the interpretation of numerical results which suggest the
existence of strange attractors. In other words, Hénon-like strange attractors are con-
jectured to occur in a large class of dynamical systems. Throughout the thesis, when
describing our numerical results, we will tacitly assume this conjecture.

The above discussion forms the mathematical core of the thesis, and is mainly
reported in Chapter three. We now describe the remaining Chapters (two and four).

1.2 The Lorenz-84 climate model with seasonal

forcing

Chapter two contains the basic examples which motivated the research presented in
Chapters three and four. These examples are found in a model which is a perturbation
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Figure 1.2: (A) Two-dimensional projection of a Hénon-like strange attractor of
the diffeomorphism T studied in the third Chapter (see text for details). (B) Two-
dimensional projection of a quasi-periodic Hénon-like strange attractor of T .

of a three-dimensional autonomous system of ordinary differential equations coming
from meteorology, the Lorenz-84 model [Lor]. The Lorenz-84 model is the simplest
approximation of the general atmospheric circulation at mid-latitude, on a scale of a
few thousand kilometres in space and about a week in time.

In meteorology, low-dimensional models such as the Lorenz-84 system have drawn
the attention of investigators over the last decades [Vee, VOV]. The reason is that
both the equation of Fluid Dynamics for the atmospheric flow and the computer mod-
els used for weather prediction are hard to analyse mathematically. Low-dimensional
models have the advantage that they can be studied by the qualitative methods of
Dynamical Systems theory, such as bifurcation theory [Arn, GH, Kuz]. On the one
hand, low-dimensional systems are not suitable to produce quantitatively correct pre-
dictions about the climate. Indeed, strong simplifications imposed to obtain such
models. See [Vee] for a discussion about this aspect. On the other hand, the math-
ematical understanding of low-dimensional models helps clarify the qualitative, large
scale dynamics of more complicated systems. Moreover, low-dimensional models have
always played a central role as motivating examples for the development of the theory
of Dynamical Systems [GH].

The model we study in the second Chapter is a non-autonomous perturbation of
the Lorenz-84 model, constructed by introducing a periodic forcing, which simulates
seasonal changes in north-south and ocean-land temperature contrasts. The non-
autonomous model is analysed in terms of the Poincaré map [Arn, GH, Kuz], which is
a diffeomorphism PF,G,ε : R3 → R3 depending on three control parameters (F,G, ε).
The parameter ε is the relative amplitude of the periodic perturbation. The study
focuses on the Dynamical Systems aspects of the model, and in particular on the
question, posed at the beginning of this introduction, concerning the structure of
strange attractors for three-dimensional diffeomorphisms. Various types of strange
attractors are detected in the model; see Figure 1.3 and compare Remark 1.1. We
conjecture that the attractors in Figure 1.3 are Hénon-like (A) and quasi-periodic
Hénon-like (B), see the previous section. To be precise:

(A) There exists a saddle periodic point p of the map PF,G,ε such that the attractor
in Figure 1.3 (A) coincides with the closure clos W u(Orb(p)).
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Figure 1.3: (A) Two-dimensional projection of a Hénon-like strange attractor of the
diffeomorphism PF,G,ε. The four components are mapped onto each other by PF,G,ε

in the order given by the labels 1 to 4. The component in the box is magnified
in Figure 1.1 (A). This attractor coexists with the period four saddle point p in
Figure 1.1 (B). (B) Two-dimensional projection of a quasi-periodic Hénon-like strange
attractor of PF,G,ε.

(B) There exists a quasi-periodic invariant circle of saddle type such that this attrac-
tor coincides with the closure clos W u(C ).

One of the four components of the attractor in Figure 1.3 (A) is magnified in Fig-
ure 1.1 (A). In Figure 1.1 (B) we display a period four saddle point p together with
its one-dimensional unstable manifold. This empirical observation suggests that the
attractor in Figure 1.3 (A) coincides with closW u(Orb(p)).

The formation of strange attractors is often understood in terms of bifurcation
scenarios, also called routes to chaos upon variation of parameters. In this respect,
the numerical results are interpreted in the light of bifurcation theory, i.e., the the-
ory of quasi-periodic bifurcations [BHS, BHTB] and of hetero- and homoclinic tan-
gency bifurcations [PT]. The attractor in Figure 1.3 (B) is created after two con-
secutive quasi-periodic period doublings of an invariant circle, followed by a homo-
clinic tangency of a saddle periodic point on the circle, occurring inside a resonance
tongue [Arn, BST, GH]. The attractor in Figure 1.3 (B) is created after a period
doubling cascade of periodic points.

Several papers on the autonomous Lorenz-84 system (see [BSV1] and references
therein) are the starting point for the analysis of the map PF,G,ε. The bifurcation
diagram of the autonomous system is organised by a codimension two Hopf-saddle-
node bifurcation of equilibria [SNN]. This dynamically rich bifurcation has been
intensively studied in the general vector field case [BV, GH, Kuz]. In particular,
under appropriate hypotheses, near a Hopf-saddle-node of equilibria the following
bifurcations occur:

1. Shil′nikov bifurcations of equilibria of saddle-focus type.

2. Hopf–Nĕımark–Sacker bifurcations of a limit cycle, where a two-dimensional
invariant torus is created.

3. Heteroclinic bifurcations, by which the torus is destroyed.
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Figure 1.4: (A) Two-dimensional projection of a quasi-periodic Hénon-like strange
attractor of the Poincaré map PF,G,ε of the forced Lorenz-84 system. (B) Two-
dimensional projection of a quasi-periodic Hénon-like strange attractor of the model
G studied in Chapter four.

See [BV, GH, Kuz] for the terminology. On the basis of perturbation theory, the
Poincaré map PF,G,ε is expected to display many related phenomena. Indeed, for
small ε we find that the map PF,G,ε has a Hopf-saddle-node bifurcation of a fixed
point. Near this bifurcation point, the map PF,G,ε exhibits quasi-periodic Hopf bifur-
cations of an invariant circle [BHTB], where an invariant torus is created. Near these
Hopf bifurcations, quasi-periodic Hénon-like attractors are numerically detected, see
Figure 1.4 (A).

As far as we know, no systematic investigations of the Hopf-saddle-node bifurcation
of fixed points of diffeomorphisms are known. This led to the research in the fourth
Chapter.

1.3 Hopf-saddle-node bifurcation for fixed

points of diffeomorphisms

In the fourth Chapter we analyse the Hopf-saddle-node bifurcation for diffeomor-
phisms in two model maps G and Q, constructed ‘as generic as possible’ when re-
stricting to the unfolding class they belong to.

Quasi-periodic Hopf bifurcations [BHS, BHTB] of an invariant circle C occur for
G and Q, at which a two-dimensional torus T branches off from C . Bifurcations
of an invariant circle C are well understood only in the case that the dynamics on
C is quasi-periodic. To be more precise, at least two parameters are required for a
generic, theoretical analysis of bifurcations of an invariant circle. In two-parameter
families of maps having an invariant circle C , Hopf bifurcations of C do not occur
along continuous curves inside the parameter plane. They can only be described
in a Cantor-like boundary in the parameter plane, formed by the intersection of a
Cantor set of lines with a continuous curve. The resonance gaps in this Cantor-like
boundary are called bubbles [BHS, Che]. Not much is known about the behaviour of
the bifurcating circle C for parameter values inside the bubbles.

Quasi-periodic Hénon-like attractors are observed in G and Q (Figure 1.4 left),
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Figure 1.5: (A) An invariant 2-torus of the model G studied in Chapter four, co-
existing with a period five attracting invariant circle. (B) A period five 2-torus of G
coexisting with the period five circle. Both coexist with the 2torus in the left picture.

near the breakdown of the invariant torus T . The same kind of attractor is found
in the Poincaré map PF,G,ε of the forced Lorenz-84 model, compare Figure 1.4 right.
In both cases, homoclinic and heteroclinic tangency bifurcations [PT] are involved in
the destruction of the torus.

The model G is explicitly constructed for the study of a 1:5 bubble on the Hopf
boundary H, where C has a weak resonance of order 1:5 [Arn, Tak]. It turns out that
the 1:5 bubble on H is bounded by two secondary Hopf-saddle-node bifurcations of
period five points of the map G. Both bifurcations take place on the invariant circle
C . The bifurcation diagram of G in the neighbourhood of the two secondary Hopf-
saddle-node points is quite rich. It involves at least two families of period five invariant
circles, two families of invariant tori, and one family of period five invariant tori. For
example, in certain regions of the parameter plane a torus T coexists with a period
five circle C 5 (Figure 1.5 left), where both are attractors. Their basins of attraction are
separated by a period five repelling invariant torus T 5 (Figure 1.5 right). By varying
the parameters, the torus T 5 collides with the circle C 5 through a quasi-periodic Hopf
bifurcation. Again, this occurs on a ‘Cantor-like’ bifurcation boundary, interspersed
by resonance bubbles. Therefore it seems that near a Hopf-saddle-node bifurcation for
diffeomorphisms infinitely many subordinate resonant Hopf-saddle-node bifurcations
take place, of various orders and at arbitrarily small scales.

1.4 Overview

Many mathematical problems arise in Dynamical Systems theory from the study of
concrete models, such as the Lorenz-84 system with seasonal forcing. Chapter two
is an inventory of the dynamics observed in the periodically forced Lorenz-84 model.
This material provides the basic examples for the investigations pursued in Chapters
three and four.

In Chapter three, two simplified settings are considered for the occurrence of a
strange attractor inside closW u(C ), the closure of the unstable manifold of an in-
variant circle C of saddle type. In the first scenario, Hénon-like strange attractors
are proved to occur for a diffeomorphism T of the solid torus R2 × S1. For certain
parameter values, there exists an invariant circle C with rational rotation number
such that the above strange attractors are contained in closW u(C ). In a slightly dif-
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ferent setting it is proved that clos W u(C ) contains an attractor, where the dynamics
on C is quasi-periodic. The precise characterisation of the quasi-periodic Hénon-like
attractors remains conjectural.

In Chapter four the Hopf-saddle-node bifurcation for fixed points of diffeomor-
phisms is studied in two model maps. These maps are constructed in such a way
that they are likely to be representative of a large class of Hopf-saddle-node diffeo-
morphisms. The main point of interest is the rich bifurcation diagram near a 1:5
resonance bubble on a Hopf bifurcation boundary.

Throughout the thesis, particular emphasis is put on the study of strange attrac-
tors that are typical for three-dimensional diffeomorphisms. The theory of strange
attractors for three-dimensional vector fields and for two-dimensional maps is quite
developed. See e.g. the results on the Lorenz attractor [GH, Tuc] and on Hénon-like
attractors [BC, DRV, MV, Via2, LSY]. On the other hand, attractors of diffeo-
morphisms having a genuine three-dimensional nature lie at the verge of the theory
developed so far [Tat, Via1, Via2]. In this respect, the phenomena discussed in Chap-
ters three and four display many similarities with those encountered in the forced
Lorenz-84 model. In particular, quasi-periodic Hénon-like strange attractors seem to
occur in a persistent and abundant way.

Many questions remain open for future research. We just mention a few:

1. The study of the Shil′nikov homoclinic tangency bifurcation for fixed points of
diffeomorphisms of saddle-focus type; in particular, the analysis of the related
attractors.

2. A rigorous theoretical analysis concerning the existence and structure of quasi-
periodic Hénon-like strange attractors, in the spirit of [BC, MV, Via2, LSY].

3. A discussion of the Hopf-saddle-node bifurcation for fixed points of diffeomor-
phisms in a more general setting. Analysis of the global bifurcations occurring
near the secondary Hopf-saddle-node points.

The three Chapters of this thesis are based on the papers [BSV1, BSV2, BSV3]
respectively.
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Chapter 2

The Lorenz-84 climate model with
seasonal forcing

2.1 Introduction

2.1.1 The periodically driven Lorenz-84 system

Weather and climate prediction are difficult tasks, because of the complexity of the
atmospheric evolution. Computer models used for these predictions usually contain
a high number of variables and parameters. Therefore, it is practically impossible to
perform detailed studies of their dynamical properties. On the other hand, there is
experimental evidence [109] that low-dimensional attractors appear in some hydrody-
namical flows just after the onset of turbulence. As a consequence, low-dimensional
models have attracted the attention of meteorologists, mathematicians and physi-
cists over the last decades. Low-dimensional models are easier to study than the
infinite-dimensional Navier–Stokes equations or large computer models. In particu-
lar, geometrical and qualitative methods from bifurcation theory [6, 56, 78] can be
applied to clarify the transitions from regular to complicated dynamical behaviour.

In this Chapter we examine a model for the long term atmospheric circulation,
proposed by Lorenz [80] in 1984, obtained by a Galerkin projection of an infinite
dimensional model. This is a three-dimensional system given by

ẋ = −ax − y2 − z2 + aF,

ẏ = −y + xy − bxz + G,

ż = −z + bxy + xz,

(2.1)

where the dot represents differentiation with respect to the time t. System (2.1) has
been used in climatological studies, for example by coupling it with a low-dimensional
model for ocean dynamics. For related work, see [118] and references therein. On the
other hand, the bifurcation diagram of (2.1) has been analysed in [102]. For other
dynamical studies of this system, that we shall refer to as the (autonomous) Lorenz-84
model, see [61, 82].

We briefly summarise the meaning of variables, parameters and constants in the
Lorenz-84 model. The time unit of t is estimated to be five days. The variable x
stands for the strength of the symmetric, globally averaged westerly wind current. The
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variables y and z are the strength of cosine and sine phases of a chain of superposed
waves transporting heat poleward. The terms in b represent displacement of the
waves due to interaction with the westerly wind. The coefficient a, if less than one,
allows the westerly wind current to damp less rapidly than the waves. The terms
in F and G are thermal forcings: F represents the symmetric cross-latitude heating
contrast and G accounts for the asymmetric heating contrast between oceans and
continents. In a later paper [81], Lorenz pointed out that F and G should be allowed
to vary periodically during a year. In particular, F should be larger in winter than in
summer. However, in his numerical study he kept G fixed, identifying (F,G) = (6, 1)
and (F,G) = (8, 1) with summer respectively winter conditions. He introduced a
periodical variation of the parameter F between summer and winter conditions, by
setting F = 7+2 cos(2πt/T ) with T of the order of magnitude of 1 year, i.e., T = 73.

We use a slightly different approach, in order to study seasonal effects. Here F
and G are both taken T periodic in time, by using

F (1 + ε cos ωt) and G(1 + ε cos ωt), ω = 2π/T .

The Lorenz-84 model thereby turns into a parametrically forced system:

ẋ = −ax − y2 − z2 + aF (1 + ε cos(ωt)),

ẏ = −y + xy − bxz + G(1 + ε cos(ωt)),

ż = −z + bxy + xz.

(2.2)

We refer to this three-dimensional T -periodic system as the driven Lorenz-84 model.
As in [61, 80, 81, 82, 102], the parameters a and b from now on are set to a = 1/4
and b = 4, while T is fixed at 73. The value of ε used in most of the numerical
simulations is 0.5. However, smaller values are used when investigating the relation
between the dynamics of systems (2.2) and (2.1). For this reason ε is used as a control
parameter together with F and G. We indicate the three-dimensional parameter space
by M = {F,G, ε} . Fixing a value ε = ε∗ means selecting a plane Mε∗ = {F,G}
inside M. Only positive values of G have to be considered, since solutions of (2.2) for
G = −G0 correspond to solutions for G = G0 by changing the sign of y and z. For
numerical experiments, we mainly focus on the parameter window

(F,G, ε) ∈ [0, 12] × [0, 9] × [0, 0.5],

for which (F,G) are centred around summer and winter conditions. However, we are
also concerned with asymptotical properties of (2.2) for G → 0 and G → ∞. The
driven system is studied in terms of its Poincaré map1

PF,G,ε : R3 → R3

which is a diffeomorphism depending on the parameters2 (F,G, ε).

Remark 2.1. By ‘periodic point’ we mean a point q ∈ R3 such that Pm(q) = q for
some integer m 6= 0. A period m point and an invariant circle of P correspond to a
period |m|T limit cycle and an invariant two-torus, respectively, of the flow of (2.2),
see Table 2.2 in Sec. 2.3.

1 Also called stroboscopic, first return or period mapping.
2 We often suppress some or all parameters in the notation, writing PF,G or P
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The dynamics of the family PF,G,ε is first explored by iteration to an attractor for
several values of (F,G), for ε = 0.5 fixed. In fact, P has an attracting bounded subset
of R3 for all values of F, G and ε (see Sec. 2.2.1). The map P is computed by numerical
integration of equation (2.2) over a period T . The length of the period causes P to be
quite sensitive to initial conditions. To achieve sufficient numerical precision we chose
a method of integration based on the Taylor expansion of the solution (see Sec. 2.A).
Some preliminary results are examined in the next section.

2.1.2 Overview of the attractors of the Poincaré map

In Figure 2.1 we plotted one-dimensional projections of sequences of attractors of P .
In each bifurcation diagram, G varies in a grid with spacing 0.01 on the line F = F0,
where F0 is kept fixed. For each G on the grid, the y-projection of one attractor is
plotted. We achieved a sort of continuity in the evolution of the attractors by using
the following algorithm. Values F = F0 and G = 0 are fixed initially. Starting from
the point q = (x, y, z) = (1, 2, 3), a loop of 2000 iterations of PF0,0 is carried out, of
which the last 100 points are plotted. Then the parameter G is increased by 0.01
and the last point is used to start a new loop. Note that no coexistence of attractors
(multistability) can be detected in this way.

The attractors plotted in Figure 2.1 belong to three classes: fixed (or periodic)
points, invariant circles and strange attractors [89, 95, 100, 99]. A fixed point A is
the unique attractor occurring for small F , compare Figure 2.1 (a) and (b). As G
increases, its y-coordinate evolves continuously in the first case and has a jump at
G ' 0.5 in the second. The fixed point A is also detected for all G larger than a
value GA depending on F . In Figure 2.1 (c)–(f) one has respectively3 GA ' 0.84,
1.48, 3.9, 7.54.

At F = 1.2 (Figure 2.1 (c)) an invariant circle C occurs for G small, instead of A .
In the G-interval (0.34, 0.37), pointed by a solid arrow, C is phase-locked to a fixed
point attractor.4 The circle shrinks down as G increases and at G ' 0.78 (marked
by a dashed arrow) the fixed point A reappears. For G larger, the evolution of A is
similar to Figure 2.1 (b): a discontinuity occurs at G ' 0.84, but A persists for all
larger G.

The circle attractor C also exists for F = 5, 7, and 11, for G smaller than a
threshold GC depending on F . One has respectively GC ' 0.64, 0.33, and 0.48,
marked by arrows in Figure 2.1 (d), (e) and (f). A ‘doubled’ circle 2C occurs for
F = 7 and 0.34 l G l 0.5 (see Sec. 2.4.9). A strange attractor is found for most G
values in the intervals 0.65 l G l 1.29, 0.59 l G l 1.7 and 0.5 l G l 2.04 respectively,
but for G larger the fixed point A reappears. For F = 7 and F = 11, A is again
replaced by a circle attractor C2 in the intervals 2.15 l G l 3.89 and 2.36 l G l 7.53
respectively. This corresponds to the ‘cigar’-like sequences C2(7, G) in Figure 2.1 (e)
and C2(11, G) in (f).

Several transitions of the attractors are detected by this procedure. Then the
following questions arise: what is the exact subdivision of the parameter plane M0.5?

3 When giving approximate numerical values we shall use the symbols l, m and ' instead of
<, >, and =.

4 This corresponds to an Arnol′d tongue A0 of rotation number zero [4, 41, 99].
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(e) F = 7 (f) F = 11. The last 100 points of each iteration loop are plotted, see text.
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Can we characterise the transitions in terms of bifurcations? Which bifurcations lead
to strange attractors? What are the dynamical properties of these strange attractors
and the implications for the (un)predictability of the driven model? This Chapter is
intended to provide a coherent inventory of the phenomenology and to give answers,
whenever possible, to the above questions.

2.1.3 Setting of the problem and sketch of results

A first sketch of the organisation of M0.5 again is obtained by brute force iteration.
In Figure 2.2 we plotted a black dot for all (F,G)-values such that a fixed or periodic
point attractor occurs.5 Therefore, white points correspond either to a quasi-periodic
invariant circle or to a strange attractor. A grid with spacing 1/200 is fixed inside
M0.5. For all (F,G) on the grid, N iterations of the map P are computed, starting each
time from the point q = (x, y, z) = (1, 2, 3). The condition checked in the algorithm
for a period k point is that the maximum of

dist
(
P n(q), P n−k(q)

)
, dist

(
P n(q), P n−2k(q)

)
, dist

(
P n(q), P n−3k(q)

)

be less than 10−12. Usually, N is set to 200, but for a few parameter values it was
necessary to take up to N = 105 iterates to get convergence to an attractor.

It turns out that a fixed point A is the unique attractor for G large (see Sec. 2.2.2
for a proof). A circle attractor C2 exists in region Q2. The cigar-like sequences of
attractors C2(7, G) and C2(11, G) in Figure 2.1 (e) and (f) correspond to sections of Q2

by a vertical line F = 7 and F = 11 respectively. The dashed lines in Figure 2.2 are
Arnol′d tongues with zero rotation number. These tongues are rather narrow and open
up only at the lower boundary of Q2, at some small black spikes visible in Figure 2.2 (b)
(see Sec. 2.4.1). Quasi-periodicity appears thus to be prevalent in Q2, in the sense that
it occurs with large relative measure in the parameter space (see e.g. [95]). A circle
attractor C occurs for F > 1 and G smaller than a certain value GC (F ), compare again
Figure 2.1 (c)-(f). We guess that C persists for all parameter values inside the strip Q1

in Figure 2.2 (b), bounded above by the line G = 0.28. As G increases, C may undergo
different fates, depending on the value of F . For 1.25lF l1.7, C crosses a period one
Arnol′d tongue A0 (compare Figure 2.2 (b)) and then breaks up (Sec. 2.4.8). Indeed,
a chaotic range L1 occurs just above A0 (Figure 2.5). Several windows of periodicity
occur and outside them, strange attractors occur like in Figure 2.6 (B).

For F m 5 there is a different, wide region inside M0.5 where strange attractors
are found. In Figure 2.2 (b) one can see that this chaotic range becomes wider as
F increases and is roughly divided into two parts, labelled by U and L2. In the
latter, strange attractors are prevalent: periodic points occur only in small windows.
Inside U, fixed point attractors seem to be prevalent, (compare the large wave-like
black regions in Figure 2.2 (b)) and strange attractors now and then appear (also see
Figure 2.12). Region Q2 is separated from U by a thin solid black strip where a unique
fixed point attractor is detected.

Most of the above transitions of the attractors are explained in terms of bifurcation
theory (see [38, 56, 78, 99] for a general presentation). The simplest bifurcation of
PF,G is the loss of stability of a fixed point when one of the eigenvalues of DPF,G

5 To simplify the picture, no dots are plotted above the straight line G = 3/4F .
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crosses the unit circle. To this group belong the saddle-node, period doubling and the
Hopf bifurcation [41, 89], all of which are found in the family PF,G. A framework of
bifurcation curves of fixed points is shown in Figure 2.3 and Figure 2.5 (left). Saddle-
node bifurcations occur on the curves SN 0, SN sub

0 and SN 1. The two branches SN 0

and SN 1 of supercritical saddle-node bifurcations meet tangentially at a cusp C. The
Arnol′d tongue A0 is bounded by two curves of supercritical saddle-node bifurcations.

Supercritical Hopf bifurcations of fixed points6 occur on curves H1, Hsub
1 and H2.

The attracting invariant circle C is born from the attracting fixed point A as (F,G)
cross H1 from left to right. This explains the change from the fixed point A in
Figure 2.1 (b) to the circle C in Figure 2.1 (c). So the curve H1 is the boundary at
the left of strip Q1 in Figure 2.2 (b). Similarly, the circle attractor C2 is born from
the attracting fixed point A for (F,G) crossing H2 and entering region Q2.

Remark 2.2. To see the quadratic behaviour in the evolution of the radius of the
invariant circles near the Hopf bifurcations, a much smaller scale is required in the
parameter. See Remark 2.9 in Sec. 2.4.2 for examples.

A good part of the phenomena in Figures 2.1 and 2.2 can be explained by the
previous results. This yields a subdivision of the parameter plane in regions with the
same dynamics, Figure 2.4. There we also sketch the four chaotic ranges L1, L2, U,
U′ (see below). The dashed curves B and SH, as well as the boundary of L1, are not
bifurcation curves of PF,G. B roughly indicates the breakdown of the circle C and SH
denotes the boundary between L2 and U. For details, see Secs. 2.4 and 2.5.

One of the main points of interest is the relation between the dynamics of systems
(2.1) and (2.2). This is at first analysed as a perturbation problem from ε = 0 (see
Sec. 2.3). Assuming that both the perturbative Ansatz [5, 56] and genericity [99] hold,
bifurcations of the autonomous system persist inside Mε, at least for ε sufficiently
small. It turns out that the bifurcations sketched in Figure 2.3 for ε = 0.5 are indeed
‘inherited’ from the autonomous system ε = 0. Moreover, other bifurcations are found
to persist for ε = 0.01 (Secs. 2.3.2 and 15). An important case is a codimension two
Hopf-saddle-node bifurcation of a fixed point, which is an organising centre of the
bifurcation diagram of the autonomous case [102].

However, in spite of all similarities, even for ε positive and small the planes Mε and
M0 present a number of differences. Arnol′d resonance tongues [6, 4, 23], attached
to curves of Hopf bifurcations, appear in Mε (this is the case of A0, Figure 2.5).
Homoclinic connections7 of the flow of system (2.1) generically are broken and replaced
by homoclinic intersections and bifurcations for the map P (see Sec. 2.3.2). In this
sense, ε = 0 already is a bifurcation value.8 Apart from this, codimension three
bifurcations may occur in the parameter space M, changing the global organisation
of Mε. Indeed, a codimension three bifurcation causes the disappearance of the Hopf-
saddle-node point at ε smaller than 0.5. These differences between M0.5 and M0 are
further discussed in Secs. 2.4 and 2.5.1.

6 We recall that a Hopf bifurcation [41] of a fixed point of P corresponds to a Nĕımark–Sacker [56,
78] bifurcation of a limit cycle of the flow of system (2.2).

7 Also called saddle connections [56, 99].
8 Of infinite codimension, in the sense that adding time dependence can require infinitely many

parameters for the unfolding.
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It is of special interest to determine which routes lead from simple to compli-
cated dynamical behaviour, both for ε fixed or not. Two scenario’s for the birth
of strange attractors are theoretically understood: cascades of period doubling bi-
furcations [23, 41, 45, 99] and homoclinic tangency bifurcations [23, 95, 99]. The
former is a gradual process where the complexity of the attractor increases stepwise
as the parameter varies. Well-known model maps displaying strange attractors origi-
nating from cascades of period doubling are the logistic map [41, 45] and the Hénon
map [11, 104]. On the other hand, homoclinic bifurcations may lead to a strange
attractor at once. Unfoldings of homoclinic tangencies for one-parameter families of
diffeomorphisms generically yield a large variety of dynamical phenomena. Hénon-like
strange attractors or repellors occur with positive Lebesgue measure in the parame-
ter space [42, 86, 120] (we recall that Hénon-like strange attractors coincide with the
closure of the unstable manifold of some hyperbolic saddle point and their dimen-
sion is usually not much larger than one). Close to a homoclinic tangency, cascades
of homoclinic tangencies accumulate, as well as cascades of period doubling bifurca-
tions of periodic attractors [125]. Infinitely many periodic attractors can coexist close
to a diffeomorphism with a homoclinic tangency. This is known as the Newhouse
phenomenon [87, 96].

Several other phenomena are found close to homoclinic tangencies in concrete mod-
els. Cascades of cusps and accumulation of Arnol′d tongues on curves of homoclinic
bifurcations have been reported in [23]. There it was conjectured that accumulation
of Arnol′d tongues might be a mechanism for the creation of infinitely many sinks in
the Newhouse phenomenon.

The basic dynamical property of a strange attractor is sensitive dependence with
respect to initial conditions. Computation of the spectrum of the Lyapunov expo-
nents [12] is one of the standard ways to detect chaotic behaviour, since a positive Lya-
punov exponent implies sensitivity with respect to initial conditions [44, 99, 104, 109].
Moreover, knowledge of the Lyapunov spectrum of an attractor allows to compute
its Lyapunov dimension [52, 67], considered to be an upper bound of the Hausdorff
dimension under general assumptions. In what follows, the Lyapunov exponents are
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denoted by λ1, λ2 and λ3, with λ1 ≥ λ2 ≥ λ3. The Lyapunov dimension is defined by

DL = k +

∑k
j=1 λj

|λk+1|
,

where k is the unique index such that
∑k

j=1 λj ≥ 0 and
∑k+1

j=1 λj < 0. Another
indicator of the dynamics is the power spectrum [30, 98]. In all power spectra we plot
the square of the moduli of the Fourier coefficients against the frequency, where the
latter is limited to the interval [0, 1/2] (see Sec. 2.C for details).

The numerical results in Sec. 2.4 suggest that the strange attractors in the family
PF,G,ε usually appear due to homoclinic tangencies. Period doubling cascades are
sometimes observed and, in fact, the two scenario’s are not independent, see e.g. [95,
104]. Strange attractors were found in the four regions L1, L2, U and U′ in Figure 2.4.
The birth of strange attractors in Lk is caused by different phenomena than in U and
U′.

The strange attractor L1 in Figure 2.6 (B) occurs in L1, right after the breakdown
of an invariant circle.9 For nearby parameter values, a period five attractor is
found (Figure 2.7 (A)), inside an Arnol′d tongue A1/5. The highest peak in its power
spectrum (Figure 2.7 (a)) occurs—as it should—at frequency f1 = 0.2, with one
harmonic at f2 = 2f1. Note that the power spectrum of L1 (Figure 2.7 (b)) still has
dominant frequency components at f̃1 = 0.1939 and f̃2 = 0.3878 ' 2f̃1, respectively
close to f1 and f2. This persistence of the peaks is due to intermittency of type I [97].
Indeed, a large number of iterates tends to stay close to the five regions inside L1

where the periodic attractor has just disappeared through a saddle-node bifurcation.
The attractor L1 appears as a consequence of the destruction of the circle C , caused
by a homoclinic tangency inside A1/5 (for more details on this route, see Sec. 2.4.7).
As a result, L1 has the properties of a folded circle: its dimension is close to one
(DL(L1) ' 1.056), its folded geometric structure is illustrated in Figure 2.8 (a).

Quasi-periodic bifurcations (Sec. 15) play an important role in the birth of strange
attractors and repellors of dimension higher than two (Secs. 21 and 2.5.1). Attractors
such as 4C in Figure 2.7 (A) are created by two consecutive quasi-periodic period
doublings, compare Sec. 2.4.9. The attractor 4C is the union of two curves, each
invariant under P 2. We call this type of invariant set a period two invariant curve,
also see Secs. 2.4.9 and 2.5.1. For nearby parameter values, the strange attractor Q1

in Figure 2.7 (B) is found.10

However, a whole quasi-periodic period doubling cascade does not occur, since 4C
is destroyed by a homoclinic tangency inside an Arnol′d tongue (see Sec. 21). The
fact that λ2 ' 0 (Table 2.1) suggests that the dynamics on Q1 still preserves a quasi-
periodic component, inherited from 4C . The power spectra of the two attractors,
displayed in Figure 2.7 (a), (b), confirm this idea. The period two curve 4C has
two fundamental frequencies, one of which is of course 0.5. The other frequency
g1 = 0.32839 (labelled by 1 in Figure 2.7 (a)) is given by j/2, where j is the frequency
of P 2 on any of the two invariant curves. All harmonics gk = kg1 up to order 35
are identified by crosses on the corresponding peak in Figure 2.7 (a). The remaining
peaks occur on frequencies hk = 0.5 − gk, which are integer combinations of 0.5 and

9 The notation L stands for large, see Sec. 2.4.11.
10 The notation Q stands for quasi-periodic Hénon-like, see Sec. 21
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Figure 2.6: (A) Projection on (x, z) of a period five attractor of P , for G = 0.4107
and F = 1.25. (B) Same as (A) for the strange attractor L1, with G = 0.4106 (box
M is magnified in Figure 2.8 left). (a), (b) Power spectra for (A), resp. (B).
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24 Chapter 2. The Lorenz-84 climate model with seasonal forcing

-0.064

-0.061

-0.058

-0.055

-0.052

1.7678 1.76781 1.76782 1.76783

x

y

1.922

1.926

1.93

1.934

1.938

1.26 1.3 1.34 1.38 1.42

x

ỹ

Figure 2.8: Left: magnification of box M in Figure 2.6 (B), projection on (x, y). A
further magnification shows that the vertical line x = 1.7678 crosses the attractor in
at least 5 layers. A new magnification (not displayed) reveals at least 9 layers. To go
beyond that value requires higher accuracy in the integration. Right: a section of Q1

contained in a layer of thickness 2× 10−3 around the plane z = 0, projected on (x, ỹ),
where ỹ = y − 0.135 × z.

gk (the unique such combinations in the interval [0, 0.5]). For reference, h1, h2, and
h3 are labelled in Figure 2.7 (a).

The first four and the sixth harmonic of g1 (labelled in Figure 2.7 (b)) persist
in the spectrum of Q1, but all other harmonics have turned into broad band. This
persistence of the harmonics can be again explained in terms of intermittency. Power
spectra like in Figure 2.6 (b) or Figure 2.7 (b) are of mixed type [30]: they contain
marked peaks (atoms of the spectral density) but also have a broad band component
(locally continuous density).

The attractor Q1 is essentially three-dimensional, contained inside a ‘fattened’
Möbius strip. In reality, the fattening is rather thin, due to the size of the negative
Lyapunov exponent λ3 (Table 2.1). Indeed, this causes strong contraction in the
normal direction and, therefore, the Lyapunov dimension is too close to 2. This
is illustrated in Figure 2.8 right, where we plotted a section S of Q1 obtained by
cutting it with a layer of thickness 2 × 10−3, centred around the plane z = 0. For
a better visualisation of the thinness in the normal direction, S is ‘rotated’ by using
transformed coordinates. This projection is less than 2.5 × 10−6 wide in ỹ, so that a
Hénon-like structure in the normal direction cannot be distinguished. Values of x are
limited in (1.1, 1.5), corresponding to segment S in Figure 2.7 (B). We had to compute
108 iterates to achieve the 13005 points inside S plotted in the picture.

The above scenarios are quite common for the family PF,G,0.5, close to the break-

DL λ1 λ2 λ3 e1 e2 e3

A 1 1.1e-5 -0.18 -14.5 1.e-6 1.e-4 1.e-4
B 2.016 0.24 2.6.e-4 -14.9 1.e-4 1.e-4 2.e-4

Table 2.1: Lyapunov dimension and exponents of 4C (A) and of the strange attractor
Q1 (B) in Figure 2.7. The ei’s are estimates for the error in λi (see Sec. 2.B).
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down of an invariant circle in L1 or L2. However, intermittency disappears as the
parameters are shifted deeper inside Lk. The Lyapunov dimension increases, as well
as the total power contained in the broad band component of the power spectra
(Secs. 2.4.8 and 2.4.9).

strange attractors of a different type occur in U (Figure 2.9 (A) and 2.10 (A)). The
geometrical and dynamical structure of broken invariant circles is no longer present:
the power spectra look like white noise, indicating that the iterates of P are uncorre-
lated (see Remark 2.12 in Sec. 2.C). We call these attractors ‘Shil′nikov-like’ because
their shape is similar to that of Shil′nikov repellors found in the autonomous Lorenz-84
system ε = 0. In [102], the presence of such repellors was put in relationship with the
occurrence of two curves of Shil′nikov bifurcations [56, 78], corresponding to homo-
clinic loops of a saddle-focus equilibrium. For nearby parameter values, limit cycles
like in Figure 2.11 were detected. Because of oscillations followed by long excursions,
such limit cycles are called spiral attractors [102]. In the driven Lorenz-84, spiral
limit cycles occur for most parameter values in U and U′. Only narrow Hénon-like
attractors seem to occur in U′ (see Figure 2.38 (a) and 2.51 (a)). Similar attractors
are found also in U.

The differences between U and L2 are illustrated by means of the Lyapunov di-
mension. In Figure 2.12 (a) we plotted a magnification of Figure 2.1(e). On the left
of the picture, the circle C occurs: the Lyapunov dimension (Figure 2.12 (b)) is one,
since the maximal Lyapunov exponent is zero. After crossing an Arnol′d tongue A0

of rotation number zero, C locks again to a periodic point on a small interval and
then breaks down. The Lyapunov dimension grows almost immediately up to ∼ 2.1.
Except for a few narrow Arnol′d tongues (where the dimension drops to zero), strange
attractors are prevalent in the chaotic range L2. Then, at G ' 1.08, some bifurcation
occurs,11 after which the evolution of the attractors changes significantly. For most
parameter values in U an attracting fixed point is found (in the intervals of zero Lya-
punov dimension in Figure 2.12 (d))). The corresponding T -periodic limit cycles of
system (2.2) are of spiral type. Shil′nikov–like strange attractors as in Figure 2.10 (A)
occur for a few parameter values, singled out by the peaks in the Lyapunov dimen-
sion (Figure 2.12 (d)) and by some fuzzy vertical lines in Figure 2.12 (a). Further
discussion on the classification of the strange attractors of P for ε = 0.5 is given in
Sec. 2.4.11.

We now list some more points of interest of the family PF,G,ε. Since the au-
tonomous system (for ε = 0) exhibits Shil′nikov bifurcations, we may well expect
three-dimensional homoclinic tangencies of a saddle-focus fixed point of a diffeomor-
phism. For analogy with the autonomous case, we shall call this multidimensional
homoclinic bifurcation ‘Shil′nikov tangency bifurcation’ (Sec. 2.3.2).

A large variety of strange attractors can be found for PF,G,ε Some of these are
essentially three-dimensional12 and have dimension d with 2 < d ≤ 3. The theory for
this class of attractors has not yet completely been developed: only partial results have
been proven so far, see e.g. [113, 121]. Also the Newhouse–Ruelle–Takens scenario [89,
100] may occur, since for small ε the map PF,G,ε has a repelling invariant two-torus
T inherited from the autonomous system (Sec. 15).

11 This happens on the ‘curve’ labelled by SH in Figure 2.4
12 By this we mean that they are not a suspension of a two-dimensional attractor.
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As we have seen, the driven Lorenz-84 model displays a rich dynamics, with various
bifurcations of the attractors. The chaotic ranges in the parameter plane are wide.
It is a challenge to understand the corresponding bifurcation patterns of this model.
The present Chapter aims at giving a rough inventory of the dynamics and an analysis
of some of the bifurcations at hand.

2.2 Analytical results on the Poincaré map

In this section, we prove the following properties of the family PF,G,ε.

1. For all F,G, ε the map PF,G,ε has an attractor (Sec. 2.2.1).

2. For G large, PF,G,ε has a unique attracting fixed point A (Sec. 2.2.2).

3. For G = 0 PF,G,ε has a unique fixed point, which is attracting for F ≤ 1 and
undergoes a supercritical Hopf bifurcation at F = 1.

The results are formulated in terms of the following system

ẋ = −ax − y2 − z2 + aFf(t),

ẏ = −y + xy − bxz + Gg(t),

ż = −z + bxy + xz,

(2.3)

with T -periodic continuous functions f, g : R → R. System (2.2) is a particular case
of (2.3), where f(t) = g(t) = 1 + ε cos(ωt). At the end of each section, we describe
the implications for the map PF,G,ε.

2.2.1 Existence of attractors

For the autonomous Lorenz-84, there exists a bounded set in the phase space R3 =
{x, y, z}, depending on the parameters F,G, which attracts all trajectories [81]. A

similar property holds for system (2.3). Let ‖f‖∞
def

= supt∈R |f(t)|.
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Proposition 2.1. For a > 0 and every b, F,G, there exists a sphere S ⊂ R3 centred
at (x, y, z) = (0, 0, 0) with radius r0 depending on a, F,G, ‖f‖∞, ‖g‖∞, such that all
integral curves of equation (2.3) ultimately penetrate S and then remain inside.

Proof. We denote the Euclidean norm on R2 or R3 by ‖ ‖. Consider a solution
(x, y, z)(t) of equation (2.3) and define R(t) = ‖(x, y, z)‖. Using (2.3), we have

1

2

d

dt
(R2) = −ax2 − y2 − z2 + xaFf(t) + yGg(t) ≤

≤ −ãR2 + R

√
a2F 2 ‖f‖2

∞ + G2 ‖g‖2
∞,

where ã
def

= min{a, 1}. We have used the Schwartz inequality: xaFf(t) + yGg(t) =(
aFf(t), Gg(t)

)
· (x, y) ≤

∥∥(
aFf(t), Gg(t)

)∥∥ ‖(x, y)‖. For R sufficiently large, namely

R > ã−1

√
a2F 2 ‖f‖2

∞ + G2 ‖g‖2
∞

def

= r0,

the function R(t) is decreasing. Notice that it is sufficient to require that f(t) and
g(t) be bounded on R.

Since f(t) = g(t) = 1 + ε cos(ωt) and a < 1 in system (2.2), the radius of the
attracting sphere S for the map PF,G,ε is r0 = (1 + ε)

√
F 2 + G2/a2.

2.2.2 Occurrence of a unique fixed point attractor for large
G

Proposition 2.2. For all a > 0 and every b, F there exists a G0 such that for all
G > G0, system (2.3) has a unique attracting periodic solution pG.

Proof. We scale the variables x, y, z of (2.3) as follows:

u = δ2x, v = δy, w = δz, with δ = G−1/3,

so obtaining
u̇ = −au − v2 − w2 + aFδ2f(t),

δ2v̇ = −δ2v + uv − buw + g(t),

δ2ẇ = −δ2w + buv + uw.

(2.4)

As G tends to infinity, δ approaches zero and (2.4) becomes a singularly perturbed
system. For δ = 0 we obtain the degenerate system

u̇ = −au − v2 − w2, u(v − bw) + g(t) = 0, u(bv + w) = 0.

The latter two equations yield

w = −bv, v = − g(t)

(1 + b2)u
. (2.5)

Substituting (2.5) in (2.4), we get the one-dimensional equation

u̇ = −au − g2(t)

(1 + b2)u2
. (2.6)
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With the change of variables p = u3, we obtain the linear differential equation

1

3
ṗ = −ap − g2(t)

1 + b2
. (2.7)

The solution of the Cauchy problem given by (2.7) with initial condition p0 is

p(t) = e−3at

(
p0 −

3

1 + b2

∫ t

0

e3asg2(s)ds

)
.

The initial condition p0 = 3(1+b2)−1(1−e3aT )−1
∫ T

0
e3asg2(s)ds belongs to a T -periodic

solution pT (t), asymptotically stable and negative for all t. Given a solution p(t) with
initial condition p1 ∈ R, we have indeed p(t) − pT (t) = e−3at(p1 − p0) which tends to
zero as t → +∞, since a > 0.

Thus for δ = 0, system (2.4) has a globally attracting periodic solution s0(t) =
(uT , vT , wT ), where uT = (pT )1/3 and vT , wT are obtained from uT according to (2.5).
We now prove that for δ small, that is, for G large, system (2.4) has a period T
solution sδ(t) = (u(t), v(t), w(t)) such that sδ(t) → s0(t) uniformly in t ∈ [0, T ] as
δ → 0. The variational equation associated to (2.6) and to uT is

V̇ =

(
−a + 2

g2(t)

(1 + b2)u3
T

)
V, V (0) = 1, where V =

∂uT

∂u0

. (2.8)

According to [47], it is sufficient to show that the unique T -periodic solution of (2.8)
is identically zero. Since pT = u3

T is solution of (2.7), we have

g2(t)

(1 + b2)u3
T (t)

=
g2(t)

(1 + b2)pT (t)
= −a − 1

3

d

dt
log (pT (t)) .

Hence (2.8) becomes

d

dt
log (V (t)) = −3a − 2

3

d

dt
log (pT (t)) .

Therefore, the solution of (2.8) is

V (t) = e−3at

(
pT (t)

p0

)−2/3

,

which tends to zero as t → +∞. In the original coordinates (x, y, z), sδ corresponds
to a unique attracting T -periodic solution pG of (2.3), existing for G large.

The occurrence of a unique attracting periodic orbit pG was suggested by numerical
experiments with system (2.2). In that case, pG corresponds to the P -fixed point A

occurring for G large (region F in Figure 2.4).
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2.2.3 Invariant circles for G = 0

Numerical experiments with the map PF,G,ε suggest that for G = 0, F > 1 and
0 ≤ ε < 1 (and possibly for a small range beyond ε = 1), the map has an invariant
circle C , born at F = 1 at a Hopf bifurcation of a fixed point. We here prove that for
G = 0 and all F , the map PF,ε = PF,0,ε has a fixed point undergoing a Hopf bifurcation
at F = 1. Existence of the invariant circle for all F > 1 is proved for ε small.

We now consider the periodic orbits of system (2.3). Given a function h : R → R,

denote by h the average of h over the interval [0, T ], that is h
def

= 1
T

∫ T

0
h(s)ds.

Proposition 2.3. Suppose f 6= 0. For G = 0 and for all F , system (2.3) has a unique

T -periodic orbit pF (t), which is stable for F ≤ f
−1

and undergoes a Hopf bifurcation

at F = f
−1

.

Proof. For G = 0 system (2.3) has a symmetry and its dimension can be reduced. In-
deed, the Cauchy problem given by (2.3) with initial condition (x0, y0, z0) is equivalent
to the reduced system

u̇ = −au − r − a + aFf(t), u(0) = u0,

ṙ = 2ur, r(0) = r0,
(2.9)

where r = y2 + z2 and u = x − 1. The u-axis is invariant under the flow of (2.9).
Putting r = 0, the first equation of (2.9) can be solved, giving

u(t) = e−at

(
u0 + 1 − eat + aF

∫ t

0

easf(s)ds

)
.

A unique periodic solution uT (t) exists, with initial condition

u0 =
1

eaT − 1

(
1 − eaT + aF

∫ T

0

easf(s)ds

)
.

This implies that system (2.3) has a unique periodic solution pF (t) = (uT (t) + 1, 0, 0)
for r0 = 0. We now prove that system (2.9) has no periodic solutions other than pF (t).
Since we shall use the following fact again, we state it in a remark.

Remark 2.3. Consider a T -periodic solution (u, r)(t) of (2.9). Then, either r(t) = 0
or u = 0. Indeed, from the second equation in (2.9), one has

r(t) = r0 exp

(
2

∫ t

0

u(s)ds

)
.

From r(T ) = r(0) = r0, it follows that either r0 = 0, or
∫ T

0
u(s)ds = 0.

Continuing the proof, suppose that (x, y, z)(t) is a T -periodic solution of (2.3)
and take the corresponding solution (u, r)(t) of (2.9). Averaging the first of the
equations (2.9) over [0, T ] yields

u = Ff − 1 − r/a.
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If Ff − 1 ≤ 0, remark 2.3 implies that r = y2 + z2 must be zero. Therefore (x, y, z)(t)
coincides with pF (t) (up to a time shift). If Ff − 1 > 0, then the functions y and z
have the form

y(t) = r(t) cos(−bt + θ0), z(t) = r(t) sin(−bt + θ0), (2.10)

and they are not periodic13 unless r = 0.
To determine stability, we integrate the variational equation associated to (2.9)

and pF (t) = (uT (t) + 1, 0, 0):

V̇ =



−a 0 0
0 uT (t) −b(uT (t) + 1)
0 b(uT (t) + 1) uT (t)


V, V (0) =




1 0 0
0 1 0
0 0 1


 , (2.11)

where V is the derivative of the flow of (2.9) with respect to initial conditions (x0, y0, z0).
Since V̇1k = −aV1k, k = 1, 2, 3, the first row of the monodromy matrix V (T ) is
(V11, V12, V13)(T ) = (e−at, 0, 0). Therefore, one eigenvalue of V (T ) is e−aT and the
other two do not depend on V21 and V31. On the other hand, it is easy to see that

V32 = −V23 and V22 = V33. (2.12)

Indeed, define W1 = V22 − V33 and W2 = V23 + V32. Using (2.11), one obtains a linear

homogeneous Cauchy problem for W1 and W2, with initial conditions W
(0)
1 = W

(0)
2 =

0, which implies that W1(t) = W2(t) = 0. So it is sufficient to solve the problem

V̇22 = uT V22 + b(uT + 1)V23, V
(0)
22 = 1,

V̇23 = −b(uT + 1)V22 + uT V23, V
(0)
23 = 0.

(2.13)

We put (2.13) in complex form:

Ż = A(t)Z, where Z = V22 + iV23, A = uT − ib(uT + 1).

Integration of the previous equation yields

(V22 + iV23)(T ) = exp

(∫ T

0

uT (s)ds

)
exp

(
−ib

∫ T

0

(uT (s) + 1))ds

)
.

Using (2.12), one sees that the other two eigenvalues µ2 and µ3 of V (T ) are complex
conjugated. Since their modulus is

exp

(∫ T

0

uT (s)ds

)
= exp

(
T (Ff − 1)

)
,

then pF (t) is stable for Ff − 1 < 0 and it loses stability as F increases through 1/f ,
because µ2 and µ3 cross the unit circle. Furthermore, we have

arg(µ2) = −b

∫ T

0

(uT (s) + 1))ds = −bTFf,

which is equal to −bT at the moment of the bifurcation. Since −bT/2π is irrational13,
a Hopf bifurcation takes place.

13 This holds for the choice b = 4 and T = 73, for which bT/2π = 146/π is irrational.
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Figure 2.13: Phase portrait of the vector field W . The dashed half circle represents
the attracting sphere S obtained in Sec. 2.2.1. The case 1 < F < 1+a/2 is sketched,
for which the line Z (u = a/2) of zero divergence lies at the right of the saddle A.

We now show that in the autonomous case equation (2.9) has a unique global
attractor for F > 1.

Proposition 2.4. Consider system (2.9), with F > 1 and f(t) = 1 for all t. The
equilibrium B = (0, a(F − 1)) is the unique global attractor of (2.9).

Proof. For F > 1, the vector field W (2.9) has two equilibria, B, which is stable,
and the saddle A = (F − 1, 0). By the Poincaré-Bendixson theorem, an attractor of
the flow of (2.9) can be an equilibrium or a periodic orbit. We now show that the flow
of (2.9) has no periodic orbits. The divergence div W = −a + 2u of W is negative for
all (u, r) at the left of the line Z of zero divergence (Figure 2.13). We distinguish two
cases. Suppose first that the saddle A lies at the left of line Z, that is, 1 < F < 1+a/2.
Since the vector field W points leftward on all points of the vertical line K given by
(u = F − 1), any periodic orbit must lie at the left of K. But no periodic orbit can
exist there, because the divergence is negative at the left of Z.

Take now an arbitrary value of F . If the vector field W (2.9) has a periodic orbit,
this orbit must be born at a saddle-node bifurcation of periodic orbits. Indeed, no Hopf
bifurcation of equilibria occurs for W , since the two equilibria never change stability
type. Consider thus a saddle-node periodic orbit O of period S, parametrised by(
u(s), r(s)

)
for s ∈ [0, S]. Take a Poincaré map Q, defined in a suitable local section

of O. The eigenvalue µ of the derivative DQ at the fixed point of Q corresponding to
O is one. On the other hand, u = 0 by Remark 2.3 and, therefore,

log(µ) =

∫ S

0

div W
(
u(s), r(s)

)
ds =

∫ S

0

(−a + 2u(s))ds = −aS < 0,

which gives a contradiction.
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We now discuss the consequences of the above propositions for the family PF,G,ε.
Here we have f(t) = 1 + ε cos(ωt), therefore f = 1. The map PF,G,ε has a unique
fixed point for G = 0 and all F , ε, which is stable for F < 1 and undergoes a Hopf
bifurcation at F = 1. A circle attractor C is created there, but its persistence in F is
guaranteed only for F ≈ 1, by the theory of the Hopf bifurcation. On the other hand,
hyperbolicity of the stable equilibrium B in Proposition 2.4 implies that system (2.9)
has an attracting T -periodic orbit when applying a small T -periodic perturbation
f(t) (small in the sense that ‖f − 1‖∞ is small). For the map PF,G,ε, this implies the
existence of the circle attractor C for all F and for small G and ε.

A remarkable consequence of (2.10) is that for all F > 1 the rotation number ρ is
the constant on C , namely −bT/2π. This situation is not generic in a family of circle
mappings. Indeed, given the physical meaning of G (Sec. 2.1.1), the system for G = 0
seems to have too much symmetry and to be degenerate.

2.3 The driven system as a perturbation from the

autonomous case

We now investigate the relations between the dynamics of the driven and the au-
tonomous Lorenz-84, first introducing some notation. The flows of system (2.1) and
(2.2) are denoted by ΦF,G and ΨF,G,ε respectively, where

ΦF,G :R3 ×R → R3, (x, y, z; s) 7→ Φs
F,G(x, y, z)

ΨF,G,ε :R4 ×R → R4, (x, y, z, t; s) 7→ (Ψs
F,G,ε(x, y, z, t), t + s).

The two flows are equivalent when ε = 0. More precisely, one has

Ψs
F,G,0(x, y, z, 0) = Φs

F,G(x, y, z) for every (x, y, z, s) ∈ R4.

Therefore, ΦF,G-invariant dynamical objects are also ΨF,G,0-invariant. On the other
hand, any dynamical property of ΨF,G,ε can be expressed in terms of the Poincaré
map PF,G,ε, see Table 2.2. Notice that the flow ΨF,G,0 does not have equilibria, since
ṫ = 1 in system (2.2). A hyperbolic equilibrium q = (x, y, z) of Φ is said to be of type
(m,n), with m+n = 3, if m eigenvalues of the linear part of the vector field (2.1) at q
have negative real part, while n have positive real part. Similarly, a hyperbolic fixed
point q of the map P is of type (m,n) if m eigenvalues of the derivative DP have
modulus less than one and the remaining n lie outside the unit circle in the complex
plane. At least one of the eigenvalues of DPF,G,ε at a fixed point is real.
We use the term Hopf bifurcation in each of the following cases.

1. Two complex conjugate eigenvalues of the linear part of the vector field (2.1) at
an equilibrium cross the imaginary axis and a limit cycle of the three-dimensional
flow Φ is born.

2. Two complex conjugate Floquet multipliers γ exp(±2πiρ) of a limit cycle of ΦF,G

or ΨF,G,ε cross the unit circle14 and an invariant two-torus is born.

14 With ρ 6= ±1/k, for k = 1, . . . , 4. These are codimension two bifurcations, called strong
resonances [56, 78].
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ΦF,G ΨF,G,ε PF,G,ε

equilibrium ↔ period T limit cycle ↔ fixed point

limit cycle ↔ two-torus ↔ invariant circle

two-torus ↔ three-torus ↔ two-torus

Table 2.2: Equivalences for ε = 0 between invariant dynamical objects of the flow
ΦF,G of system (2.1) (left), of the flow ΨF,G,ε of system (2.2) (centre), and of the
Poincaré map PF,G,ε. Centre and right column items are equivalent also for ε > 0.

3. Two complex conjugate eigenvalues γ exp(±2πiρ) of a fixed point of the map P
cross the unit circle14 and an invariant circle is born.

Notice that no limit cycle of the four-dimensional flow Ψ can be born in a standard
Hopf bifurcation, since Ψ has no equilibria. Case 2 is often called Nĕımark–Sacker or
torus bifurcation, also see footnote 6.

2.3.1 The autonomous system

We present some results on the autonomous Lorenz-84 system, mainly due to Shil′nikov,
Nicolis and Nicolis [102]. The discussion begins with the bifurcation diagram of the
flow ΦF,G (Figure 2.14). For background on bifurcation theory and the relevant ter-
minology see [23, 56, 78]. The organising centres are the following codimension two
bifurcation points: a cusp C, a Hopf-saddle-node point HSN , both bifurcations of
equilibria; a 1:1 and a 1:2 strong resonance point, and a cusp CL, all bifurcations of
limit cycles. Two branches of saddle-node curves of equilibria SN 0 and SN 1 meet
tangentially at C, forming a tongue-shaped region. In the neighbourhood of C, three
equilibria (two sinks and one saddle) coexist inside this tongue and only one sink A

occurs outside.
A curve H1 of Hopf bifurcations of equilibria emanates from (F,G) = (1, 0). The

curves SN 0 and H1 are tangent at the point HSN . Above HSN , both curves become
subcritical and are denoted by SN sub

0 and Hsub
1 . A second curve H2 of supercritical

Hopf bifurcations of equilibria (not reported in Figure 2.14) has been numerically
computed in [102].

A curve of period doubling of limit cycles is marked by PD. It is split by a 1:2
resonance point into a subcritical and a supercritical part, where the former lies above
the 1:2 point. This point is connected to HSN by a curve QHsub of subcritical Hopf
bifurcations of limit cycles. The 1:1 and 1:2 resonance points are connected by a curve
QHsuper of supercritical Hopf bifurcations of limit cycles. The two curves indicated
by SL (meeting at a cusp CL) are saddle-node bifurcations of limit cycles.

We now explain how the dynamics varies with the parameters. A unique stable
focus A exists for small F , to the left of curve H1 and outside the tongue with tip at
C. Following dashed segment A1 in Figure 2.14, from left to right: at the Hopf curve
H1, below HSN , A splits into an attracting limit cycle M and a saddle B1 of type
(1, 2). At PD, below the 1:2 point, M loses stability and an attracting limit cycle
2M is created. Crossing the curve QHsuper, 2M loses stability and an attracting
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Figure 2.14: Bifurcation diagram of the autonomous system (2.1), from [61].

two-torus is created. Following segment A2 from left to right: the saddle-focus B1

and a repelling equilibrium are generated in a subcritical saddle-node bifurcation at
the curve SN 0. Crossing H, the repellor turns into a saddle-focus B2 of type (2, 1)
and a repelling limit cycle M is created. Then M undergoes a subcritical period
doubling at the curve PD. Following segment A3 from top to bottom: crossing the
curve QHsub downwards, M becomes attracting and a two-torus repellor is created.
At SN 1 the saddle B2 collides with the attractor A .

It is known [31, 56, 78] that the bifurcation diagram near a Hopf-saddle-node point
of three-dimensional vector field generically shows subordinate Shil′nikov bifurcations
of equilibria. The latter is a complicated homoclinic phenomenon which may cause the
birth of Shil′nikov strange attractors. Two curves of Shil′nikov homoclinic bifurcations
(not reported in Figure 2.14) were computed numerically in [102]. Some other routes
to chaos in Lorenz-84, such as cascades of period doublings, have been described
in [82, 102].

Remark 2.4. It seems that some features of the above bifurcation diagram are rather
common among low-dimensional systems with two parameters, compare e.g. [124].
The main ingredients are a Hopf-saddle-node point, a 1:1 and a 1:2 resonance point,
connected by bifurcation curves of limit cycles. These global configurations are likely
to be caused by a higher codimension bifurcation, ‘hidden in the background’ because
of the lack of a sufficient number of active control parameters. A similar idea is
expressed in the work of Carcassès et al. [33] (see also [23] and references therein),



36 Chapter 2. The Lorenz-84 climate model with seasonal forcing

who show that semi-global patterns formed by curves of period doubling and saddle-
node bifurcation are confined to a certain number of configurations due to geometrical
reasons.

One of the goals of the present work is to investigate which parts of the diagram
in Figure 2.14 persist for the map PF,G,ε with ε > 0 and to find out which bifurcations
play a role in the changes.

2.3.2 Persistent dynamical properties

We here summarise which dynamical properties of the autonomous Lorenz-84 system
persist in the driven system for ε small.

Starting point is the bifurcation diagram in Figure 2.14. Assuming the correspon-
dences in Table 2.2, all bifurcations of equilibria for ΨF,G turn into bifurcations of
fixed points for PF,G,0. Similarly, bifurcations of limit cycles of ΨF,G turn into bifurca-
tions of invariant circles PF,G,0. According to classical perturbation theory [5, 56, 38],
hyperbolic [60, 99] fixed or periodic points, normally hyperbolic invariant circles and
quasi-periodic tori of PF,G,0 persist for PF,G,ε, if the size ε of the perturbation is small.
In the next section, we make a stronger statement, namely that for small ε the local
bifurcation diagram of fixed points of PF,G,ε is a continuous deformation of that for
ε = 0. The situation is more complicated for global (homoclinic) bifurcations, or for
bifurcation of invariant circles (see Sec. 15 for the latter).

Bifurcations of fixed points

Consider a local bifurcation B ∈ Rm of fixed points of a C∞ map P : Rm → Rm,
where B has finite codimension. B is generic [56, 99] when the linear part and some
higher order jet of P at the point B satisfy appropriate transversality conditions. If
genericity holds, the Implicit Function Theorem implies that B persists under small
perturbations of the map P .

Remark 2.5. Often, it is possible to formulate the above transversality conditions
in terms of a normal form of P . One usually requires that a suitable combination
C of the normal form coefficients of P be non-vanishing at B. In this case, a small
perturbation will not change the sign of C, nor the local bifurcation diagram around B.
Non-vanishing of C is usually checked by symbolic manipulation of the Taylor series,
possibly in combination with numerical methods such as integration of differential
equations.

The above conclusion can be applied to the family PF,G,ε, assuming genericity of
the bifurcations at ε = 0. In fact, genericity holds with the exceptions mentioned
in Remark 2.6. All saddle-node curves are persistent in ε without changes and so
is the cusp C. As for the Hopf curves, an important modification introduced by
the forcing is the creation of Arnol′d tongues and strong resonance points. Generic
circle dynamics [4, 99] may be either quasi-periodic or phase locked, depending on the
rotation number ρ. In particular, the dynamics is quasi-periodic if and only if ρ is
irrational [41, 56]. Circle dynamics is degenerate for the map PF,G,ε, at ε = 0, in the
sense that it is a rigid rotation. We recall that a PF,G,0-invariant circle C corresponds
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Figure 2.15: (a) Part of the bifurcation diagram of fixed points of PF,G,0, for ε = 0.01.
(b) Magnification of (a) of box M around the point HSN . The latter graph has been

deformed by an affinity, plotting couples (F, G̃), where G̃ = G − 1.5 × (F − 1.5)).

to the limit cycle M of the flow ΦF,G (see Table 2.2). The rotation number on C is
ρ = T/TL, where TL is the period of the limit cycle M . Regions inside M0 where an
invariant circle occurs are foliated by lines (hairs) upon which the rotation number ρ is
constant. Each hair Aρ is attached to a point belonging to the Hopf bifurcation curve
where the circle has been created. At such a point, the two complex eigenvalues of the
derivative DPF,G,0 are equal to exp(±2πiρ). Points where ρ = p/q with q = 1, 2, 3, 4
are called strong resonances. As ε increases from zero, hairs on which ρ = p/q is
rational split into resonance tongues Ap/q. The edges of the tongues have infinite
order of contact as ε goes to zero [21, 29]. If q 6= 1, . . . , 4, the two edges of Ap/q meet
at a tip attached to a Hopf point with rotation number p/q (also see Figure 2.40).
In the case of a strong resonance, the local bifurcation diagram is richer, including
also homoclinic bifurcations and chaos. Furthermore, a Hopf curve is interrupted by
a generic strong resonance. Examples of some gaps produced on the Hopf curves for
ε = 0.5 are presented in Sec. 2.4.2 and Sec. 2.4.1.

Remark 2.6. At ε = 0, all strong resonances introduced on the Hopf curves by the
forcing are degenerate (non-generic). Consider a generic point B ∈ H1 at ε = 0.
Two eigenvalues of the linear part of the vector field (2.1) are purely imaginary, say,
µ± = ±iα. Therefore, at ε = 0 two eigenvalues of DP at B are exp(±iTα). If
Tα = p/q with q = 1, . . . , 4, then B is a strong resonance for the map P . Since B is a
generic Hopf bifurcation for the flow of the autonomous system, it does not interrupt
the Hopf curve. Furthermore, a unique hair emanates from B and we conclude that
B, considered as a strong resonance of P , is degenerate.

Part of the bifurcation diagram of fixed points of PF,G,ε for ε = 0.01 is shown in
Figure 2.15. The saddle-node curve, the Hopf curve, the cusp and the point HSN all
persist for this value of ε. For concreteness the (F,G, x, y, z) values of this point are,
approximately, (1.68390322, 1.68243988, 1.12474427, −0.01057355, 0.37742916). This
can be compared with the corresponding values for ε = 0: (1.68405172, 1.68296855,
1.125, −0.01038068, 0.37370466) to see that the differences are quite small. However,
for ε = 0.5 the point HSN does not persist, and the local bifurcation diagram is quite
different (see Sec. 2.4.3).
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Figure 2.16: Left: two disks D+ and D− are tangent to the curve QHsub at the point
D. Right: a Cantor subset of the curve QHsub persists for ε > 0. In the complement
of the disks, bubbles (or resonance holes) B1, B2 and B3 appear.

We now turn to homoclinic bifurcations of fixed points. Homoclinic connections of
the flow ΦF,G of system (2.1) correspond to degenerate homoclinic tangencies for the
map PF,G,0. For ε > 0, the connections generically break, being replaced by transversal
homoclinic intersections and nondegenerate homoclinic tangencies.15 Special atten-
tion must also be payed to the accumulation of transversal homoclinic intersections.
Depending on the geometry (e.g., homoclinic orbits in a Shil′nikov-like case) it can be
difficult to detect when the ‘first’ homoclinic tangency is produced. There may not
even be a ‘first’ tangency.

Bifurcations of invariant circles

We discuss the influence of the forcing on the curves PD, QHsub and QHsuper in
Figure 2.14. Recall that the first is a curve of period doubling of the limit cycle M ,
while the second and third are curves of sub- and super-critical Hopf bifurcations
of M , respectively. For a general presentation of all theory used in this section,
see [17, 18] and references therein.

Limit cycles of the flow ΦF,G of the system (2.1) turn into PF,G,0-invariant circles,
compare Table 2.2 and the previous section. For ε > 0, the circles have different
bifurcation behaviour, depending on the rotation number ρ. In brief, the bifurcation
diagram is locally persistent in ε only when restricting to Diophantine tori. For ε = 0
the sets in Mε where Diophantine circles occur locally have the product structure of
a curve (of constant rotation number) times a Cantor set (of frequencies). Such local
Cantor foliations of the parameter plane intersect the bifurcation curves at Cantor
subsets, where the Diophantine circles are normally elliptic. To fix ideas, we briefly
describe how the parameter plane Mε looks like for ε > 0 close to the curve QHsub.
The circle C is Diophantine on all vertical lines labelled by Lk in Figure 2.16 (right).
Except at the intersections with QHsub, the circle C is normally hyperbolic. Then the
theory implies that C persists also in two open regions on each side of line Lk. Two
of these regions D+ and D−, called flat conic discs, are sketched in Figure 2.16 left.
They have an infinite order of tangency with QHsub. Inside the conic discs C may be

15 Also called (homoclinic) tangency bifurcations [56, 95].
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λ1 λ2 λ3 e1 e2 e3

A -2.e-6 -0.01867 -0.0187 1.e-7 2.e-6 1.e-6
B -2.e-6 -0.00269 -0.00271 3.e-7 2.e-6 1.e-6
C 5e-5 4.5e-7 -0.01 6.e-6 1.e-8 4.e-6

Table 2.3: Lyapunov exponents of the repellors in Figure 2.17, see footnote16.

resonant and is repelling in D+ and attracting in D−. The torus repellor T occurs
only in D−. Note that the value of ε until which a given circle persists, depends
strongly on the value of the Diophantine rotation number.

In this way, for ε > 0 each of the above curves turns into a frayed boundary
as in Figure 2.16 (right). Outside all discs, small resonance regions remain in the
parameter plane—the Chenciner ‘bubbles’, or resonance holes—where the behaviour
of C under the perturbation is not predicted by the general theory. On the other
hand, the resonance holes might as well be extremely small in size and, therefore,
numerically hard to detect. Apart from these holes, strong resonances locally may
destroy the curves.

Persistence of quasi-periodic Hopf bifurcations is now illustrated by a numeri-
cal example. A similar picture for quasi-periodic period doubling is presented in
Sec. 2.4.9. For (F, ε) = (1.8, 0.01) fixed, at G = 1.683 the circle repellor C occurs
(Figure 2.17 (A)). The maximal Lyapunov exponent λ1 is approximately zero, while
λ2 and λ3 are negative,16 indicating that C is both quasi-periodic and normally hy-
perbolic. Referring to Figure 2.16 (left), parameter values belong to L1 ∩ D+.

At G = 1.681 (Figure 2.17 (B)), λ2 and λ3 are almost zero and C is normally
elliptic. Parameter values are close to L1 ∩ QHsub in Figure 2.16. The power spec-
trum contains six peaks labelled by k, corresponding to harmonics fk = kf1 of the
fundamental frequency f1 = 0.4165. At G = 1.68 the circle has become attracting
and coexists with the torus repellor T (Figure 2.17 (C)). Parameters belong now to
L1 ∩ D−. Two Lyapunov exponents are zero on T and the power spectrum confirms
the presence of two fundamental frequencies f1 = 0.4142 and g1 = 0.19195. Peaks
occur at integer combinations of f1 and g1. In Figure 2.17 (c), we labelled peaks on
frequencies f1, f2 = 2f1, f1 − g1, f1 + g1 and f3 − g1 by 1, 2, h, j and l respectively.
Notice that very small peaks g1 and g1 occur in Figure 2.17 (b), before the bifurcation.
This is due to intermittency of type II [97].

Similar experiments for other values of F suggest that a large part of QHsub

survives for ε small. However, for ε = 0.5, no repelling torus is found and therefore
the curve QHsub does not seem to persist. See Secs. 2.4.5 and 2.5.1.

2.4 Dynamical inventory of the Poincaré map

The structure of the parameter plane M0.5, sketched in Figure 2.4, is described in the
next sections. The bifurcation diagram of fixed points (Figure 2.3) and the scanning

16 Lyapunov exponents of repellors are computed using P−1. All reported values hold for the
inverted time.
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Figure 2.17: (A), (B), (C) Projections on (x, z) of repellors of P1.8,G,0.01, for G = 1.683,
G = 1.681, and G = 1.68 respectively. The initial point (x, y, z) = (1.12,−0.17, 0.41)
has been used in all cases. (a), (b), (c) Power spectra of the repellors.

for fixed points in Figure 2.2 (b) are repeatedly used in mapping out M0.5. The reader
is referred to all the above pictures for the labelling.

The dynamics of the autonomous case ε = 0 is preserved in a large part of M0.5.
In region F, that is either for G large or F small, a fixed point attractor A exists.
Circle dynamics occurs in the two regions Q1 and Q2. So far, the only changes
from the autonomous case are due to resonance phenomena in Q1 and Q2 and on
the boundaries H1 and Hsub

1 (see Sec. 2.3.2). The bifurcation diagram is unchanged
also close to curves SN sub

0 and SN 0 for F outside interval I = {F | 1.2 l F l 3}
(Figure 2.18). However, important modifications occur at ε = 0.5:
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1. the disappearance of the Hopf-saddle-node point HSN and the destruction of
the Hopf curves inside interval I (Sec. 2.4.3).

2. The disappearance of the frayed curve of quasi-periodic Hopf bifurcations QHsub

(Sec. 2.4.5).

3. The creation of new families of fixed points close to SN 1, away from the cusp
C (Sec. 2.4.4). Part of this curve is the boundary between regions F and U, U′.

4. The growth in size of the chaotic regions L2 and U.

5. The creation of the chaotic regions L1 and U′.

See Sec. 2.5.1 for comparisons with other values of ε. We proceed in order of increasing
complexity of the phenomena, starting with region Q2, where the situation is fairly
well understood.

2.4.1 Circle dynamics inside region Q2

A first indication of circle dynamics is given by the cigar-shaped sequences of attractors
in Figure 2.1 (e) and (f). The cigars are projections on the plane (G, y) of one
parameter families C2(F0, G) of circles, where F0 is fixed to 7 and 11 respectively.

The circle C2 is born at supercritical Hopf bifurcations belonging to curve H2. To
fix ideas, consider Figure 2.1 (e). The fixed point on the right (G large) is the attractor

1 1.5 2 2.5 3 3.5
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SN 0
SN sub

0

H1

Hsub
1

I

G̃

F

Figure 2.18: Bifurcation diagram of fixed points of PF,G for ε = 0.5, enlargement of
box labelled by A in Figure 2.3. The graph has been affinely deformed, by plotting
couples (F, G̃), where G̃ = (G − 1.3 × (F − 1)).
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Figure 2.19: (a) Hyperbolic arcsine of the modulus (solid line) and real part (dashed
line) of the eigenvalues of DP along a curve of continuation of fixed points, for F =
7. The two Hopf bifurcations P1 and P2 are marked by small boxes, see text for
explanation. (b) Same as (a), for F = 11.

A . As G decreases, A loses stability through a supercritical Hopf bifurcation, at a
point P1 ∈ H2. This is illustrated in Figure 2.19 (a), where we plotted modulus and
real part of the complex conjugate eigenvalues µ1 and µ2 of DP along a curve of fixed
points. The curve is obtained by numerical continuation, starting from the attractor
A and letting G decrease. The Hopf bifurcation P1 occurs at G ' 3.89, where A

turns into a saddle-focus B of type (1, 2). At that moment, C2 is created and starts
expanding.17 Then, at G ' 2.14 the circle A and the saddle B collide again, through
a Hopf bifurcation P2, belonging to the lower branch of H2. Between P1 and P2

the real part of µ1 on B changes sign several times, implying that µ1 and µ2 rotate
around the origin inside the complex plane. The saddle B does not undergo other
bifurcations between P1 and P2. For F = 11, the G-interval of existence of C2 and
B is wider, since the two Hopf bifurcations occur at G ' 7.53 and G ' 2.36. Also
notice that B becomes much more unstable than for F = 7, given the larger values
of the modulus of the eigenvalues.

We investigated the dynamics on C2 by computing the Lyapunov exponents. The
results for F = 7 and F = 11 are plotted in Figure 2.20. For all scanned G values
between P1 and P2, the maximal Lyapunov exponent seems to be zero. Therefore,
the dynamics on C2 is quasi-periodic for most parameter values in the cigars. This is
also confirmed by the evolution of the rotation number on C2 for parameters on the
above cigars, see Figure 2.21.

For definiteness, consider Figure 2.21 (a). Since F = 7 is fixed, parameter values
belong to a vertical line V in the plane M0.5, intersecting many Arnol′d tongues
in Q2. The intersections are intervals on V where the rotation number ρ of C2 is
constant. Therefore, each segment of the broken line in Figure 2.21 (a) is a devil’s
staircase [41]. However, all horizontal plateaus, corresponding to intervals of constant
rational rotation number, are extremely narrow. For example, intervals where ρ = 0
are intersections of V with Arnol′d tongues where C2 is locked to a fixed point. The
first such interval (pointed by an arrow in Figure 2.21 (a)) is less than 6× 10−6 wide.

17 A small scale on the parameter G is required to properly visualise this, see Remark 2.9 in
Sec. 2.4.2.
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Figure 2.20: (a) Lyapunov exponents λ1 and λ2 in the G interval [2, 4], with F0 = 7.
The step in G is 0.01. (b) Same for G ∈ [2, 8], with F0 = 11.

For concreteness, the values of G at the end points of the interval are 2.20340 30475
and 2.20340 89969, approximately. Similarly, all other Arnol′d tongues are very thin
in Q2, see below.

We now describe the global organisation of the Arnol′d tongues A0
k with zero

rotation number inside Q2. The first two tongues, A0
30 and A0

31, are shown in Fig-
ure 2.22 (a), together with H2.

Remark 2.7. The index k in A0
k is the number of windings of the T -periodic limit

cycle of ΦF,G corresponding to the fixed point occurring for parameter values inside
A0

k. This is illustrated in Figure 2.23 (a), where a limit cycle with initial condition
inside A0

35 is shown. An ‘inner’ and an ‘outer’ winding can be observed. The time
evolution of the z-coordinate is plotted in Figure 2.23 (b) and the number of maxima
in the interval [0, T ], which is also the number of windings, is 35. The number of
windings increases by one unit from tongue A0

k to tongue A0
k+1. Furthermore, the size

of the inner windings inside tongue A0
k increases with k: in A0

30 it is much smaller
than in Figure 2.23 (a). Compare [123] for similar phenomena.
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Figure 2.21: (a), (b) Rotation number ρ of C2 on the same G intervals as Fig-
ure 2.20 (a) and (b) respectively. When the fixed point attractor A occurs (outside
the cigars, thus), we set ρ = 0. The step in G is 0.01.
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Figure 2.22: (a) Magnification of box C in Figure 2.3. The Hopf curve H2 is plotted
with the first two Arnold tongues of zero rotation number. Magnifications of the boxes
around the 1:1 resonance gaps g31 and g31 are given in Figure 2.24 (a) respectively (b).
(b) Portion of H2 contained inside box D in Figure 2.3, together with Arnol′d tongues
with zero rotation number.

Each tongue A0
k intersects H2 two times, once at the lower and once at the upper

branch. There, the Hopf curve H2 is interrupted by 1:1 resonance gaps, respectively
gk and gk. To fix ideas, we consider the two gaps g31 and g31 (Figure 2.24 (b) and (a)
resp.). The gap g31 is bounded by two 1:1 resonance points BT 31,a and BT 31,b (see
Figure 2.24 (c) and (d)). Two saddle-node lines SN 31,a and SN 31,b are tangent to H2

at respectively BT 31,a and BT 31,b. Furthermore, SN 31,a meets SN 31 at a cusp C31,a

and SN 31,b meets SN 31 at a cusp C31,b. The cusps C31,a and C31,b are connected by
the saddle-node curve SN 31,ab.

This structure is repeated at g31, at the other side of A0
31, but the scale is much

smaller (Figure 2.24 (a)). Two 1:1 resonance points and two cusps are connected by a
fourth branch of saddle-node bifurcations, denoted by SN 31,ba. The four saddle-node
lines thus bound the tongue A0

31. This type of semi-global organisation of resonance
tongues has been described in other systems, see [92, 126].
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Figure 2.23: (a) Projection on (y, z) of a limit cycle corresponding to a period
one phase-locked circle for parameter values (F,G) = (9.3, 3.0472169822) inside A0

35.
(b) Same as (a), projection on the (t, z)-plane.
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Figure 2.24: (a) Resonance gap g31 in the Hopf line H2. The dashed lines lines
are saddle-node bifurcation curves. (b) Resonance gap g31. (c), (d) Magnification of
boxes L and M in (b), respectively, at the tangencies between H2 and the saddle-node
curves

The same global structure seems to exist close to all other 1:1 resonance gaps in
H2. Each gap gk on the lower branch of H2 is connected to a gap gk on the upper
branch by an Arnol′d tongue A0

k of rotation number zero. These tongues are plotted
in Figure 2.2 (a), where they appear as lines crossing Q2. Indeed, they are extremely
narrow for most parameter values in Q2. Arnol′d tongues of higher period are even
narrower, so that the circle C2 is found quasi-periodic for most values inside Q2.
However, the tongues become wider close to the gaps g31, at the lower branch of H2.
Indeed, A0

32 and A0
33 form two small black spikes in Figure 2.2 (b), near the lower

boundary of region Q2. These spikes become even wider for larger ε, so that H2 is
destroyed by strong resonance gaps, see Sec. 2.5.1.

More resonance gaps interrupting the continuity of H2 are shown in Figure 2.22 (b).
The first three from the left and that at the right are 1:1 resonance gaps, while the
second from right, labelled h33, is due to a 1:2 resonance. The size of the gaps increases
with F and on the lower branch of H2 it is much larger than on the upper one.

Remark 2.8. In the parameter space M two curves of 1:1 resonance bifurcations pass
through the two extremes of each gap. Both curves emanate from the same degenerate
1:1 resonance point on the curve H at ε = 0, compare Remark 2.6.

As we have shown, plenty of resonance gaps occur on H2 (the same holds for H1,
see Sec. 2.4.3). It is known from the theory [56, 78] that the bifurcation diagram in
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the neighbourhood of such codimension two points is rich, involving global homoclinic
bifurcations, regions of chaoticity and homoclinic intersections. Such phenomena have
been detected in [70], although using a smaller forcing period T . It is likely that they
occur also in the family PF,G, see Sec. 2.5.2.

2.4.2 Circle dynamics in Q1

The circle C is born at Hopf points on the curve H1. This is illustrated in Figures 2.25
and 2.26, produced by a similar algorithm as Figure 2.1, with G fixed. The fixed point
attractor A occurs for small F (left part of the figures). Crossing H1 from left to
right, A undergoes a supercritical Hopf bifurcation at F = 1.013, where C appears.
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Figure 2.25: Left: projections on y of P -attractors as a function of F for G = 0.2
fixed. F is increased with a step of 0.02. The last 100 points of each loop are plotted.
Interval M is enlarged in Figure 2.26. Right: rotation number (modulo 1/2, see
Sec. 2.C) as a function of F . Each curve corresponds to a fixed value of G: G = 0.36
for the lowest and G = 0.08 for the upmost. Between two curves, G differs of 0.02.

Remark 2.9. If a Hopf bifurcation occurs at F0 and the invariant circle exists for
F > F0, then the radius of the circle is O(

√
F − F0) as F tends to F0 [56, 78]. In

the family PF,G, the interval of F usually has to be taken rather small to see this
asymptotics, still visible in Figure 2.26 (b). On larger intervals, the expansion of
the circle may look quite ‘explosive’, compare Figure 2.25 (left), Figure 2.26 (a) and
Figure 2.43 later on. The same holds for Hopf bifurcations at the border of Q2,
compare the extremes of the ‘cigars’ C2(7, G) and C2(11, G) in Figure 2.1 (e) and (f).

In Figures 2.25 and 2.26, all attractors occurring for F > 1.1 are projections of
C (F,G0), with G0 = 0.2. Also compare Figure 2.1 (c)–(f) for G small. Right after the
Hopf bifurcation, for 1lF l2, the size and form of C are quite sensitive to variations
of G, also see Figure 2.26. For larger G, this phenomenon becomes more evident and,
ultimately, inside region L1 the circle C breaks (see Figure 2.43).

All Arnol′d tongues emanating from H1 are very thin and lie more or less parallel
to the G = 0 axis. This is illustrated by a plot of the rotation number ρ as a function
of F (Figure 2.25 right), computed on sequences of circles such as in Figure 2.25 (left)
for a few fixed values of G. The lowest lines G = 0.36, 0.34 and 0.32 intersect the
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Figure 2.26: (a) Magnification of of interval M in Figure 2.25. Between consecutive
loops of iterates, F is increased with a step of 0.004. (b) Magnification of a small
interval pointed by an arrow in (a), where F is increased with a step of 3.5 × 10−5.
The last 100 points of each loop are plotted.

large period one tongue A0 in Figure 2.2 (b). There ρ is zero and this also influences
the other curves in Figure 2.25 (right). The small peak in ρ for G = 0.36 and F close
to 6 is due to a quasi-periodic doubling of C2, followed by an undoubling. However,
far from this peak and away from A0 the rotation number changes quite slowly with
F .

2.4.3 On the Hopf-saddle-node bifurcation point

For ε = 0.01, the curves SN 0 and SN sub
0 in fact form one curve, split by the point

HSN (Figure 2.15). On SN sub
0 a fixed point repellor R and a saddle B1 of type

(1, 2) are generated. Crossing Hsub
1 from left to right, the fixed point repellor R turns

into a saddle B2 of type (2, 1), while a circle repellor C is born (also see Figures 2.36
and 2.35 later on).

For ε = 0.5, SN sub
0 and SN 0 do not meet and the point HSN has disappeared

(Figure 2.18). Most of the changes occur inside interval I (this is where HSN occurs
at ε = 0.01). The Hopf curves H1 and Hsub

1 are broken to small fragments by many
strong resonance points.

Three 1:2 resonance points and one 1:1 resonance on H1 are plotted in Fig-
ure 2.27 (a). Another 1:1 resonance point can be seen in Figure 2.27 (b). At these 1:1
resonance points, SN sub

0 is tangent to H1. For larger F , the resonance gaps increase
even more in size and only minuscule segments of H1 survive inside I.

Remark 2.10. A Hopf curve in general can be continued across strong resonance
gaps. Indeed, curves of fixed points emanate from such points, on which two eigen-
values µ1 and µ2 of DP are real, with µ1µ2 = 1. This is not a bifurcation condition,
see [78]. For reference, such curves are plotted by dots in Figures 2.27 and 2.28.

We also want to stress that the curve Hsub
1 is completely broken by strong reso-

nances inside interval I. In Figure 2.28, Hsub
1 is interrupted by two 1:2 resonance points

and three 1:1 resonance points, two of which are shown in Figure 2.28 (b), the other
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Figure 2.27: (a) Projection on (F, z) of portions of H1 (thick lines) and SN sub
0 (dashed

lines), enlargement of box A in Figure 2.18. (b) Magnification of box M in (a). 1:1
resonance points are marked by small boxes, 1:2 resonance points by triangles and
cusps by circles.

is not marked. The curve SN 0 meets five cusps (two are shown in Figure 2.28 (b),
one is not marked) and is tangent to Hsub

1 at the 1:1 resonance points.

Since HSN persists at ε = 0.01 (Sec. 2.3.2), it must have disappeared through a
sequence of higher codimension bifurcations at some intermediate ε before reaching
ε = 0.5, see Sec. 2.5.1.

2.4.4 New families of fixed points in the chaotic range U′

It can be guessed from Figure 2.2 (b) and Figure 2.5 (right) that new families of
fixed point attractors are created below curve SN 1 in region U′. In this section we
provide an explanation of how these families are connected to the fixed point attractor
occurring in region F.

The curves SN 0 and SN 1 of saddle-node bifurcations meet tangentially at C,
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Figure 2.28: (a) Projection on (F, z̃) of portions of Hsub
1 (thick lines) and SN 0 (dashed

lines), enlargement of box B in Figure 2.18. The graph has been affinely deformed by
plotting z̃(F, z) = (z− 1.46× (F − 2.7)) on the vertical axis. (b) Magnification of box
M in (a). Symbols mean the same as in Figure 2.27.
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forming a tongue-shaped region (see Figure 2.5 (left)). Close to C, the dynamics
of P for ε = 0.5 is quite similar to that of the autonomous case ε = 0. A fixed
point attractor and a saddle are generated on both curves when (F,G) enter the
tongue. This is illustrated in Figure 2.29, where a curve K of fixed points is plotted.
For G large, the fixed point attractor A1 is detected by iteration and continued for G
decreasing. Arrows indicate the sense in which the curve is described. As G decreases,
K becomes almost vertical (see Figure 2.29 (a), above box M). A magnification of
box M (see Figure 2.29 (b)) shows that K meets a saddle-node point T1, belonging to
SN 1, where A1 turns into a saddle B1 of type (2, 1). The branch of saddles makes an
excursion at the right and meets a saddle-node point T0, belonging to SN 0. Here, B1

collides with the attractor A2 and the branch of A2 extends down to G = 0. Notice
that the latter saddle-node bifurcation clarifies the transition from Figure 2.1 (a) to
Figure 2.1 (b). To visualise this, the points found in Figure 2.1 (b) are plotted together
with the continuation curve in Figure 2.29 (a). In Figure 2.1 (b), G is increased by
0.01 at each step. When G is increased across T0, the attractor A2 disappears at
T0, and the P -iterates are attracted to A1. So A1 and A2 coexist in the G-interval
between T0 and T1. Consequently, a part of the tongue with tip at C is a region of
bistability. For (F,G) at the left of curve H1, two fixed point attractors A1 and A2

coexist with the saddle B2 In fact, all of them belong to a unique surface of fixed
points, partitioned by the saddle node curves SN 0 and SN 1. Outside the tongue or
at the right of H1, only one fixed point attractor possibly occurs, denoted by A . For
example, A is detected for low values of F , see Figure 2.1 (a). At the right of H1,
the fixed point A may coexist with the circle attractor C , but also with a strange
attractor, see Sec. 2.4.6.

For larger values of F the bifurcation diagram close to SN 1 is more complicated
than in the autonomous case. Many more fixed points appear here as F is increased.
This is illustrated in Figure 2.30, similar to Figure 2.29 (b), but with F = 0.8. The
point T1 again belongs to SN 1. Two ‘new’ saddle-node bifurcation points T a

2 and T b
2

are detected close to T1. Denoting by Ga and Gb the values of G at which these two
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Figure 2.29: (a) Projection on (G, y) of curve of P -fixed points, joining the attractors
A1 and A2, for F = 0.7. The curve is computed by numerical continuation. Crosses
mark the fixed points found in Figure 2.1 (b). (b) Magnification of box marked by M
in (a).
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Figure 2.30: (a) Projection on (G, y) of a curve of fixed points of P obtained by
continuation with respect to G, for F = 0.8. (b) Same as (a) for F = 0.9.
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Figure 2.31: (a) Projection on (F, y) of curves of saddle-node bifurcation points.
Four cusps are marked by Ck, k = 2, . . . , 5, while C is the same as in Figure 2.3.
(b) Enlargement of the previous picture around the first three cusps Ck.

points occur, four fixed points coexist18 in the interval (Ga, Gb). For F = 0.9, four
new saddle-node bifurcations occur, denoted by T a

2 , T b
2 , T a

3 and T b
3 (Figure 2.30 (b)).

For G in a suitably small interval, P has up to six coexisting fixed points. The new
bifurcations belong to curves emanating from a sequence of cusps, which possibly form
a cascade, compare [23]. In Figure 2.31, we plotted the cusp C and the curves SN 0

and SN 1, together with eight curves SN a
k and SN b

k, k = 2, . . . , 5, of saddle-node
bifurcations of fixed points. The points T a

k and T b
k belong to SN a

k and SN b
k, which in

turn emanate from a cusp Ck. The projection on the (F, y) plane has been chosen to
better distinguish the curves SN k. Indeed, in the (F,G) plane they all lie in a very
narrow strip above the curve SN 1.

We observe that a Shil′nikov tangency bifurcation might be related to the occur-
rence of the cusps and the coexistence of the several SN lines. A trace of this can be
seen in the spiral-like form of the limit cycles of ΨF,G,0.5 (corresponding to periodic
points of P ). For the limit cycle in Figure 2.32 (a), the number of windings (see
Sec. 2.4.1) is four (the fourth winding is quite narrow), while it is zero for the limit

18 In fact, the vertical line G = 0.469685 intersects the curve in Figure 2.30 (a) at four points.
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Figure 2.32: (a) Projection on (y, z) of a limit cycle of the flow ΨF,G,0.5 of sys-
tem (2.2), for (F,G) ' (1.2, 0.64). The corresponding fixed point belongs to curve
SN 5. (b) Same as (a), but the fixed point belongs to SN 1.
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Figure 2.33: (a) A curve K of fixed points, obtained by continuation (see text).
(c) Magnification of a horizontal layer L of (a). (b), (d) Magnifications of portions
of K for G in the intervals M1 and M2 respectively. For better visualisation, only
one part of K is plotted in each. A nonlinear transformation has been applied to
distinguish the oscillations of K, which are not visible in (a) nor in (c).

cycle in Figure 2.32 (b). At each curve SN k+1,a or SN k+1,b, a spiral limit cycle is
created possessing one more revolution than on SN k,a or SN k,b, thus with number of
windings increased by one.
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For F larger, inside regions U′ and U one finds orbits with an ‘inner’ and an ‘outer’
spiralling (Figure 2.11 (a) in Sec. 2.1.3), or displaying even more complicated patterns
(Figure 2.11 (b)). Compare with the winding orbits in [77]. Furthermore, new families
of fixed point attractors appear in U′ and U. We illustrate this in Figure 2.33 (a),
with a plot of a curve K of fixed points in U′. For better visualisation, two parts of
K are plotted with different linestyles. A magnification of a horizontal layer marked
by L is given in Figure 2.33 (c). The arrows indicate the direction we are following
in the description. The curve K is obtained as Figure 2.29, by taking A1 and doing
continuation for G decreasing (arrow 1 in Figure 2.33 (a) and (c)). The curve begins
to oscillate inside a small G-interval M1, magnified in Figure 2.33 (b). Each turning
point is a saddle node bifurcation (this holds for all pictures). At first the oscillations
occur in a very narrow G-interval and can be seen only with a further magnification
(box B in Figure 2.33 (b), where six SN bifurcations occur). Then, as y decreases
(arrow 2 in Figure 2.33 (a), (b) and (c)), the oscillations tend to become wider in G
and flatter in y, accumulating at the lowest branch of K. After 15 SN bifurcations,
K makes a long excursion towards a saddle-node point19 occurring for larger G, and
then turns back (arrow 3 in Figure 2.33 (b) and (c)).

On the branch which is coming back (dashed curve under arrow 4 in Figure 2.33 (c)
and (d)) the fixed points are saddles. Furthermore, this branch does not reach G = 0,
but meets another turning point (in box M2 magnified in Figure 2.33 (d)) and begins
to oscillate again. This time, after the first turning point, K goes upwards (arrow
5 in Figure 2.33 (a), (c) and (d)). After eleven SN bifurcations (the last is marked
by an arrow in box D, Figure 2.33 (d)), the fixed points on K become attracting.
These attractors occur in a small G interval, labelled by N 1 in Figure 2.33 (a). This
interval is roughly bounded by the two ‘vertical barriers’ close to arrows 5 and 6. As
G decreases (arrows 6), the curve K again meets several SN bifurcations. After that,
a branch of saddles again makes an excursion to a saddle-node point occurring for
larger G (arrow 7 in Figure 2.33 (c)).

The whole process repeats itself for G smaller. By further continuation of K, we
have found eight new branches N k of attracting fixed points (Figure 2.34 (a)). Each
of the new branches is bounded by two ‘vertical barriers’, where several saddle-node
bifurcations occur. On each ‘vertical barrier’ the continuation curve oscillates as in
Figure 2.33 (b) or (d). Therefore, for each G value in Figure 2.34 (b), many fixed
points coexist, most of them being saddles. The corresponding T -periodic limit cycles
of ΨF,G,0.5 are of spiral type.

It is natural to suspect that Shil′nikov tangency bifurcations may take place here.
In fact, narrow Hénon-like strange attractors are found nearby in U′, see Sec. 2.4.6.
In the autonomous system ε = 0 one curve of Shil′nikov bifurcations is tangent to
the curve SN 1 at several codimension two points. The organising centre for the
phenomena described in this section could be one of such codimension two bifurcations
of fixed points of PF,G.

19 For a clear visualisation we exclude the latter point from Figure 2.33 (a)-(d), just focusing on
a small interval in G.
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Figure 2.34: (a) A larger portion K (see text). (b) Magnification of a thin horizontal
layer labelled by L in (a), showing coexistence of a lot of different branches of saddle
fixed points.

2.4.5 On quasi-periodic Hopf bifurcations

For ε = 0 (Figure 2.3), the repelling circle C loses stability at quasi-periodic Hopf
bifurcations belonging to the curve QHsub (Sec. 15).

For ε = 0.5, numerical experiments reveal that C persists both for G small and for
G large and is attracting in the former and repelling in the latter case. We recall that
the attractor C is born at the Hopf curve H1, while the repellor C at the subcritical
Hopf curve Hsub

1 (Secs. 2.4.2 and 2.4.3). Thus at ε = 0.5 there appear gaps in the
parameter plane where C does not persist, being replaced by strange attractors or
repellors, or by nothing at all (in the latter case, by iteration only the fixed point A

is detected). These gaps are roughly located around the position where the frayed
curve QHsub (Sec. 15) is expected to intersect the current line F = const inside Mε.
We illustrate this by means of iteration to an attractor or repellor for F = 5 fixed,
in Figure 2.35. The left part G < 1.5 is just a different projection of Figure 2.1 (d).
The attracting fixed point A , however, is represented also for larger G. In the right
upper part (G > 2 and z > −1), P -repellors are plotted. The algorithm is the same as
usual, but this time G is decreased and P−1 is iterated, to detect repellors. This way
we perform a rough continuation scheme, for more accurate methods see Sec. 2.A.

To begin, the fixed point repellor R is found at G = 6. As G decreases, R

undergoes a Hopf bifurcation at G ' 5.71, at a point belonging to curve Hsub
1 in

Figure 2.3. The circle repellor C persists down to G ' 2.13 (marked by an arrow in
Figure 2.35), where it undergoes one quasi-periodic period doubling. A circle repellor
2C is created, persisting down to G ' 2.01. At G = 2 one finds a strange repellor,
but no repelling invariant set is found for smaller G. The precise scenario for the
destruction of the strange repellor is not clear at the present moment.

At the other side of Figure 2.35, the circle attractor C is found at G = 0. Increasing
G, the circle persists up to G ' 0.65 (marked by an arrow). strange attractors are
detected for 0.66 l G l 1.3, now and then replaced by windows of periodicity. For
Gm1.3, the fixed point A is the unique attractor. No invariant circle (either attracting
or repelling) is detected for G ∈ (0.66, 2). However, an invariant circle of saddle type
might persist in this gap (at least for most of the G values), thereby providing the



54 Chapter 2. The Lorenz-84 climate model with seasonal forcing

-2

-1

0

1

2

0 1 2 3 4 5 6

H2
R

A

z

G

Figure 2.35: Projection on (G, z) of sequences of repellors and attractors of P for F =
5 and ε = 0.5. See text for explanation. The attractor H2 is plotted in Figure 2.51.

‘link’ between circle attractor and repellor.

The size of these gaps is not as large for other values of F . For F = 4, the circle
C seems to exist for all values of G between 0 and 4.51, thus forming a one parameter
family C (F0, G) with F0 = 4. This is illustrated in Figure 2.36 left, where we plotted
attractors and repellors of P . The invariant set projected in the cigar-shaped region
is the circle C . For G < 1.615 (marked by an arrow), C is attracting and has been
detected as for Figure 2.1. For G > 1.615, C is repelling and has been obtained as
for Figure 2.35, using the inverse of P and letting G decrease. Although a quasi-
periodic Hopf bifurcation might occur at G > 1.615 (where C changes stability), no
invariant repelling torus could be detected. For all F -values in Figure 2.36 (left), the
rotation number (modulo 1/2) of C is plotted on the right. It repeatedly takes on
all values between zero and one, the number of complete oscillations tells how many
times. This means that the Arnol′d tongues are crossed transversally, agreeing with
the orientation as deduced from Figure 2.25 (right).
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Figure 2.36: Left: projection on (G, x) of sequences of repellors and attractors for
F = 4 and ε = 0.5. The picture has been obtained as Figure 2.35. Right: rotation
number modulo 1/2 on C , along the family plotted in the left picture.
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Figure 2.37: (a) Magnification of box labelled by O in Figure 2.36. Periodic points
of P for F = 4 and G on a grid with spacing 2.e − 5. For a few, sparse G-values,
no periodic point is detected (see text). (b) Projection on (x, y) of a period T saddle
limit cycle of ΨF,G,ε, corresponding to a saddle fixed point of P coexisting with the
strange attractor in Figure 2.38 (a) at G = 1.274585.

2.4.6 Coexistence of attractors and saddles in U′

The projection in Figure 2.36 (left) has been chosen to illustrate coexistence of the
attractors C and A in the G-interval (1.17, 1.615). Close to G = 1.17 (box indicated
by O), the coordinates of A are sensitive to changes in G. This is illustrated by
a magnification of box O (Figure 2.37 (a)) obtained as follows. Parameter values
are chosen on a vertical line intersecting region U′. In particular, F is fixed at 4
and G varies on a grid with spacing 2 × 10−5. The map PF,G is iterated starting
from the point (x, y, z) = (−0.246612612, 1.006751225,−0.762249262). If there is
convergence to a periodic point within 100 iterations, the (G, y) coordinates of the
final point are plotted. We see relatively large G-intervals with an attracting fixed
point, where the evolution of its y-coordinate is rather regular. At the extremes of
such intervals, regions occur where the y-coordinate evolves wildly. The limit cycles
of ΨF,G,ε corresponding to these periodic points are of spiral type (Sec. 2.4.4).

In fact, the distribution of the fixed point attractors Figure 2.37 (a) is similar to
Figure 2.34 (a). All branches of attracting fixed points are connected by branches of
saddle fixed points. The limit cycles of ΨF,G,ε corresponding to these saddles are also
of spiral type (Figure 2.37 (b)). Several branches of saddle fixed points coexist in a
G-interval; compare Figure 2.34 (b). For some parameter values no periodic attractor
occurs. In this case, the P iterates converge either to the circle C , or to some narrow
Hénon-like attractor coexisting with C , like H3 in Figure 2.38 (a). We stress that the
statement about the Hénon-like character of numerically observed strange attractors
is conjectural. See the discussion in Chapter one, and compare Remark 1.1. This
explains the sparse white spots in U′, compare Figure 2.2 (b) and Figure 2.5 (right).
Notice that the same type of Hénon-like attractor and the same structures of fixed
point attractors/saddles occur in region U (Sec. 2.4.10). In fact, the only difference is
that no Shil′nikov-like attractors seem to occur in U′. Long chaotic transients are often
observed (Figure 2.38 (b)), having the shape of Shil′nikov-like attractors. However
they usually converge to the circle C or to a periodic or to a narrow Hénon-like
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Figure 2.38: (a) Projection on (y, z) of the circle attractor C and of a Hénon-
like attractor H3, coexisting at (F,G) = (4, 1.274585). Initial conditions for C

are (x, y, z) = (1.14,−0.28, 1.4). (b) Projection on (x, z) of a chaotic transient
of 69000 P -iterates at (F,G) = (4, 1.30238), followed by convergence to the cir-
cle attractor C . Initial point (x, y, z) = (−0.367134395447287, 0.569918317744214,
−0.883182668387643).
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Figure 2.39: (a) Projection on (y, z) of the circle attractor C , coexisting with the
fixed point A at (F,G) = (3, 1.4905). Initial conditions are (x, y, z) = (1.3, 0.35, 1)
for C and (1, 2, 3) for A . (b) Same as (a), with the strange attractor L2 at G = 1.494.

attractor. So, the disappearance of the invariant circle C seems to be a necessary
condition for the occurrence of Shil′nikov-like attractors.

Above region U′, the fixed point A may coexist with C or with a strange attractor
originating from the breakdown of C . In both of the above regions, the fixed point
A may coexist with a strange attractor as well. This is the case for the attractor L2

in Figure 2.39 (b), which is a folded circle (see Sec. 2.4.8), created in the following
way. The circle C is locked to a fixed point in the G-interval 1.462 l G l 1.508. The
fixed point undergoes a Hopf bifurcation as G decreases through G ' 1.4975. At this
point, C is broken and a new attracting circle C̃ appears. The latter circle enters
an Arnol′d tongue of high period and breaks down inside it because of a homoclinic
tangency and L2 is born.

This and other scenario’s for the breakdown of a circle are described in the next
section.
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2.4.7 Mathematical intermezzo: breakdown of invariant cir-
cles and the creation of strange attractors

A large fraction of the strange attractors of PF,G at ε = 0.5 in regions L2 and L1

originates from the breakdown of an attracting invariant circle. (see Figure 2.6, 2.7
and 2.39 (b)). We devote this section to a summary of the known phenomenology
for the destruction of an invariant circle in dissipative diffeomorphisms. For detailed
studies, see [1, 7, 3, 8, 7, 23, 93].

Consider a two-parameter family of diffeomorphisms QF,G of Rn, having a curve
H of Hopf bifurcations of fixed points. In Figure 2.40 we sketch the ‘generic’ semi-
global structure of the parameter space close to an Arnol′d tongue. Two curves SN of
saddle-node bifurcations emerge from a resonant point R on H and form the boundary
of an Arnol′d tongue Ap/q of period q. Outside Ap/q, and for (F,G) close to H, the map
QF,G has a quasi-periodic attracting circle. We describe the routes occurring along
the dashed paths starting at parameter values on the point P , inside Ap/q. There,
the circle C is phase-locked, meaning that C is formed by the union of an attracting
periodic point A ∪W u(B). Here A and B are periodic points born at the curve SN ,
where A is an attractor and B is a saddle. For regularity properties of such resonant
circle, see e.g. [23]. Moving along path A, at curve D the attractor A loses stability
through a codimension one bifurcation. This might be a period doubling, but also
a Hopf bifurcation, compare Figure 2.39. No strange attractors are created at this
moment. This only occurs when crossing the critical curve CR1, which, for example,
might be the boundary of a cascade of period doublings.

Along path B, at the curve T a tangency of the stable and unstable manifolds of
the saddle B occurs. The circle is destroyed, but no strange attractor appears yet,
since the point A is always stable between curves SN and D. Strange attractors
appear on path B1, when coming out of the tongue. Here, intermittency of type I is
usually observed close to SN (this is what happens in Figure 2.6). The ‘curve’ CR2

corresponds to the creation of a non-smooth circle from C and has a complicated
fractal structure [2, 23]. Along path C1, there is a sudden transition between a
periodic attractor and a non-smooth circle strange attractor. Path C corresponds
to the bifurcation from a locked to a quasi-periodic circle. Notice that all kinds of
‘composite’ routes can be observed. For example, there can be a finite number of
period doublings, followed by a homoclinic tangency (path A1, see e.g. [23, 124]).

Remark 2.11. Our description only covers the main details in the most simple case.
For example, along path B, the circle is usually destroyed before the homoclinic tan-
gency on curve T . Indeed, the latter may occur after a cubic and a quadratic tangency
of the unstable manifold of the saddle periodic point with the strong stable foliation.
For more details, see [23, 93].

We now list some other routes to chaos. In the Dı́az–Rocha–Viana scenario [42], the
unstable manifold of a saddle-node periodic point has a quadratic tangency with the
strong stable foliation. Here, parameter values lie at the border of an Arnol′d tongue.
Just outside the tongue, Hénon-like strange attractors occur, winding around the
whole annulus containing the unstable manifold of the saddle-node. Such attractors
are called ‘large’. Large attractors were also studied in [13], in connection with a
Shil′nikov-Hopf bifurcation.
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Figure 2.40: Dashed paths labelled by A, A1, B, B1, C1 indicate several routes to
the breakdown of an invariant circle of QF,G, born from a fixed point at a curve H of
Hopf bifurcations (see text for the notation). Figure taken from [2].

Finally, other dynamical objects could interact with the circle C , for example
through heteroclinic tangencies. This is the typical way in which the size of a strange
attractor suddenly grows [104].

We have mainly distinguished four regions inside M0.5 where strange attractors
occur. In L1 and L2, the appearance of strange attractor is typically due to homoclinic
tangencies inside an Arnol′d tongue (routes A1 and B1 in Figure 2.40) or period
doubling (route A). Loss of smoothness (route C1) is more difficult to observe, given
the ubiquitous occurrence of resonances of high order. In L2, interaction with a quasi-
periodic period doubling bifurcations leads to attractors of dimension higher than two.
A different scenario leads to birth of strange attractors in U and U′, probably due to a
Shil′nikov tangency bifurcation. For a classification of the strange attractors of PF,G,
see Sec. 2.4.11.

2.4.8 The chaotic range L1

We consider the region above the tongue A0 of period one in Figure 2.5. There the pa-
rameter plane is crossed by several, relatively large Arnol′d tongues of higher periods.
The circle C often breaks and strange attractors appear similar to L1 (Figure 2.6 (B)),
with Lyapunov dimension slightly larger than one. Two views of this chaotic range
are given in Figure 2.41 and Figure 2.43. The intervals where the maximal Lyapunov
exponent λ1 drops to negative values are Arnol′d tongues. In Figure 2.41 (b), a period
k attractor occurs on intervals pointed by an arrow with label k. For small G (left of
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the picture), C appears to persist, since λ1 is approximately zero outside the tongues.
A large Hénon-like attractor occurs at G = 0.408 (label L in Figure 2.41 (b)), a
folded circle like L1 (Figure 2.6 (B)). Periodic points are detected for most parameter
values near G = 0.408, with period ranging from 28 up to a few hundreds. For G
larger, λ1 increases and strange attractors are found more frequently. An arrow in Fig-
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Figure 2.41: (a) Projection on y of sequences of P -attractors as a function of G, for
F = 1.25 fixed. The last 100 points of each iteration loop are plotted, the step in G
is 10−4. See text for explanation. (b) Maximal Lyapunov exponent on the attractors
in (a).

ure 2.41 (b) indicates the G-value at which L1 occurs, just outside an Arnol′d tongue
A5 of period five. A saddle-node bifurcation at the edge of A5 destroys L1, locking
it to a period five attractor. Notice that a period doubling occurs at G = 0.4116,
followed by a period halving at G = 0.4128. The two bifurcations, where λ1 = 0,
bound a period 10 tongue A10 inside A5 (Figure 2.41 (a)).

Inside the Arnol′d tongues, period doublings also may occur in entire cascades.
The four-piece strange attractor H1 in Figure 2.42 (a) is created by this mechanism,
which corresponds to route A in Figure 2.40. At G = 0.4175 the map P has a
period four attractor inside the tongue A1/4 (Figure 2.41 (a) and (b)). Then, at
G = 0.4177 and G = 0.4179 period 8 respectively 16 points occur, followed by a whole
period-doubling cascade, and H1 appears. Notice that each of its four components is
obviously Hénon-like (component 1 is magnified in Figure 2.42 (b)). Component k is
mapped by P to k + 1 for k = 1, 2, 3 and 4 is mapped to 1.

Another four-piece Hénon-like attractor occurs at G = 0.4182, but folded circles
like L1 reappear for larger G, from the fusion of the various pieces. The fusion of the
parts of a multi-piece attractor is usually due to heteroclinic tangencies, see [104].

So far, the Lyapunov dimension DL of the attractors is still close to one. However,
DL can grow above two for parameter values further inside L1. In Figure 2.43 (a)
sequences of attractors are plotted for G = 0.5 fixed and F increasing from 1, where
the fixed point A is detected. Notice that the maximal Lyapunov exponent λ1 (Fig-
ure 2.43 (b)) increases linearly, until a Hopf bifurcation20 H occurs at F ' 1.08 and
the circle attractor C is created. Although C is not visible in Figure 2.43 (a) (be-
cause of its small size, compare Remark 2.9), its presence is revealed by the Lyapunov

20 Belonging to the curve H1 in Figure 2.5 (left), Sec. 2.1.3.
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Figure 2.42: (A) Projection on (x, z) of the Hénon-like strange attractor H1 of P for
(F,G) = (1.25, 0.4181). (B) Magnification of one component.
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Figure 2.43: (a) Projection on y of sequences of P -attractors as a function of F for
G = 0.5 fixed. The step in F is 0.004 and 2×105 iterates of DP were computed for each
F . Two Arnol′d tongues A 1

2
and B 1

2
of rotation number 1/2 are pointed by an arrow.

(b) Maximal Lyapunov exponent on the attractors in (a). (c) Lyapunov dimension of
the attractors in (a). (d) The three Lyapunov exponents on the attractors in (a).

dimension (Figure 2.43 (c)), which jumps to one at H. An Arnol′d tongue of rotation
number 1/2 is labelled by A 1

2
. Then C breaks and strange attractors occur in the

interval 1.2lF l1.7. Close to the extremes of the interval, the Lyapunov dimension is
not much larger than one and the corresponding strange attractors are folded circles.
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Figure 2.44: (a) Projection on (x, z) of a P -attractor, which we name X1, occurring
in L1 at (F,G) = (1.5, 0.5). (b) Power spectrum of X1.

In the central part, the structure of the attractors is more complicated, displaying
interaction with other dynamical objects. Intermittency phenomena disappear from
the power spectra and the Lyapunov dimension is larger. An attractor (X1) occurring
in this parameter range is plotted in Figure 2.44. Some one-dimensional structure is
still preserved in the form of several invariant folded curves crossing X1. However,
the power spectrum indicates uncorrelation of the iterates (Remark 2.12) and the
Lyapunov dimension is ∼ 1.6. At the other extreme of the chaotic interval, a tongue
B 1

2
with rotation number 1/2 occurs, and the circle C reappears for F m 1.7.

It is well known [104] that the evolution of strange attractors is a process of birth
and death (sometimes called ‘crisis’ [54]). This is clearly seen in Figures 2.41 and 2.43.
strange attractors are first created by homoclinic tangencies, then disappear because
of the birth of a hyperbolic periodic attractor through a saddle-node bifurcation. They
may reappear in multi-piece form due to doubling cascades, then the various pieces
melt by heteroclinic tangencies and, eventually, the strange attractor might grow in
size due to further heteroclinic tangencies. A perhaps less known scenario is described
in the next section.

2.4.9 The chaotic range L2

This chaotic region lies in the half-plane F m 5 inside M0.5. Most strange attractors
in L2 originate at the breakdown of a doubled circle 2C , the latter created through
one quasi-periodic period doubling of C . For this reason, we begin by describing this
bifurcation.

Quasi-periodic period doubling

The quasi-periodic period doubling of an invariant curve can occur in two different
ways [32] and both have been found in the family PF,G. The first is illustrated in
Figure 2.45, for F = 11 fixed. At G = 0.4972 the circle attractor C is detected. Here
C is still normally hyperbolic, with quasi-periodic dynamics, but it is close to loss
of normal hyperbolicity. Indeed, the maximal Lyapunov exponent λ1 is zero, while
λ2 is negative and close to zero (Table 2.4). The peak at the fundamental frequency
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DL λ1 λ2 λ3 e1 e2 e3

A 1 -5.e-6 -0.0066 -14.8 6.e-7 2.e-6 1.e-6
B 1 4.e-5 -0.08 -14.7 5.e-6 5.e-6 1.e-6

Table 2.4: Lyapunov exponents of the circle attractors in Figure 2.45 (A) and (B).

f1 = 0.377 of C is labelled by 2 in Figure 2.45 (a). Peaks marked by 2k occur at
harmonics fk = k f1 of the fundamental frequency.21 When λ2 goes through zero,
C undergoes a quasi-periodic period-doubling. A circle attractor 2C is created, of
roughly double length and half the rotation number of C (Figure 2.45 (B)). In this
bifurcation, only λ2 crosses zero: the lowest Lyapunov exponent λ3 of both C and
2C is less than −14 (Table 2.4). After the doubling, C still coexists with 2C , but it
is unstable. The power spectrum of 2C inherits all harmonics of a frequency close to
f1. Furthermore, new peaks appear at uneven multiples gk = kg1 of the fundamental
frequency g1 ≈ f1/2 of 2C (each harmonic gk is labelled by k in Figure 2.45 (b)).
Again, because of the mirroring one has g1 = 1/2(f1 mir 1

2
) = 0.3115. It is also

possible to identify small peaks corresponding to g1, g2 and g3 in Figure 2.45 (a).
This is due to intermittency of type III.

For the family PF,G,0.5, the circle C often undergoes similar doublings in the interval
5 l F < 12. Each of these bifurcation points belongs to a frayed curve as described
in Sec. 15. For some F values, 2C may undergo a doubling as well, but a different
type of bifurcation occurs. This is illustrated in Figure 2.46, again for F = 11 fixed.
At G = 0.4958 the circle 2C is detected (Figure 2.46 (A)). All peaks in the power
spectrum occur on harmonics of the fundamental frequency g1 = 0.32579. The first
five harmonics gk = kg1 are labelled by k in Figure 2.46 (a). Between G = 0.4958
and 0.4959, 2C turns into a saddle invariant curve and two curves are created, each
of them attracting and invariant under P 2. The union of these two curves is the
P -attractor 4C , plotted in Figure 2.46 (B) (also see Figure 2.7 in Sec. 2.1.3). The
dynamics of P on 4C is the skew product of an invariant curve and a period two point.
In other words, the P -iterates jump from one curve to the other and back, so we call
4C a period two curve. Therefore, the dynamics has two fundamental frequencies,
one of which is 0.5, the other is close to the frequency of 2C and is again called g1.
In fact, all harmonics of g1 are found in the power spectrum of 4C , while the ‘new’
harmonics hk correspond to 0.5 − gk (Figure 2.46 (b)).

For other values of F < 12, at most two consecutive doublings were observed (just
as above). A complete cascade does not take place, see next section.

We note that the centre manifold of the period doubling is a two-dimensional
Möbius strip [31, 99]. As a result, the breakdown of a doubled circle is almost invari-
ably followed by the creation of a strange attractor with a two-dimensional Möbius-like
structure. Examples of this are presented in Sec. 21.

21 In particular, fk is obtained modulo 1 for k = 6, 10, 12, 16, 18, 20, 22, whereas for the remaining
harmonics one gets fk mir 1

2
.
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Figure 2.45: (A), (B) Projections on (x, z) of circle attractors of P11,G,0.5 for G =
0.4872 and G = 0.4874 respectively. (a), (b) Power spectra of the attractors.
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Figure 2.46: (A), (B) Projections on (x, z) of attractors of P11,G,0.5 for G = 0.4958
and G = 0.4959 respectively. (a), (b) Power spectra of the attractors.
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Arnol′d tongues and breakdown of circles in L2

The structure of region L2 is in fact rather similar to that of L1. In both regions,
fixed and periodic points are organised in intricate structures of Arnol′d tongues. This
is illustrated in Figure 2.47 (left) (compare with Figure 2.5 (right)), where we plot
a magnification of Figure 2.2 (b), obtained by taking a smaller window and a finer
spacing of the grid. A few edges of tongues (saddle-node bifurcation curves) of low
period are plotted in Figure 2.47 (right). Several cusps are found on most saddle-
node curves. A Hopf bifurcation curve H was detected, interrupted by three 1:1 and
three 1:2 resonance points. At the 1:1 resonance points, a saddle-node curve S is
tangent to H, whereas a period doubling curve D is tangent to H at the 1:2 points.
Furthermore, D and S are tangent to each other at the codimension two saddle-
node-period-doubling point SPD. See [79] for a study of this type of bifurcation.
The occurrence of the Arnol′d tongues is quite similar to that found in the fattened
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Figure 2.47: Left: Magnification of Figure 2.2 (b), obtained with a grid of spacing
2 × 10−3 in F and 5 × 10−4 in G. A maximum of 150 iterates of P were executed,
starting from (x, y, z) = (1, 2, 3). Right: Arnol′d tongues of period k are labelled by Ak

for k = 1, 2, 3, 5. The other solid curves are saddle-node bifurcations of fixed points.
Dashed curves are period doublings of a fixed point. A Hopf curve H is plotted with
a thick solid line. On H, the 1:1 and 1:2 resonance points are marked by small boxes
respectively triangles.

Arnol′d family [23]. One sees that the edges of the bifurcation curves accumulate on
each other as G increases. This is probably due to the same mechanism as described
in [23], which may possibly be a route for the creation of infinitely many sinks (the
Newhouse phenomenon [87, 96]).

The resonant circle inside the tongues in Figure 2.47 is 2C . In fact C has undergone
a doubling at lower values of G and possibly persists as a saddle circle. The breakdown
of 2C happens according to what discussed in Sec. 2.4.7. Therefore, the ‘curve’ of
breakdown of 2C (which we sketched by curve B in Figure 2.4) has a complicated fine
structure (compare [23]). This is illustrated by a plot of the Lyapunov exponents λ1

and λ2 (Figure 2.48) along the two dashed lines in Figure 2.47 (right).
For F = 7 (Figure 2.48 (a)), the circle 2C persists beyond the tongue A1 in

Figure 2.47 (right). The first strange attractor found increasing G is labelled by L

and is a folded circle. However, for G = 0.35 (Figure 2.48 (b)) three intervals appear
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Figure 2.48: (a) Lyapunov dimension of the P attractors for parameter values on the
vertical line F = 7 in Figure 2.47 (right). (b) Same as (a), for the horizontal line
G = 0.35. The step is 0.01 in both plots.
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Figure 2.49: (a) Lyapunov dimension of P -attractors as a function of G for F =
11 fixed. The step in G is 3 × 10−6. For these estimates 2 × 105 iterates of DP
were computed. An arrow points at the G value where the attractor X2 occurs
(Figure 2.50 (d)). (b) Lyapunov exponents λ1 and λ2 on the attractors in (a).

where the Lyapunov dimension is larger than one, while 2C still exists outside them.
This implies that curve B is in reality much more complicated than what is sketched
in Figure 2.4.

Quasi-periodic Hénon-like strange attractors

In region L2, at most two consecutive quasi-periodic period doublings occur as G
increases, depending on the value of F . A whole cascade has not been observed,
because the attractors 2C or 4C are eventually destroyed by a homoclinic tangency
inside an Arnol′d tongue (as in Sec. 2.4.7).

We illustrate this route for the period two circle attractor 4C (Figure 2.7 (A))
by means of a plot of the Lyapunov dimension Figure 2.49 (a). For G close to
0.4969, the period two circle 4C persists and it is quasi-periodic since DL ' 1.
At this moment, the saddle invariant circle 2C still coexists with 4C . Moreover,
the unstable manifold of 2C is a two-dimensional Möbius strip, whose edge is 4C .
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Figure 2.50: (a) Projection on (x, z) of the strange attractor L3 of P at (F,G) =
(11, 0.4969532). (b) Magnification of box M in (a). (c) Same as (a) for the period
1098 point of P at G = 0.496951. (d) Same as (a) for the strange P -attractor X2 at
G = 0.497011.

Then 4C enters some Arnol′d tongue, where λ1 becomes negative. In the G-interval
J = {G | 0.496948 < G < 0.496963} only periodic points are detected (DL = 0 in
Figure 2.49 (b)). In reality, strange attractors occur in J as well.22 One of these
is the ‘large’ strange attractor L3 occurring at G = 0.4969532, Figure 2.50 (a). In
Figure 2.50 (b) a small piece of L3 is enlarged, illustrating the folded circle structure.
The maximal Lyapunov exponent on L3 is λ1 ' 0.0025. However, attracting periodic
points of high period are prevalent in the neighbourhood, like the period 1098 point
in Figure 2.50 (c).

For G larger the P -iterates begin to wander in the transversal unstable manifold
of the saddle circle 2C . This is reflected in the Lyapunov dimension, which grows up
to two. For the attractor X2 in Figure 2.50 (d) the Lyapunov dimension is almost
two, but λ2 is still negative. This identifies it as an intermediate stage between a
broken-circle and a quasi-periodic Hénon-like attractor. For G larger λ2 approaches
zero and the P -iterates spread even more in the transversal manifold. Notice that
λ2 ' 0 near G = 0.4972, where the attractor Q1 occurs (Figure 2.7 (B)). This means
that quasi-periodic Hénon-like attractors seem to be persistent under perturbations.

However, for (F,G) farther inside L2 more complicated types of attractors are
found, with no intermittency in the power spectra. An example is the attractor in

22 They are not revealed in Figure 2.49 because of the step size in G.
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DL λ1 λ2 λ3 e1 e2 e3

a 1.05 1.72 -33.6 -128.4 4.e-4 6.e-4 7.e-4
b 1.27 4.8 -18.1 -100.5 1.e-3 6.e-4 2.e-3

Table 2.5: Lyapunov exponents of the strange attractors S1 (a) and S2 (b) in Fig-
ures 2.9 and 2.10.

Figure 2.53 (a).

2.4.10 The chaotic range U

We now turn to the attractors in the chaotic region U. No invariant circles occur here,
and periodic point attractors are prevalent. strange attractors appear suddenly where
the periodic points lose stability. To describe this, consider Figure 2.12. At G = 2,
the fixed point A is detected. Parameter values lie inside the narrow black strip
below region Q2 (Figure 2.2 (b)) where A is the unique attractor. As G is decreased,
A is suddenly replaced by the Shil′nikov-like strange attractor S1 (Figure 2.9 left).
The dynamics on S1 is quite sensitive with respect to initial conditions, due to the
size of the maximal Lyapunov exponent (Table 2.5). Indeed, the fact that the power
spectrum of S1 (Figure 2.9 (b)) looks like white noise confirms that the iterates of P
are almost uncorrelated. However, S1 has a rather one-dimensional character, since
DL(S1) ' 1.05. Most Shil′nikov-like strange attractors inside U have richer structure
than S1 (compare Figure 2.10 (a)). This corresponds to a larger maximal Lyapunov
exponent and larger Lyapunov dimension.

Among Shil′nikov-like, also Hénon-like attractors may occur. The strange attractor
H2 in Figure 2.51 (A) is found at (F,G) = (5, 1.29). A projection of H2 also can be
seen as a small segment in Figure 2.35. A magnification of a portion of H2 suggests
that H2 is a quite narrow Hénon-like attractor. Similar attractors also exist in U′

(Figure 2.38 (a)). Shil′nikov-like attractors like S3 (Figure 2.51 (B)) occur for nearby
parameter values. The transition from H2 to S3 corresponds to a jump in the largest
Lyapunov exponent, although both attractors have dimension just slightly larger than
one (see Table 2.6). Notice that a portion of S3 (singled out by box N) approximately
agrees with H2, while the small spiral part (magnified in Figure 2.51 (B1)) looks like
the Shil′nikov attractors found in [13]. A magnification of a tiny piece of the spiral is
plotted in Figure 2.51 (B2). Some parts of S3 are visited by a small fraction of the
total number of iterates. This is not a transient effect: S3 has low density at such
parts. For instance, the domain (y, z) ∈ [0.69, 1.48] × [−0.91, 1.39] contains 97.9% of
the points in S3. Among them 99.8% are on x ∈ [−0.35, 0.61].

DL λ1 λ2 λ3 e1 e2 e3

A 1.046 0.58 -12.6 -77.9 1.e-5 4.e-4 4.e-4
B 1.097 1.13 -11.7 -87.1 1.e-3 2.e-4 1.e-3

Table 2.6: Lyapunov exponents of the strange attractors H2 (A) and S3 (B) in
Figure 2.51.
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Figure 2.51: (A) Projection on (y, z) of the Hénon-like attractor H2 for (F,G) =
(5, 1.29). A small piece of H2 is magnified in the box. There, the graph has been
affinely deformed by plotting (y, z̃), with z̃ = z + 3.81 × (y − 1.49). (B) Same as (A)
for the Shil′nikov-like attractor S3 at G = 1.29005. The portion of S3 inside box N
approximately coincides with H2. (B1) Magnification of the spiral part of S3, box N
in (B). (B2) Magnification of box M in (B1) around the tip of the spiral part. The
graph has been affinely deformed by plotting (y, z̃), with z̃ = z − 0.965× (y − 0.975).
The width of the vertical window in (B2) is 1.4 × 10−4.

The ranges of existence of Shil′nikov–like strange attractors are interspersed by
relatively large windows of fixed points, where the corresponding T -periodic limit
cycles of system (2.2) are of spiral type (compare Figure 2.12). However, strange
attractors become prevalent close to the value (F0, G0) where a Shil′nikov-like attractor
occurs. To be more precise, given an open ball Bδ ∈ M0.5 of radius δ, centred at
(F0, G0), denote by Sδ the set of parameter values in ∈ Bδ for which a strange
attractor occurs. Our numerical results seem to suggest that

meas Sδ

meas Bδ

→ C as δ → 0, with C > 0, (2.14)

where “meas” denotes the Lebesgue measure in M0.5. This is illustrated in Figure 2.52,
where we plotted the Lyapunov dimension of P -attractors against the parameter G.
On a larger scale (Figure 2.52 left), periodic points are prevalent, since they occur
in open parameter sets of large relative measure. On the other hand, in a small
neighbourhood of G = 1.21124 (where a strange attractor occurs), strange attractors
are prevalent (Figure 2.52 right).
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Abundance of strange attractors, expressed by (2.14), is typical for parameters near
a homoclinic tangency, see [42, 86, 95]. The results in Figure 2.52 right give further
evidence that Shil′nikov-like attractors are created by Shil′nikov tangency bifurcations
of a saddle-focus fixed point, see Sec. 2.5.

2.4.11 Summary on the strange attractors of the Poincaré
map

We now sketch a classification of the strange attractors found in the family PF,G,ε.
Hénon-like attractors of two types are found in both L1 and L2: folded circles

and ‘small’ attractors. Both types of attractors have a local Hénon-like structure
and occur close (in the parameter space) to an invariant circle, at the boundary of
L1 and L2. Folded circles, like L1 (Figure 2.6), L2 (Figure 2.38 (b)) and L3 in
Figure 2.50 (a), are also called ‘large’ [13, 23], since they wind inside a whole annulus
containing the unstable manifold of some saddle periodic point (see Sec. 2.4.7). This
does not hold for ‘small’ Hénon-like attractors, like H1 in Figure 2.42. Deeper inside
L1 and L2, strange attractors of other types are detected, like X1 (Figure 2.44), X2

(Figure 2.50 (d)) or Figure 2.53 (a).
Some narrow Hénon-like attractors occur in both U′ (Figure 2.38 (a)) and U

(Figure 2.51 (A)). Furthermore, in U also Shil′nikov-like attractors exist, like in Fig-
ure 2.9, 2.10 and 2.51 (B).

2.5 Discussion and outlook

In this Chapter, we present an inventory of the dynamics in the driven Lorenz-84
system, giving, whenever possible, an explanation of the changes occurring as the
(F,G) vary in the plane Mε, for ε = 0.5, and as ε is increased from zero. Several
phenomena are discussed at the level of guesses or possibilities. It was not possible,
indeed, to focus on all open problems in the course of this large-scale investigation.

In the next section we first summarise our findings for ε = 0.5 with a rough
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subdivision of M0.5, sketched in Figure 2.4 (b). Our exploration of the parameter space
raises several questions of both theoretical and applied nature. These are discussed
in Sec. 2.5.2.

2.5.1 Summary of results

The parameter plane Mε for ε = 0.5 can be divided into several regions, each with
different dynamical phenomena. Three regions inside M0.5, denoted by Q1, Q2 and F,
have a rather simple dynamics (see next section). Four regions are characterised by
the occurrence of strange attractors (Sec. 2.5.1). We finally describe results obtained
for other values of ε.

Regular dynamics

A fixed point attractor A exists in the connected component F of Figure 2.4 (b)
containing the upper left corner. This corresponds to small F (see Figure 2.1 (a),
(b)), large G (compare the fixed points at the right of all pictures in Figure 2.1) and
to a thin strip between region Q2 and U, U′.

A circle attractor C2 occurs in region Q2. Sections of Q2 by a vertical line F = F0

give one-parameter families C2 = C2(F0, G) of circles. The cigar-shaped sequences
of attractors in Figure 2.1 (e) and (f) are projections of such families. Region Q2 is
bounded by the Hopf curve H2, see Sec. 2.4.1. Arnol′d tongues inside Q2 are very thin
and the prevalent behaviour seems to be quasi-periodicity. Although the dynamics in
Q2 is rather simple, the role played by the several strong resonance points on H2 is
not yet completely clear, especially for ε ≥ 0.5.

Circle dynamics characterises region Q1 as well. The circle attractor C occurs
at G = 0 for F > 1 and persists at least up to G = 0.28 (dotted horizontal line
in Figure 2.4 (left)). In fact, for some values of F this circle persists up to a larger
value of G (see Secs. 2.4.5 and 21). Curve B in Figure 2.4 (b) roughly indicates the
G-value up to which C seems to persist. Some thick dots indicate the occurrence of a
quasi-periodic period doubling, where C loses stability and a doubled circle attractor
2C appears (see Sec. 2.4.9). The fine structure of this bifurcation, and in particular
the role played by resonances and ‘bubbles’, is not yet fully understood. See Sec. 15
and compare with Chapter four.

Chaotic dynamics

We turn to the description of the domains in M0.5 where strange attractors occur.
We have distinguished four regions L1, L2, U′ and U (Figure 2.4 (b)). In all of
them, strange attractors occur in regions of seemingly positive measure, interrupted
by open windows of periodicity (Arnol′d tongues). In L2 there is prevalence of strange
attractor, while the typical behaviour in U is periodicity (compare Figure 2.12).

The creation of strange attractors in L2 and L1 is mostly due to homoclinic tan-
gencies of a saddle periodic point inside an Arnol′d tongue (compare Figure 2.50).
Cascades of period doublings of periodic attractors are also observed (see Figure 2.41).
At the border of L2 or L1, the dynamics on the attractors tends to follow the unstable
manifold of a saddle periodic point, which for close parameter values still forms an
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Figure 2.53: (a), (b), (c): Projection on (y, z) of strange attractors of P for ε = 0.5 and
F = 7. (d) Same projection of an attracting period 5T limit cycle of system (2.2). G is
fixed at: (a) 1, (b) 1.08, (c) 1.4, (d) 1.400000037. The (y, z) window is [−4, 4]× [−3, 4]
for all pictures. A spiral structure is pointed to by an arrow in (c) and (d).

invariant circle (Figures 2.6 and 2.50). Therefore most attractors have dimension close
to one (Figure 2.41). Intermittency is often observed in the power spectra. Marked
peaks persist, close to the corresponding harmonics before the breakdown of the circle,
and broad band has low power. As the parameters are shifted further inside L2 or L1,
the dimension of the strange attractors grows above two (Figures 2.43 and 2.49) and a
broad band component arises in the power spectra (Figure 2.44). In L2, quasi-periodic
Hénon-like strange attractors may appear (Sec. 21). The mechanism for the birth of
strange attractor could not be so well clarified for region U. Most strange attractors
have dimension between 1.1 and 1.4, the first case usually corresponding to narrow
Hénon-like attractors. Shil′nikov like attractors (Figures 2.9 and 2.10) of different
type are found (see Sec. 2.4.10). The transition between L2 and U is quite sudden
(Figure 2.12). It seems reasonable to believe that this transition (on ‘curve’ SH,
Figure 2.4 (b)) and the birth of Shil′nikov–like strange attractors are due to three-
dimensional homoclinic tangencies of a saddle-focus fixed point (Shil′nikov tangency
bifurcation). Indeed, a spiral structure like in Figure 2.51 (B1) appears in the strange
attractors when passing from L2 to U, across ‘curve’ SH. In particular, an increasing
fraction of the points is contained in the spiral part (Figure 2.53). Furthermore, the
Lyapunov dimension and the maximal Lyapunov exponents decrease.

A high number of saddle spiral limit cycles coexists with the Shil′nikov strange
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attractors, and attracting spiral limit cycles occur for nearby parameter values. The
spiral portion of the strange attractors roughly corresponds to that of the above limit
cycles, see Figure 2.53 (c) and (d). Compare also Figure 2.9 (A) and Figure 2.10 (A)
to Figure 2.11 (A) and (B), respectively. Attractors similar to the spiral portion were
found in [13] (see Figure 2.9), their occurrence being caused by a Shil′nikov tangency.

It is known that close (in the C1 topology) to a 3D diffeomorphism having a
Shil′nikov homoclinic tangency, diffeomorphisms with strange attractors [120] or dis-
playing the Newhouse phenomenon occur [51, 96]. However, more detailed numerical
and analytical studies are needed both to establish a relation with the occurrence of
attractors like in Figures 2.9 and 2.10 (A), to determine the effect on the bifurcation
set of a map and to establish the relative abundance of such attractors.

Overview of the plane Mε for other values of ε

To quickly get information on the changes occurring for different values of ε, we per-
formed other large-scale explorations of Mε like in Figure 2.2. The results, displayed
in Figure 2.54, suggest the following remarks. As ε increases:

1. Arnol′d tongues inside region Q2 become wider, especially close to the strong
resonance gaps on the lower branch of H2. As ε grows these gaps become larger
as well and, eventually, ‘eat up’ the whole lower branch of H2 (compare also
Sec. 2.4.1). At ε = 0.9, Q2 is also shifted to larger F , which suggests that
it may completely disappear for ε ≥ 1. This is supported by the following
data: Up to ε = 0.7 the Q2 region can be seen to appear around F = 6.
For ε = 0.9, 0.93, 0.95, 0.97, 0.98 and 0.99 the first invariant curves have been
detected around F = 14, 20, 30, 58, 95 and 250, respectively.

2. Region Q1 shrinks. As ε grows, the circle C (F0, G) is destroyed at smaller values
of G. Consequently, the chaotic range L2 increases in size.

3. The fraction of periodicity increases inside L2. In particular, the structures
of Arnol′d tongues, which occupy a minor fraction of L2 for small ε (Fig-
ure 2.54 (a)), invade most of L2 at ε = 0.9.

4. The chaotic range U, almost invisible for ε = 0.1 grows in size.

Several dynamical phenomena of the autonomous system persist only for ε suf-
ficiently small. For example, the repelling invariant torus T occurring at ε = 0.01
(Sec. 15) seems to have completely disappeared for ε = 0.5 (see Sec. 2.4.5). One of the
various ways in which T is destroyed is illustrated in Figure 2.55. The torus repellor
T at ε = 0.01 is plotted in Figure 2.55 (A). Since the two largest Lyapunov exponents
λ1 and λ2 are approximately zero (Table 2.7), it seems reasonable to assume that the
two fundamental frequencies f1 and g1 of T satisfy a Diophantine condition.23 At
ε = 0.066, T is locked to a period 16 invariant curve. One of the frequencies of T

is of course f1 = 16−1, since each of the 16 circles in Figure 2.55 (B) is invariant
under P 16, quasi-periodic and normally hyperbolic. This is confirmed by the fact that

23 This could be numerically checked up to some order of resonance by using refined Fourier
analysis, see [50].
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λ1 is zero and λ2 slightly negative. The other fundamental frequency g1 = 0.0116 is
equal to j/16, where j is the frequency of P 16 of each of the 16 invariant circles. In
Figure 2.55 (b) we indicated f1 and g1, together with their combinations hk = g1 +kf1

with k = 1, 2, 3.

The same situation seems to persist for an interval of values of ε, but beyond
ε = 0.0665 the exponent λ1 becomes slightly positive. In this case, the circles in
Figure 2.55 (B) have lost smoothness. A strange repellor U is created, see Fig-
ure 2.55 (C), with DL(U ) ' 2.083. Several properties of U and of the strange
attractor Q1 (Figure 2.7) are analogous. The fact that λ2 ' 0 indicates that a quasi-
periodic component persists in the dynamics on U . The power spectrum of U has
some broad band, but several harmonics of the resonant torus still persist. In Fig-
ure 2.55 (c), f2 = 0.25, f3 = 0.5 and g1 are identified, but the hk’s persist as well. This
is also due to intermittency, although of an unconventional type. It seems here that
the dynamics is still driven by the ghost of the quasi-periodic circles in Figure 2.55 (B).
Notice that U is made up of eight strips, each invariant under P 8. The destruction
of the 16 circles corresponds to the degeneration of frequency f1 into broad band.

For ε even larger (Figure 2.55 (D)), the strips of Figure 2.55 (D) have melted into
a global one-piece repellor. Although the Lyapunov dimension and λ1 have increased
further, the second Lyapunov exponent is still zero, and a peak around h3 can still be
distinguished. However, all harmonics of f1 have merged into broad band in the power

0

1

2

3

4

0 2 4 6 8 10 12

(a)

G

F

Q1

Q2

0

1

2

3

4

0 2 4 6 8 10 12

G

F

Q1

Q2

(b)

0

1

2

3

4

0 2 4 6 8 10 12

G

F

Q2

(c)

0

1

2

3

4

0 2 4 6 8 10 12

G

F

(d)

Figure 2.54: Same as Figure 2.2 (b). Parameter planes Mε were scanned looking for
periodic points, for the following values of ε: (a) 0.1, (b) 0.3, (c) 0.7, (d) 0.9.
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Figure 2.55: Projections on (x, z) of repellors of PF,G,ε for (F,G) = (1.8, 1.65) and
(A) ε = 0.01 (B) ε = 0.066 (C) ε = 0.0665 (D) ε = 0.0685. (a), (b), (c), (d) Power
spectra of the repellors in (A), (B), (C), (D) respectively. The same initial point as
for Figure 2.17 has been used.
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DL λ1 λ2 λ3 e1 e2 e3

A 2 4.5e-5 2.e-5 -0.47 6.e-6 3.e-6 4.e-6
B 1 2.e-5 -0.041 -0.35 2.e-6 2.e-5 3.e-5
C 2.083 0.035 -2.e-4 -0.42 1.e-4 2.e-6 1.e-4
D 2.37 0.2 6.7e-5 -0.56 5.e-4 1.e-6 6.e-4

Table 2.7: Lyapunov exponents (in the reversed time) and dimension of the repellors
in Figure 2.55.

spectrum. A similar merging occurs in the creation of the quasi-periodic attractor Q1

from the period two curve 4C (Figure 2.7). Indeed, by the analogies between Q1 and
U we call the latter a quasi-periodic Hénon-like repellor.

Seemingly, for all (F,G) the torus repellor T is destroyed long before ε reaches
0.5. As a consequence, the frayed boundary QHsub may possibly persist only for small
values of ε. Furthermore, the torus repellor is the boundary between the basins of
two different attractors, the circle C and the point A . Probably, the strange repellors
born at the destruction of T still are basin boundaries, although of fractal dimension.
However, for some values of (F,G) inside M0.5, both the circle attractor C and the
torus have disappeared (Sec. 2.4.5), and the fixed point attractor A is the unique
invariant object. This might be due to the fact that the basin of A swallows the
other.

We return to the disappearance of the HSN between ε = 0 and ε = 0.5 . It is
possible to continue the codimension two point HSN as a function of ε. In Figure 2.56
a plot of the evolution of the (positive) argument of an eigenvalue of modulus 1 is
displayed. The same figure shows also the Hopf and saddle-node bifurcation curves,
tangent to each other at the HSN point, for ε = 0.245 . The curves are rather close for
this value of ε. Guided by these results, we see that a codimension three bifurcation
takes place between ε = 0.277 and ε = 0.5 . The global picture, however, is not clear.

2.5.2 Bifurcations of codimension two and higher

The disappearance of the torus repellors implies that the frayed curve of quasi-periodic
Hopf bifurcations QHsub is destroyed by some higher codimension bifurcation. Strong
resonances could take place on QHsub, similarly to what occurs for the Hopf curves
H1 and H2 (Sec. 2.4.3). In fact, several strong resonance points were found there at
ε = 0.5 (Secs. 2.4.2 and 2.4.1). These points occur in couples delimiting gaps in the
Hopf curves. The first open question is to determine the bifurcation diagram close to
these strong resonance points and the implications for the breakdown of circles and
tori. Although no strange attractors were found in the neighbourhood of the strong
resonances, the theory prescribes their occurrence, perhaps confined in exponentially
small regions in the parameter plane (compare [20, 21, 107]).

Secondly, the two endpoints of such resonance gaps merge into one degenerate
strong resonance at ε = 0 (since no gaps occur on the Hopf curves). From this
degenerate point, two curves of strong resonance points come out in the parameter
space M = {F,G, ε}, bounding, at each ε fixed, a gap on a Hopf curve contained
inside parameter plane Mε. Then, how do these curves of 1:1 resonance bifurcations



76 Chapter 2. The Lorenz-84 climate model with seasonal forcing

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

ε

θ

1.6 1.61 1.62 1.63 1.64 1.65

SN sub
0

SN 0

H1

Hsub
1

HSN

G̃

F

Figure 2.56: Left: argument θ of the complex conjugate eigenvalues of DP on the
fixed points belonging to the curve of HSN points, in the parameter space M =
{F,G, ε}. Right: local bifurcation diagram of P close to the point HSN at ε = 0.245
(plotted at the left with a small box), inside the plane M0.245 = {ε = 0.245}. The

graph has been affinely transformed by plotting G̃ = G−1.36×(F −1.5). The vertical
width is 2 × 10−4.

evolve inside M?
This discussion leads naturally to take codimension three bifurcations into ac-

count. Such phenomena can only be studied by using three control parameters in
system (2.2). We have proved the occurrence of a Hopf-saddle-node bifurcation of
higher codimension inside the parameter space M = {F,G, ε} Sec. 2.4.3. This follows
indeed by a continuity argument: at ε = 0.277 there is a Hopf saddle node point
(see Figure 2.15), while at ε = 0.5 it has disappeared. A bifurcation causing HSN
to disappear could be a codimension three Hopf-saddle-node strong resonance, where
the three eigenvalues of P are µ1 = 1, µ2 = exp(2πip/q) and µ2 = exp(−2πip/q), with
q = 1, . . . , 4.

All the previous questions can be dealt with from an experimental point of view,
namely by studying the driven Lorenz-84 model in deeper detail. This requires careful
numerical tools, due to the large period and to the tiny size of the domains where some
phenomena occur. Furthermore, some of the codimension two and three bifurcations
found in the model, like the codimension two and the degenerate Hopf-saddle-node,
have yet to be studied even from a theoretical viewpoint. For this it is of help to
construct of suitable local model maps.

2.5.3 Global bifurcations and model maps

Beyond the questions discussed in the previous section, some global bifurcations taking
place in the Lorenz-84 system have to be better understood, like the three-dimensional
Shil′nikov homoclinic tangency of a saddle-focus fixed point. Evidence for the occur-
rence of such bifurcations was presented in Sec. 2.4.4, but its relationship with the
creation of Shil′nikov-like attractors (Secs. 2.4.10 and 2.5.1) is not yet clear. This
could be investigated by constructing appropriate model maps.

Model maps could also be used to investigate the creation of quasi-periodic Hénon-
like attractors (Sec. 21) and repellors (Sec. 2.5.1). In particular, one might also
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consider cascades of quasi-periodic period doublings of invariant circles. Research is
in progress in these directions.

Appendix to Chapter two: on the numerical meth-

ods

2.A Integration and continuation

The numerical computation of the trajectories of system (2.2) is performed using a
Taylor expansion of the solutions around time t (cf. [22]). We use the polynomial
approximation

(x(t + h), y(t + h), z(t + h)) '
N∑

k=0

(xk(t), yk(t), zk(t))h
k

where

xk(t) =
1

k!

dk

dtk
x(t) yk(t) =

1

k!

dk

dtk
y(t) zk(t) =

1

k!

dk

dtk
z(t) (2.15)

Given an initial point (x0, y0, z0), the coefficients (2.15) for k ≥ 1 are computed
recursively using the Leibnitz rule. One has for example:

dk

dtk
y2 =

k∑

m=0

k!

m!(k − m)!
dmydk−my = k!

k∑

m=0

ymyk−m

For k ≥ 1, substituting expressions like above in (2.2), one gets

xk+1 =
(
−axk −

k∑

m=0

(ymyk−m + zmzk−m) + aFεck

)
/(k + 1)

yk+1 =
(
−yk +

k∑

j=0

(xjyk−j − bxjzk−j) + Gεsk

)
/(k + 1)

zk+1 =
(
−zk +

k∑

j=0

(bxjyk−j + xjzk−j)
)
/(k + 1),

where ck(t) = 1
k!

dk

dtk
cos(ωt) and sk(t) = 1

k!
dk

dtk
sin(ωt). We usually fixed the order of

the Taylor polynomial to N = 24, since this showed good convergence in the testing.
Furthermore, a variable step size option is adopted. After computing all coefficients
(xk, yk, zk), the step size h is determined by

h = min

{(
η

aN

) 1

N

,

(
η

aN−1

) 1

N−1

}
,

where ak = max(|xk| , |yk| , |zk|) and η = 10−16. The first variational equations of
system (2.2) are handled in a similar way. For a specific treatment of the Taylor
method, see [64].
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We briefly describe the method used to compute curves of (bifurcations of) fixed
points, based on [105]. For other strategies, see [78, 101]. For many other related
problems, like continuation of cusp points or homoclinic tangencies, see [23]. Let
(x0, y0, z0) be a fixed point of P at parameter values F0, G0, ε0 and suppose F0 and ε0

are kept fixed. It is convenient to consider G as a fourth variable. We look for zeroes
of the function H, defined by

H : R4 × I → R3, H(q,G)
def

= P (q) − q, q = (x, y, z) (2.16)

knowing that q0 = (x0, y0, z0) is a solution for G = G0. Under the condition that
the derivative DH(q,G) = DP (q,G) − I has maximal rank, the Implicit Function
Theorem guarantees the existence of a curve α(s) ∈ R4 of solutions of passing through
(q0, G0). A point (q̃1, G̃1) on α(s) is predicted using interpolation and used as initial
seed for a Newton corrector. The point (q1, G1) obtained after this refinement lies on
the curve q(s).

There exist procedures to do continuation of invariant circles. Some are based on
the continuation of the Fourier coefficients [34], other on a derivation of the graph
transform [19] and on fixed points of a synthesised return map using non-integer
powers of a map [106].

2.B Estimates of Lyapunov exponents

The Lyapunov exponents are estimated according to the algorithm described by Gal-
gani, Giorgilli, Benettin and Strelcyn [12]. The first variational equations of sys-
tem (2.2) are integrated during a period T , with the identity matrix as initial condi-
tion. The canonical orthonormal basis is thereby mapped onto a new set of vectors
(v1

1,v
1
2,v

1
3). Each vector tends to align itself along the direction of maximal expan-

sion (or of minimal compression). Thus all v1
1, v1

2, and v1
3 tend to collapse onto one

direction. To prevent this, the Gram-Schmidt process is applied to (v1
1,v

1
2,v

1
3) after

a few steps of the numerical integrator, yielding a set (ṽ1
1, ṽ

1
2, ṽ

1
3) of orthogonal vec-

tors. Define w1
j = ṽ1

j/
∥∥v1

j

∥∥ for j = 1, 2, 3. Then a new frame of vectors (v2
1,v

2
2,v

2
3) is

computed by integrating the first variational equations taking as initial condition the
orthonormal vectors (w1

1,w
1
2,w

1
3) from the previous step. At iteration step k, define

ck
j =

k∏

i=1

∥∥ṽk
j

∥∥ and wk
j =

ṽk
j∥∥ṽk
j

∥∥ for j = 1, 2, 3.

The orthonormalisation process does not change the direction of vk
1, so that wk

1 still
points to the direction of maximal stretch. Denoting by λ1, λ2 and λ3 the Lyapunov
exponents, in decreasing order, the length ck

1 of vk
1 is approximately proportional

to ekλ1 . The plane spanned by vk
1 and vk

2 is not changed by the Gram-Schmidt
process and tends to adjust to the subspace of maximal growth of surfaces. The
rate of growth of areas is proportional to ek(λ1+λ2). In particular, since vk

1 = wk
1 and

wk
2 are orthonormal, the length of the projection of vk

2 upon wk
2 is proportional to

ekλ2 . A similar argument for growth of volumes yields that ck
j is proportional to ekλj .

Therefore, the Lyapunov exponent λj is estimated by the averages

λj ≈
1

k
log(ck

j ), with k = 1, 2 . . . , N. (2.17)
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For the computation of the Lyapunov spectrum of a single attractor, a total of N = 105

iterates of DP is carried out. After a transient of 104 iterations, only the maxima
of ck

j over consecutive blocks of 100 iterations of DP are used. This idea goes back
to [22]. After computing a number of blocks, say 150, we compute the average of the
ck
j as in (2.17). Then a new set of 50 blocks is computed and the ck

j are averaged over
the last 150 blocks. The maximum of the differences between the last three averages
is used as an estimation for the error in the Lyapunov exponent. Results of a test
with 105 iterates of DP are shown in Figure 2.57 (a). The solid line joins the maxima

10000 30000 50000 70000 90000
0.828
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Figure 2.57: (a) Test on the computation of Lyapunov exponents, for F = 5 and
G = 1.29. See text for explanation.

of ck
1 on blocks of 100 iterates. The small black boxes are the estimates obtained by

averaging over 150 blocks.
Because of the high computational cost of integrating variational equations for a

long period T = 73, when scanning for Lyapunov exponents for several parameter
values (like in Figure 2.12 (b)-(d)), a quicker procedure has been adopted. For each
parameter value, 104 iterates of DP are computed in total (sometimes 2 × 104), pre-
ceded by a transient of 500 iterates of P . The last 1000 approximations obtained by
(2.17) are averaged. This provides the desired estimate.

For more precise methods of estimation of the Lyapunov exponents, see [40].

2.C Power spectrum estimation

For the technical terminology and the definitions of several concepts used in this
section, we refer the reader to [15, 98]. The power spectra are estimated by using
the Discrete Fourier Transform, denoted by DFT. Given an array c of complex values
(called time series [30]) its DFT is the array:

ĉ = (ĉ0, ĉ1, . . . , ĉN−1), where ĉk
def

=
1

N

N−1∑

n=0

cn exp

(
−2πi

nk

N

)
. (2.18)

In practice, the DFT of an array is computed using a Fast Fourier Transform (FFT)
algorithm. The power spectrum is a plot of the square moduli of the coefficients ck

against so-called Fourier frequency fk = k/N .
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Given a P -invariant set W , a (real) time series is constructed in the following way.
An orbit of P with N points on W is first determined by iteration. We mostly fix
N = 216 and compute N points qk starting from q0 ∈ W , where qk = P (qk−1) ∈ R3.
To produce a time series, this orbit has to be ‘measured’ by means of an observable
Ω : R3 → R, cf. [30]. In most cases, we chose Ω as the projection onto the coordinate
y, yielding the time series y = (y0, . . . , yN−1), with yk = Ω(qk). Then an estimate of
the power spectrum of W is obtained by plotting the square modulus |ŷk|2 against the
Fourier frequency fk, for k = 0, . . . , N/2. If the attractor W is an invariant curve, the
fundamental frequency is the rotation number modulo 1/2. In the case of the circle C

(Figure 2.45 (a)-(b)) the fundamental frequency is close to the Fourier frequency with
the highest peak. For 2C , one has to take a Fourier frequency corresponding to one
half of that with the highest peak. Pictures such as Figure 2.36 left are produced by
computing power spectra on circle attractors, usually with a low number of iterates,
e.g. 4096 points. A few comments of technical nature have to be added.

Remarks.

1. Each power spectrum is computed from a single time series inside W . Another
possibility is to compute a number m time series’ in W —all with the same
length N and with distinct initial points—and then to average the m spectra,
compare [2].

2. Before computing a power spectrum, the array y is brought to zero average.
Furthermore, a Hanning windowing of order two is applied in order to reduce
frequency leakage. In particular, we first apply the translation

y 7→ u = (u0, . . . , uN−1), with uj = yj −
1

N

N−1∑

k=0

yk.

FFT is performed on a second array v, defined by

vk = Hk
2 uk where Hk

2 =
2

3
cos

(
1 − 2π

k

N

)2

(Hanning windowing, see again [15, 98]). After that, the resulting coefficients,
denoted again by ŷk for simplicity, are normalised by dividing for the norm of
the array H = (H0

2 , . . . , H
N−1
2 ).

3. We note that frequencies are computed modulo 1, since all frequencies lying
outside the interval [0, 1) are shifted inside this interval. This phenomenon,
called aliasing, is unavoidable when dealing with discrete time evolutions. In-
deed, since no sampling of a continuous time evolution is performed, the Nyquist
frequency is always fixed at 1/2. The frequency range is further restricted to
[0, 1/2], since the power spectrum of a real sequence r is symmetric with respect
to 1/2. One indeed has r̂N−k = r̂k, since

r̂N−k =
1

N

N−1∑

n=0

rn exp

(
−2πi

(N − k)n

N

)
=

1

N

N−1∑

n=0

rn exp

(
2πi

kn

N

)
.
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The last remark provides motivation to introduce the following notation:

f mir
1

2
def

= 1 − (f mod 1) = (−f) mod 1.

For example, 0.28 mir 1
2

= 0.72 and 1.91 mir 1
2

= 0.09. Given the above symmetry,
the power spectrum has the same value at f and at f mir 1

2
.

A simple test has been performed to estimate the propagation of random errors
in the FFT algorithm. Given a time series a, a ‘random’ perturbation b is prepared
as follows. We generate a sequence of random numbers rk with uniform probability
distribution in [0, 1] and define bk = mkyk, where

mk =

{
1 − 10−14 if rk < 0.5,

1 + 10−14 otherwise.

The DFT’s â and b̂ are computed and the second is subtracted from the first, yielding
an array c. The square moduli of the coefficients ck are plotted against k/N . For the
two tests in Figure 2.58 (a) and (b), an orbit on the circle attractor in Figure 2.7 (B)
respectively on the strange attractor in Figure 2.10 have been used. The size of the
sample has been kept to N = 216. In the first case, the propagated error |ck|2 varies
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Figure 2.58: (a), (b) Tests on the propagation of errors in the DFT algorithm. See
text for explanation.

between order 10−35 and 10−31. Therefore we have that 0.001 l |ck| /10−14
l 0.1,

and the same holds for the second case. Since the size of the sample is of order 1,
we conclude that the random error propagates to the amplitudes divided by a factor
ranging between 0.1 and 0.001.

Remark 2.12. The power spectrum is often used as an estimator of the spectral
density of a stationary stochastic process. Given a stationary, zero-average, discrete
time stochastic process {Xn}n∈Z on a probability space (Ω, ν), the autocorrelation
function is defined by

γX : Z → C, γX(n) = E[XnX0],

where E denotes the expected value with respect to ν. A white noise stochastic
process is characterised by γX(n) = 0 except at n = 0, where γX(0)=1. Furthermore,
the spectral density [30] is constant.
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Consider a P -attractor W ⊂ R3 and suppose that it has a unique Sinai-Ruelle-
Bowen measure24 ν. This allows us to define a process {Xn}n∈Z on the probability
space (W , ν), where Xn = Y ◦ P n is the n-th iterate of P on W , measured by
the observable Y : W → R. Then power spectra like in Figure 2.9 (A) indicate a
practically constant spectral density. This implies that the random variables Xn and
Xm are uncorrelated when m 6= n.

24 In fact, this is a rather strong assumption, see e.g. [122].



Chapter 3

Hénon-like strange attractors in a
family of maps of the solid torus

3.1 Introduction

The research presented in this Chapter is motivated by the following question:

Are there maps having quasi-periodic Hénon-like attractors?

Numerical examples of quasi-periodic Hénon-like attractors are given in Chapters one
and two. We begin by giving definitions of the concepts used here, mainly following
the terminology in [42, 86, 120]. Consider a C1 diffeomorphism F : M → M , where
M is an m-dimensional smooth manifold. A set A ⊂ M is called an attractor if A

is a topologically transitive compact F -invariant set such that the stable set (basin of
attraction) W s(A ) has nonempty interior. We recall that an F -invariant set A ⊂ M
is called topologically transitive if there exists a point z ∈ A such that the orbit
Orb(z) = {F j(z)}j≥0 of z under F is dense in A . An attractor A is called strange if
there exist constants κ > 0, λ > 1, a dense orbit Orb(z) ⊂ A and a vector v ∈ TzM
such that

‖DF n(z)v‖ ≥ κλn for n ≥ 0. (3.1)

Condition (3.1) means that the attractor A has a positive Lyapunov exponent on
the dense orbit Orb(z). The attractor A is called Hénon-like [42, 86, 120] if there
exist a saddle periodic orbit Orb(p) = {s, F (p), . . . , F n(p)}, a point z in the unstable
manifold W u(Orb(p)), constants κ > 0, λ > 1, and tangent vectors v, w ∈ TzM , with
w 6= 0, such that

A = clos W u(Orb(p)),

Orb(z) is dense in A , equation (3.1) holds, and furthermore

‖DF n(z)w‖ → 0 as n → ±∞. (3.2)

Hénon-like attractors are strange by (3.1), and are non-uniformly hyperbolic by (3.2).
In particular, Hénon-like attractors contain critical points, that is, points belonging
to a dense orbit for which a nonzero tangent vector w exists, which is contracted both
by positive and by negative iteration of the derivative DF .
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We say that the attractor A is quasi-periodic Hénon-like if there exist a quasi-
periodic invariant circle C of saddle type, a point p ∈ W u(C ), constants κ > 0, λ > 1,
and a vector v ∈ TpM such that condition (3.1) holds, while

A = clos W u(C ).

In the last decade several mathematical results have been obtained concerning the
structure of strange attractors in families of maps. A basic example is provided by
the Hénon attractor [58], occurring in the family of maps

Ha,b : R2 → R2, (x, y) 7→ (1 − ax2 + y, bx), (3.3)

where a and b are real parameters. Benedicks and Carleson [10, 11] proved that there
exists a set of parameter values S, with positive Lebesgue measure, such that for
all (a, b) ∈ S the Hénon map Ha,b (3.3) has an attractor coinciding with the closure
clos W u(p) of the unstable manifold of a saddle fixed point p. By using analogous
ideas, strange attractors were proved to occur in parametrised families of maps, near
homoclinic tangencies in two or higher dimensions [86, 96, 113, 120], and near tan-
gencies in the saddle-node critical case [42]. See [127] for a general set-up to prove
existence of strange attractors having one positive Lyapunov exponent. All strange
attractors considered in the cited papers are Hénon-like, see the definition above.
See [121] for a result concerning existence of strange attractors with two or more
positive Lyapunov exponents.

In this Chapter we provide two partial answers to the question formulated at the
beginning of this introduction. Our first result concerns the C3-family of skew-product
diffeomorphisms Tα,δ,a,ε, defined on the solid torus R2×S1, where S1 = R/Z, and given
by

Tα,δ,a,ε : R2 × S1 → R2 × S1,




x
y
θ


 7→




1 − ax2 + εf(a, x, y, θ, ε, α, δ)
εg(a, x, y, θ, ε, α, δ)
θ + α + δ sin(2πθ)


 . (3.4)

The restriction of (3.4) to S1 is the Arnol′d family of circle maps [4]:

Aα,δ : S1 → S1, θ 7→ θ + α + δ sin(2πθ). (3.5)

For 0 ≤ δ < (1/2π) and α ∈ [0, 1], the map Aα,δ is a diffeomorphism of the circle
S1. There exist open subsets Aq/n of the (α, δ) plane (Arnol′d tongues), such that the
rotation number of Aα,δ is q/n for all (α, δ) ∈ Aq/n.

The map (3.4) is a generalization of the planar Hénon-like families considered
in [86, 120]. The latter are families of planar diffeomorphisms, which are C3-small
perturbations of the logistic family

Qa : R → R, x 7→ 1 − ax2. (3.6)

In Tα,δ,a,ε, the planar part also depends on the circle dynamics by the perturbative
terms f and g. The only requirement on f and g is that their C3-norms are bounded
on compact sets. Occurrence of Hénon-like attractors is proved in the family Tα,δ,a,ε

for all parameter values belonging to a set of of positive (Lebesgue) measure. For all
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values in this set, the parameters (α, δ) are such that the dynamics of the Arnol′d
family Aα,δ (3.5) is of Morse-Smale type: there exist periodic points θs and θr in
S1, such that θs is attracting and θr repelling for Aα,δ. The attractors A we obtain
coincide with the closure of the one-dimensional unstable manifold

A = clos W u (Orb(p)),

where p = (x0, y0, θ
s) ∈ R2 × S1 belongs to a hyperbolic periodic orbit of saddle type.

Occurrence of such attractors holds on a positive measure set of parameter values for
all sufficiently C3-small perturbations of f and g. This result is formulated in more
detail in the next section.

A second situation is analysed subsequently. Fix n > 0 and let K : R2 → R2 be a
dissipative planar Cn-diffeomorphism having a hyperbolic saddle fixed point p′ ∈ R2

with a transversal homoclinic point. Then it is well-known that the closure of the
unstable manifold clos W u(p′) attracts an open set of points (initial states) [86, 95].
This result is here generalised to certain families of maps of the solid torus, having
an invariant circle of saddle type. Let Pα be a family of diffeomorphisms of R2 × S1

given by the product of a map K as above with a rigid rotation of angle α on S1, i.e.,

Pα : R2 × S1 → R2 × S1, (x, y, θ) 7→
(
K(x, y), θ + α

)
.

The map Pα has the invariant saddle-like circle C = {p′} × S1. Then for any suf-
ficiently C2-small perturbation of Pα, the circle C persists as a normally hyperbolic
C1-manifold, and the invariant set closW u(C ) attracts an open set of points, i.e.,

int(W s(clos W u(C ))) 6= ∅. (3.7)

Notice that in general clos W u(C ) is not topologically transitive, as required in the
definition of attractor we use. For example, closW u(C ) might contain periodic at-
tractors. Property (3.7) holds for an open set in the parameter space. However, by
standard KAM arguments, the quasi-periodicity of C (which implies the transitivity
of C ) generically is persistent only for a nowhere dense set of positive measure in the
parameter space, see e.g. [17].

3.1.1 Hénon-like strange attractors in a family of skew prod-
uct maps

We here formulate our main result about the family Tα,δ,a,ε in (3.4). Throughout, the
family Tα,δ,a,ε is assumed to be C3 in all variables and parameters. The parameter
space is the set of all (α, δ, a, ε) ∈ R4 such that

α ∈ [0, 1], δ ∈
[
0, 1/(2π)

)
, a ∈ [0, 2], |ε| < 1. (3.8)

Furthermore, we require the C3-norm of f and g to be bounded on compact sets. We
call such skew-product families rotating Hénon-like. For the statement of the result
we need a few definitions and notations.

Definition 3.1. Consider a map M : J → J , where J ⊂ R is an interval.
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1. The map M is called topologically mixing if for any open intervals J1, J2 ⊂ J
there exists n0 such that

Mn(J1) ∩ J2 6= ∅ for all n ≥ n0.

2. A point p ∈ R is preperiodic for M if there exists an m ≥ 2 such that Mm(p)
is a periodic point of M .

3. For a given integer n > 1, denote by Φ(n) the set of all integers q such that q
and n are relatively prime, where 1 ≤ q < n. If n = 1 put Φ(n) = {1}.

4. The interval Ka = [Q2
a(0), Qa(0)] is called the core or the restrictive interval of

the logistic family Qa (3.6).

It is well-known that Qa([0, 1]) = Qa(Ka) = Ka for all a, where Ka is the core of
Qa (3.6), see e.g. [83].

Theorem 3.1. Choose a∗ ∈ (0, 2) such that the quadratic map Qa∗ in (3.6) is topo-
logically mixing on its core K = [1 − a∗, 1] and its critical point c = 0 is preperiodic.
Let n ≥ 1 be an integer and p0 be a (repelling) periodic point of the n-th iterate Qn

a∗.
Then there exist positive constants ε̄n, ān and χn such that the following holds.

1. For all (α, δ, a, ε) as in (3.8), with

(α, δ) ∈ ∪q∈Φ(n) clos Aq/n, |a − a∗| < ān, |ε| < ε̄n (3.9)

the map Tα,δ,a,ε has a saddle periodic point p such that the unstable manifold
W u(Orb(p)) is one-dimensional.

2. For all (α, δ, ε) as in (3.9) there exists a set Sα,δ,ε with

Sα,δ,ε ⊂ [a∗ − ān, a
∗ + ān], meas(S) > χn

such that for all a ∈ Sα,δ,ε the closure clos W u(Orb(p)) is a Hénon-like strange
attractor of Tα,δ,a,ε.

Corollary 3.1. The set of parameter values for which Tα,δ,a,ε has a Hénon-like at-
tractor contains the set

S =
⋃

n∈N

{
(α, δ, a, ε) | (α, δ) ∈ ∪q∈Φ(n) clos Aq/n, |ε| < ε̄n, a ∈ Sα,δ,ε

}
,

and the set S has positive Lebesgue measure

meas(S) ≥ 2
∞∑

n=1

ε̄nχn

∑

q∈Φ(n)

meas Aq/n.

Our proof of Theorem 3.1 is given in Sec. 3.2. It is based on a result of Dı́az-Rocha-
Viana [42], and relies on the following facts:

1. For (α, δ) inside any tongue Aq/n, the asymptotic dynamics of Tα,δ,a,ε is described
by an O(ε)-perturbation of the n-th iterate Qn

a .
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2. For all n the map Qn
a is a generic n-modal family, in the sense of [42]. See the

definition given in Sec. 3.2.

Two attractors occurring in the family



x
y
θ


 7→




1 − (a + ε sin(2πθ))x2 + y
bx

θ + α + δ sin(2πθ)


 , (3.10)

are shown in Figure 3.1 (A) and (B), for (α, δ) in an Arnol′d tongue of period two and
three, respectively. The Hénon-like character of these attractors remains conjectural
for the specific parameter values considered. Notice that the family (3.10) takes the
form (3.4) after a rescaling y 7→

√
|b|y and by choosing b = O(ε).

-1
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0
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x

y

θ
(B)

Figure 3.1: Attractors of the family in (3.10) for (α, δ) in Arnol′d tongues of periods
two and three. (A) Parameters are fixed at a = 1.3, b = 0.3, ε = 0.2, (α, δ) =
(0.51, 0.116). (B) Same as (A) for α = 0.33793.

A case which is not covered by Theorem 3.1 is when the dynamics of the forcing
map Aα,δ in (3.4) is quasi-periodic. In such a situation, by [11] it is straightforward
that at ε = 0 Hénon-like strange attractors occur for a positive measure set of param-
eters (α, δ, a). To fix ideas, consider the family in (3.10). Choose a and b such that
the Hénon map (3.3) has a strange attractor A ′, coinciding with the closure of the
unstable manifold of a saddle fixed point p. According to [11], such (a, b) form a set of
positive measure. Since at ε = 0 the dynamics of (3.10) on R2 is uncoupled from that
on S1, map (3.10) has a strange attractor A = A ′ × S1. Furthermore, A coincides
with the closure of the unstable manifold of the quasi-periodic saddle-type invariant
circle {p} × S1. Numerical experiments (see Figure 3.2 (A)) suggest that attractors
like A persist for small ε. Occurrence of the same kind of quasi-periodic Hénon-like
strange attractors has been observed in several numerical studies. Compare [90] and
the literature on strange nonchaotic attractors [49, 53, 65, 66, 68, 74, 91, 119]. In Chap-
ter two of this thesis a diffeomorphism P of R3 = {x, y, z} is studied (also see [24]).
There we conjectured that the attractor A of P in Figure 3.2 (B) is contained inside
the closure clos W u(C ) of the unstable manifold of a quasi-periodic invariant circle
C of saddle type. A cross-section Σ of A , magnified in Figure 3.3 left, suggests that
the two-dimensional unstable manifold of C is folded onto itself, thereby creating a
Hénon-like structure. To illustrate the dynamics inside A we computed the image
P (Σ). This yields a folded curve looking like a planar Hénon attractor.
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u

v

w
(A)

-2

-1

0

1

2

0.8 1 1.2 1.4

Σ

(B)

x

z

Figure 3.2: (A) Attractor of map (3.10) in the quasi-periodic case. Parameter
values are fixed at a = 1.85, b = −0.2, δ = 0, α = (

√
5 − 1)/2, ε = 0.1. For a

better visualisation of the folds, the plot is given in the variables (u, v, w), where
u = (r + 4) cos(θ), v = (r + 4) sin(θ), with r = x cos(θ) + 10y sin(θ), and w =
−x sin(θ)+ 10y cos(θ). (B) Projection on the (x, z)-plane of a strange attractor of the
three-dimensional Poincaré map PF,G,ε of Chapter two, also see [24].
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Figure 3.3: (A) Projection on (x, ỹ), with ỹ = y − 0.133 ∗ z, of a slice Σ of the
attractor A in Figure 3.2 (B). The slice Σ contains all points such that the distance
from the plane z = 0 is less than 0.0001. (B) The attractor A , with the slice Σ and
the image P (Σ) under the diffeomorphism P . The image P (Σ) is magnified in the
central box.

3.1.2 Homoclinic intersections of saddle invariant circles

Hénon-like attractors coincide with the closure closW u(Orb(p)) of the unstable man-
ifold of a saddle periodic orbit. For the dissipative Hénon map (3.3), i.e., for |b| < 1,
under suitable hypotheses the Hénon attractor is contained in clos W u(Orb(p)) [11,
86, 95]. We generalise this result to families of maps of the following type. Fix an
integer n ≥ 2 and let K = (K1, K2) : R2 → R2 be a dissipative (area contracting) Cn-
diffeomorphism. Denote by Rα : S1 → S1 the rigid rotation Rα(θ) = θ + α. Consider
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the Cn-family of diffeomorphisms

Pα,ε : R2 × S1 → R2 × S1, (x, y, θ) 7→
(
K1(x, y) + f(x, y, θ, α, ε),

K2(x, y) + g(x, y, θ, α, ε),

θ + α + h(x, y, θ, α, ε)
)
,

(3.11)

where f = g = h = 0 for ε = 0. A hyperbolic saddle fixed point p of K corresponds
to an invariant circle Cα,0 of saddle type for the map Pα,ε at ε = 0. The circle Cα,0

is normally hyperbolic (see [60] for a definition), and, therefore, it is persistent under
small perturbations. Notice that the perturbation in Pα,ε is of a more general type
than in Tα,δ,a,ε, since no preservation of the skew-product structure is now required.
A few basic results are summarised in the following proposition.

Proposition 3.2. Suppose that K has a saddle fixed point p = (x0, y0). Then for all
α ∈ [0, 1] the map Pα,0 has an invariant circle Cα of saddle type. The manifold Cα

is r-normally hyperbolic for all integers r with 1 ≤ r ≤ n. Moreover, for all r < n
there exists an εr > 0 such that for all ε < εr and all α ∈ [0, 1], Pα,ε has a Cr-saddle
invariant circle Cα,ε, Cr-close to Cα,0.

Proof: The dynamics of Pα,0 on Cα,0 is parallel with rotation number α. This implies
that Cα,0 is an r-normally hyperbolic invariant manifold for all r ≤ n and, therefore,
it is Cn. So Cα,0, as well as its stable and unstable manifolds, is persistent under
Cn-small perturbations. This directly follows from [60].

Proposition 3.2 allows us to construct a basin of attraction with nonempty interior for
the invariant set clos W u(Cα,ε), provided that the one-dimensional unstable manifold
W u(p)R2 of the map K does not escape to infinity. For (x, y, θ) ∈ R2 × S1, denote by
ω(x, y, θ) the ω-limit set of (x, y, θ) under Pα,ε.

Theorem 3.2. Fix integers n and r such that n ≥ 2 and 1 ≤ r < n. Choose ε < εr as
in Proposition 3.2 and let α ∈ [0, 1]. Suppose that K : R2 → R2 is Cn and satisfies:

1. K has a saddle fixed point p ∈ R2 and a transversal homoclinic point q ∈
W s(p) ∩ W u(p).

2. The map K is uniformly dissipative: there exists κ < 1 such that |det(DK(x, y))| ≤
κ for all (x, y) ∈ R2.

3. W u(p) is contained in a bounded subset of R2.

Then there exists an ε∗ < εr such that for all ε < ε∗ there exists an open, nonempty
bounded set U ⊂ R2 × S1 such that for all (x, y, θ) ∈ U

ω(x, y, θ) ⊂ clos W u(Cα,ε). (3.12)

Under the conditions of Theorem 3.2, the invariant set closW u(Cα,ε) attracts all orbits
with initial state in an open set U . This holds for an open set of ε-values. In general,
however, clos W u(Cα,ε) is not an attractor in the sense of our definition (compare
Sec. 3.1), since it might be non-topologically transitive. This occurse for example if
clos W u(Cα,ε) contains a periodic attractor.

In the next theorem we prove that at least the circle Cα,ε is quasi-periodic (and,
hence, topologically transitive) for a set of parameter values of large relative measure.
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Theorem 3.3. Let Pα,ε be a Cn-family of diffeomorphisms as in (3.11), where n is
sufficiently large (n ≥ 5 will do). Choose ε∗ as in Theorem 3.2. Then for all ε < ε∗

sufficiently small the following holds.

1. There exists a set Dε ⊂ [0, 1] with Lebesgue measure meas(Dε) > 0 such that
for α ∈ Dε the restriction of Pα,ε to the circle Cα,ε is smoothly conjugate to an
irrational rigid rotation.

2. meas(Dε) tends to 1 for ε → 0.

Proofs of Theorems 3.2 and 3.3 are given in Sec. 3.3.

Remark 3.1. The quasi-periodicity of the dynamics inside Cα,ε may have conse-
quences for the dynamics in its stable and unstable manifolds. This is certainly the
case if α is irrational and if the map Pα,0 is perturbed within the class of skew-products,
that is

Pα,ε(x, y, θ) =
(
K(x, y) + εf(x, y, θ, α, ε), θ + α

)
.

In this case, indeed, the dynamics inside W u(Cα,ε) and W s(Cα,ε) has a quasi-periodic
component, given by a rotation over angle α, see [57]. More precisely, W u(Cα,ε) can
be parametrised as

W u(Cα,ε) =
{
(W (θ, η), θ) | θ ∈ S1 and η ∈ R

}
,

where W : S1 ×R → R2. Furthermore,

Pα,ε(W (θ, η), θ) =
(
W (θ + α,N(θ, η)), θ + α

)
,

where N : S1 ×R → R. See [57] for rigorous statements and proofs.

3.2 Existence of Hénon-like attractors

Our proof of Theorem 3.1 is based on a result of Dı́az-Rocha-Viana [42]. We begin
by stating this result.

3.2.1 Perturbations of multimodal families

Two definitions from [42] are introduced now. For more information about the termi-
nology, we refer to [83].

Definition 3.2. Let J ⊂ R be a compact interval. Fix d ≥ 1, k ≥ 3, a∗ ∈ R, and
an interval of parameter values U = [a−, a+], with a∗ ∈ int U. A Ck-family of maps
Ma : J → J , with a ∈ U, is called a d-family if it satisfies the following conditions:

1. Invariance: Ma∗(J) ⊂ int(J);

2. Nondegenerate critical points: Ma∗ has d critical points {c1, . . . , cd} def

= Cr Ma∗ that
satisfy

M ′′
a∗(ci) 6= 0 for all i and Ma∗(ci) 6= cj for all i, j;
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3. Negative Schwarzian derivative: SMa∗ < 0 for all x 6= ci, where

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

;

4. Topological mixing: for any open intervals J1, J2 in the core of Ma∗ there exists
n0 such that

Mn
a∗(J1) ∩ J2 6= ∅ for all n ≥ n0

(for the definition of core of a multimodal map, see e.g. [83]);

5. Preperiodicity: for each 1 ≤ i ≤ d there exists mi such that pi = Mmi

a∗ (ci) is a
(repelling) periodic point of Ma∗;

6. Genericity of unfolding: For all ci ∈ Cr Ma∗, denote by ci(a) and pi(a) the contin-
uations of ci and pi, respectively, for a close to a∗. Then

d

da

(
Mmi

a (ci(a)) − pi(a)
)
6= 0 at a = a∗.

Next we introduce the notion of η-perturbation of a d-family Ma, with a ∈ U and
d ≥ 1 fixed.

Definition 3.3. Fix σ > 0 and consider the family Ma obtained by extending Ma as
follows:

Ma : J × Iσ → J × Iσ, Ma(x, y)
def

=(Ma(x), 0). (3.13)

Also denote by M the map

M : U × J × Iσ → J × Iσ, M(a, x, y)
def

= Ma(x, y) = (Ma(x), 0).

Given a Ck-family of diffeomorphisms

Ga : J × Iσ → J × Iσ, a ∈ J,

for a k ≥ 3, denote by G its extension

G : U × J × Iσ → J × Iσ, G(a, x, y)
def

= Ga(x, y).

Then G is called a η-perturbation of the d-family {Ma}a if

‖M − G‖Ck ≤ η,

where ‖·‖Ck denotes the Ck-norm over U × J × Iσ.

The following result asserts that for η sufficiently small, any η-perturbation Ga of
a d-family has a non-uniformly hyperbolic strange attractor for all parameter values
a in a set S of positive Lebesgue measure. See [10, 11, 86, 96, 120, 127] for similar
results.

Proposition 3.3. [42, Theorem 5.2] Let {Ma}a be a d-family and p a periodic
point of Ma∗. Then there exist η > 0, ā and χ > 0 such that, given any η-perturbation
{Ga}a of {Ma}a the following holds.

1. For all a with |a − a∗| < ā the map Ga has a periodic point pa which is the
continuation of the periodic point (p, 0) of the map Ma in (3.13).

2. There exists a set S, contained in the interval [a∗ − ā, a∗ + ā] ⊂ U, with
meas(S) > χ, such that for all a ∈ S the set clos W u(pa) is a Hénon-like
strange attractor of the map Ga.
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3.2.2 Strange attractors in rotating Hénon-like families

We here present a proof of Theorem 3.1. The argument is based on three facts. First,
suppose that a∗ ∈ [0, 2] is such that the quadratic family Qa(x) = 1 − ax2 in (3.6) is
a d-family in the sense of Definition 3.2, with d = 1. Then for all n ≥ 1 the family
Ma

def

= Qn
a given by the n-th iterate of Qa is a d-family for some d ≤ 2n. Second, for

all η1 > 0, the composition of an η1-perturbation of Qa with an η1-perturbation of
Qn

a is an η2-perturbation of Qn+1
a , where η2 = C(n)η1 and C(n) is a positive constant

depending on n. Third, for each n > q ≥ 1 and for each (α, δ) ∈ Aq/n, the asymptotic
dynamics of Tα,δ,a,ε is described by a map that turns out to be an η-perturbation of
the d-family Ma, with η = O(ε). Application of Proposition 3.3 then concludes the
proof.

In the next lemma we show that Ma is a d-family. For each ã ∈ [0, 2) there exists
a β > 0 such that for all a with a ∈ [0, ã] the interval J = [−1−β, 1+β] ⊂ R satisfies
Qa(J) ⊂ int(J). In the sequel, it is always assumed that the family Qa is defined on
such an interval J , and that the values of a we consider are such that Qa(J) ⊂ int(J).

Lemma 3.4. Suppose a∗ ∈ [0, 2)
def

= U is such that the quadratic family

Qa : J → J, Qa(x) = 1 − ax2

satisfies hypotheses 4 and 5 of Definition 3.2. Then for all n ≥ 1 there exists d ≥ 1
such that the family

Ma : J → J, Ma
def

= Qn
a

is a d-family with d ≤ 2n − 1 critical points.

Proof. Take a∗ as above. We first prove the case n = 1, that is, Qa : Ja → Ja is a
1-family. Conditions 1, 2, 3 of Definition 3.2 are obviously satisfied by Qa. Condition
6 will now be proved. By Conditions 4 and 5 (assumed by hypothesis), Qa∗ is a
Misiurewicz map [84], i.e., it has no periodic attractor and c 6∈ ω(c), where c = 0
is the critical point of Qa∗ . Moreover, by [83, Theorem 6.3] the map Qa∗ is Collet-
Eckmann (see e.g. [83, Sec. V.4]), that is, there exist constants κ > 0 and λ > 1 such
that ∣∣DQj

a∗(Qa∗(c))
∣∣ ≥ κλj for all j ≥ 0. (3.14)

Therefore, according to [115, Theorem 3]

lim
n→∞

d
da

Qn
a(c) |a=a∗

d
dx

Qn−1
a∗ (Qa∗(c))

> 0. (3.15)

Assume Qk
a∗(c) = p, with p periodic (and repelling) under Qa∗ . By p(a) denote the

continuation of p for a close to a∗. Then, for all n sufficiently large,

d

da
Qn

a(c) |a=a∗ =
∂Qn−k

a

∂a
(Qk

a∗(c)) |a=a∗ +
∂Qn−k

a

∂x
(Qk

a∗(c)) |a=a∗

d

da
Qk

a(c) |a=a∗=

=
∂

∂a
Qn−k

a (p) |a=a∗ +
∂

∂x
Qn−k

a (p) |a=a∗

d

da

[
p(a) + Qk

a(c) − p(a)
]
|a=a∗=

=
d

da

(
Qn−k

a (p(a))
)

+
∂

∂x
Qn−k

a∗ (p)
d

da

[
Qk

a(c) − p(a)
]
|a=a∗ .

(3.16)
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The point Qn−k
a (p(a)) belongs to a hyperbolic periodic orbit, that varies smoothly

with the parameter a. Therefore, its derivative with respect to a (which is the first
term in the last equality) is uniformly bounded in n. On the other hand,

d

dx
Qn−1

a∗ (Qa∗(c)) =
∂

∂x
Qn−k

a∗ (p)
d

dx
Qk−1

a∗ (Qa∗(c)).

Therefore, by (3.14), (3.15), and (3.16) we conclude that

0 < lim
n→∞

d
da

Qn
a(c) |a=a∗

d
dx

Qn−1
a∗ (Qa∗(c))

=
d
da

[
Qk

a(c) − p(a)
]
a=a∗

d
dx

Qk−1
a∗ (Qa∗(c))

. (3.17)

This proves that Qa satisfies Condition 6 of Definition 3.2.
We now show that the n-th iterate Ma of the quadratic map is a d-family for all

n > 1 and for some d ≤ 2n. For simplicity, we denote Qa∗ by Q for the rest of the
proof. Condition 1 holds for Ma∗ since it holds for Qa∗ . Condition 3 follows from
the fact that the composition of maps with negative Schwarzian derivative also has
negative Schwarzian derivative, see e.g. [83]. Condition 4 is obviously satisfied.

Condition 2 is now proved by induction on n, where the case n = 1 is obvious.
Since Q is 2-to-1, the set Cr Ma∗ of critical points of Ma∗ has cardinality d ≤ 2n − 1.
Moreover,

Cr Ma∗ = Q−1
(
Cr Qn−1

)
∪ Cr Q =

n−1⋃

j=0

(Q−j)(Cr Q). (3.18)

Suppose that Condition 2 holds for a given n ≥ 1. We first show that

(Qn+1)′′(x) 6= 0 for all x ∈ Cr Qn+1. (3.19)

By (3.18), if x ∈ Cr Qn+1 then either x = c, or Q(x) ∈ Cr Qn. If x = c then

(Qn+1)′′(x) = (Qn)′ (Q(c)) · (Q)′′(c). (3.20)

The second factor is nonzero. If the first factor is zero, then

0 = (Qn)′ (Q(c)) = Q′(Qn(c)) . . . Q′(Q(c)).

Therefore there exists j such that Qj(c) = c, so that c is an attracting periodic point
of Q. But this contradicts the fact that Q is Misiurewicz, so that (3.20) is nonzero.
The other possibility is that c 6= x and Q(x) ∈ Cr Qn. In this case,

(Qn+1)′′(x) = (Qn)′′ (Q(x)) · Q′(x)2,

which is nonzero. Indeed, Q′(x) 6= 0, otherwise x = c. Moreover (Qn)′′ (Q(x)) 6= 0
by the induction hypotheses since the critical points of Qn are nondegenerate. This
proves (3.19), from which the first part of Condition 2 follows.

We now prove, again arguing by contradiction, that

Qn+1(x) 6= y for all x, y ∈ Cr Qn+1.
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Suppose that there exist x, y ∈ Cr Qn+1 such that Qn+1(x) = y. By (3.18) there exist
i and j such that Qi(x) = Qj(y) = c, where 0 ≤ i, j ≤ n. This would imply that

Qn+1+j−i(c) = Qj(Qn+1(x)) = Qj(y) = c,

with n + 1 + j − i ≥ 1 and, therefore, c would be an attracting periodic point of Q,
which is impossible since Q is Misiurewicz. Condition 2 is proved.

To prove Condition 5, fix y ∈ Cr Ma∗ and j ≥ 0 such that Qj(y) = c. Since c is
preperiodic for Q by hypothesis, there exists k ≥ 1 such that Qj+k(y) = p, where p is
periodic under Q with period u ≥ 1. The orbit of y under Ma∗ is, except for a finite
number of initial iterates, a subset of the orbit of p under Q. This shows that y is
preperiodic for Ma∗ .

To prove Condition 6, take y ∈ Cr Ma∗ , j, u, k and p ∈ J as in the proof of
Condition 5. Then there exist integers l and m, with 0 ≤ l < u and m ≥ 1, such that

Mm
a∗(y) = Qk+l(c) = Ql(p) ∈ OrbQ(p). (3.21)

By Condition 5 (assumed by hypothesis) and by (3.21), the point z = Ql(p) is periodic
(and repelling) under Ma∗ . Denote by y(a), z(a), and p(a) the continuations of y, z,
and p, respectively, for a close to a∗. In particular,

Qj
a(y(a)) = c and Ql

a(p(a)) = z(a).

We have to show that

d

da
[Mm

a (y(a)) − z(a)]|a=a∗ 6= 0. (3.22)

By the chain rule we get

d

da
Ql+k

a (c)
∣∣
a=a∗

=
∂Ql

a

∂a
(Qk

a(c))
∣∣
a=a∗

+
∂Ql

a

∂x
(Qk

a(c))
∣∣
a=a∗

dQk
a

da
(c)|a=a∗ =

=
∂Ql

a∗

∂a
(p) +

∂Ql
a∗

∂x
(p)

dQk
a∗

da
(c),

d

da
Ql

a(p(a))
∣∣
a=a∗

=
∂Ql

a∗

∂a
(p) +

∂Ql
a∗

∂x
(p)

d

da
p(a∗),

where p = p(a∗) = Qk
a∗(c). Therefore,

d

da
[Mm

a (y(a)) − z(a)]|a=a∗ =
d

da

[
Qk+l

a (c) − Ql
a(p(a))

]∣∣
a=a∗

=

=
∂Ql

a∗

∂x
(p)

d

da

[
Qk

a(c) − p(a)
]∣∣

a=a∗
.

The factor d
da

[
Qk

a(c(a)) − p(a)
]∣∣

a=a∗
is nonzero by (3.17). The same holds for the

other factor, otherwise p would be an attracting periodic point of Qa∗ . This proves
inequality (3.22).

In the next lemma we show that the composition of a small perturbation of the
map Qa(x, y) = (Qa(x), 0) (we use here the notation of Definition 3.3) with a small
perturbation of Qn

a(x, y) = (Qn
a(x), 0) yields a small perturbation of Qn+1

a (x, y). As
in Definition 3.3, denote by Q,Qn : [0, 2] × J × I → J × I the functions Q(a, x, y) =
(Qa(x), 0) and Qn(a, x, y) = (Qn

a(x), 0), respectively.
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Lemma 3.5. For each η > 0 there exists a ζ > 0 such that for all F,G : [0, 2]×J×I →
J × I such that

‖G − Q‖C3 < ζ and ‖F − Qn‖C3 < ζ, (3.23)

we have ∥∥G ◦ F − Qn+1
∥∥

C3 < η. (3.24)

Proof. Write

G(a, x, y) =

(
Qa(x) + g1(a, x, y)

g2(a, x, y)

)
and F (a, x, y) =

(
Qn

a(x) + f1(a, x, y)
f2(a, x, y)

)
.

Then

G ◦ F (a, x, y) −
(

Qn+1
a (x)

0

)
=

(
−2a(f1(a, x, y))2 − 2af1(a, x, y)Qn

a(x) + g1

(
a, f̃1(a, x, y), f2(a, x, y)

)

g2

(
a, f̃1(a, x, y), f2(a, x, y)

)
)

,

where f̃1(a, x, y) = Qn
a(x) + f1(a, x, y). The C3-norm of the terms −2a(f1(a, x, y))2

and −2af1(a, x, y)Qn
a(x) is bounded by a constant times the C3-norm of f1. We now

estimate the norm of g̃1, defined by

g̃1(x0, x1, x2) = g1(a, f̃1(a, x, y), f2(a, x, y)).

Denote x0 = a, x1 = x, and x2 = y. Then any second order derivative of g̃1 is a sum
of terms of the following type:

∂2g1

∂xjxk

∂f̃k

∂xl

,
∂g1

∂xk

∂2f̃k

∂xjxl

,

where we put f̃2 = f2 to simplify the notation. For the third order derivatives a
similar property holds. Since the C3-norm of f̃k is bounded, we get that each term
in the third order derivative of g̃1 is bounded by a constant times the C3-norm of the
gj. This concludes the proof.

Proof of Theorem 3.1. The theorem will be first proved for a∗ < 2. The case
a∗ = 2 follows by choosing another value ā∗ < 2 sufficiently close to 2. Fix a∗ ∈ [0, 2)
verifying the hypotheses of Lemma 3.4. To begin with, we consider the case (α, δ) ∈
int A1, the interior of the tongue of period one. Then the Arnol′d family Aα,δ on S1

has two hyperbolic fixed points θs
1 (attracting) and θr

1 (repelling), see [41, Sec. 1.14].
The θ-coordinate of both points depends on the choice of (α, δ) ∈ int A1. So for all
θ ∈ S1 with θ 6= θr

1, the orbit of θ under Aα,δ converges to θs
1. This means that the

manifold
Θ1 =

{
(x, y, θ) ∈ R2 × S1 | θ = θs

1

}
⊂ R2 × S1

is invariant and attracting under Tα,δ,a,ε. Denote by Ga,1 the restriction of Tα,δ,a,ε to
Θ1:

Ga,1 : Θ1 → Θ1, (x, y, θs
1) 7→ (1 − ax2 + εf1, εg1, θs

1),
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where f1 = f(a, x, y, θs
1, α, δ) and similarly for g1. Since Qa∗(J) ⊂ int(J), there exists

a constant σ > 0 such that for all ε sufficiently small and all a close enough to a∗,

Ga,1(J × Iσ × {θs
1}) ⊂ int(J × Iσ × {θs

1}) and

Tα,δ,a,ε

(
J × Iσ × (S1 \ {θr

1})
)
⊂ int

(
J × Iσ × (S1 \ {θr

1})
)
. (3.25)

Since Θ1 is diffeomorphic to R2, we consider Ga,1 as a map of R2. Then Ga,1, is
an η-perturbation of the quadratic family Qa(x), where η = O(ε). We now apply
Proposition 3.3 to the family Ga,1. Let p0 be a periodic point of Ma∗ . For all ε
sufficiently small there exists a constant ā > 0 and a set S of positive Lebesgue
measure, contained in the interval [a∗ − ā, a∗ + ā], such that the following holds. For
all a ∈ [a∗ − ā, a∗ + ā], Ga,1 has a saddle periodic point p̄ which is the continuation of

the point p0. Furthermore, for all a ∈ S the closure Ã = clos W u(p̄) is a Hénon-like
strange attractor of Ga,1 contained inside Θ1. The point p = (p̄, θs

1) is a saddle periodic
point of the map Tα,δ,a,ε, and W u(p) = W u(p̄) × {θs

1}. Therefore A = clos W u(p) =

Ã × {θs
1}. Moreover, the basin of attraction of closW u(p) has nonempty interior in

R2 × S1 because of (3.25). This proves the claim for (α, δ) ∈ int A1.
We pass to the case of higher period tongues. Suppose that (α, δ) ∈ int Aq/n, with

n > q ≥ 1. Then Aα,δ has (at least) two hyperbolic periodic orbits

Orb(θs
1) = {θs

1, θ
s
2, . . . , θ

s
n} attracting, and

Orb(θr
1) = {θr

1, θ
r
2, . . . , θ

r
n} repelling.

For j = 1, . . . , n, denote by Θj the manifold

Θj =
{
(x, y, θ) ∈ R2 × S1) | θ = θs

j

}
,

and define maps Gj as the restriction of Tα,δ,a,ε to Θj:

Gj : Θj → Θj+1 for j = 1, . . . , n − 1

Gn : Θn → Θ1, where

(x, y, θs
1)

Gj7→ (Qa(x) + εfj, εgj, θs
j+1), for j = 1, . . . , n − 1

(x, y, θs
n)

Gn7→ (Qa(x) + εfn, εgn, θs
1).

Here, fj = f(a, x, y, θs
j , α, δ). The manifold Θ1 is invariant and attracting under the

n-th iterate of the map Tα,δ,a,ε. For all (x, y, θ) in the complement of the set

{(x, y, θ) | θ ∈ Orb(θr
1)} ,

the asymptotic dynamics is given by the map

Ga,1,...n
def

= Gn ◦ Gn−1 ◦ · · · ◦ G1.

Notice that each of the Gj’s is an ηj-perturbation of the family Qa in the sense of
Definition 3.3, where ηj = Bε and B can be chosen uniform on θs

j (and, therefore, on
(α, δ)).
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Let p0 be a periodic point of Ma
def

= Qn
a . Then (p0, 0) is a saddle periodic point for

the map Ma defined as in (3.13). Take η, ā, and χ as in Proposition 3.3. By inductive
application of Lemma 3.5 there exists an ε̄ > 0 depending on η and n such that

‖Ga,1,...n − Qn‖C3 < η,

for all (α, δ) ∈ int Aq/n and all |ε| < ε̄. That is, Ga,1,...n is an η-perturbation of Ma for
all q with 1 ≤ q < n and all (α, δ, a, ε) with

(α, δ) ∈ Aq/n, ε ∈ [−ε̄, ε̄].

By Proposition 3.3 there exist an ā > 0 and a set S contained in the interval [a∗ −
ā, a∗ + ā] such that meas(S) ≥ χ and the following holds. For all a ∈ [a∗ − ā, a∗ + ā]
the map Ga,1,...,n has a periodic point p̄a which is the continuation of the periodic point

(p0, 0) of Ma. Moreover, for all a ∈ S the closure Ã = clos W u(p̄a) is a Hénon-like
strange attractor of Ga,1,...,n, contained inside Θ1.

To finish the proof, observe that pa = (p̄a, θ
s
1) is a saddle periodic point of Tα,δ,a,ε.

The set A = clos W u(pa) is compact and invariant under Tα,δ,a,ε, where

A =
(
Ã × {θs

1}
)
∪ Tα,δ,a,ε

(
Ã × {θs

1}
)
∪ · · · ∪ T n−1

α,δ,a,ε

(
Ã × {θs

1}
)
.

To show that A has a dense orbit, suppose that the orbit of z = (x0, y0, θ
s
1) under

Ga,1,...n is dense in Ã . Then given η > 0 and a point

q = T j
α,δ,a,ε(q

′) ∈ T j
α,δ,a,ε(Ã × {θs

1}), with 1 ≤ j ≤ n − 1,

there exists m > 0 such that dist(Gm
a,1,...n(z), q′) < η. By continuity of T j

α,δ,a,ε, for all
% > 0 there exists η > 0 such that

dist(T j
α,δ,a,ε(q

′′), T j
α,δ,a,ε(q

′)) < % for all q′′ with dist(q′′, q′) < η.

We conclude that for all % > 0 there exists m > 0 such that

dist(T j
α,δ,a,ε(G

m
a,1,...n(z)), T j

α,δ,a,ε(q
′)) = dist(T j+mn

α,δ,a,ε(z), q) < %.

This proves that the orbit of z under Tα,δ,a,ε is dense in A . Properties (3.1) and (3.2)
will now be proved. Since Ga,1,...,n = T n

α,δ,a,ε on Θ1, for any m ∈ N and any z ∈ A we
have

DTm
α,δ,a,ε(z) = DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z),

where s = m mod n and r = m − s. Take z ∈ A having a dense orbit and v =
(vx, vy, 0) ∈ TzA such that

∥∥DGs
a,1,...,n(z)v

∥∥ ≥ κλs for all s, where κ > 0 and λ > 1
are constants. Since T r

α,δ,a,ε is a diffeomorphism for all r = 1, . . . , s− 1 and Gs
a,1,...,n(z)

belongs to the compact set A for all s ∈ N, then there exists a constant c > 0 such
that

∥∥DTm
α,δ,a,ε(z)v

∥∥ =
∥∥DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z)v
∥∥ ≥ c

∥∥DGs
a,1,...,n(z)v

∥∥ ,

where c is uniform in r. This proves property (3.1). Property (3.1) is proved similarly.
This shows that the closure clos W u(pa) is a Hénon-like strange attractor of Tα,δ,a,ε.

Remark 3.2. At the boundary of a tongue Aq/n the Arnol′d family Aα,δ has a saddle-
node periodic point θ1. However, the basin of attraction of Orb θ1 still has nonempty
interior, so that the above conclusions hold for all (α, δ) in the closure clos Aq/n.
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3.3 Basins of attraction and invariant circles

In this section we give proofs of Theorems Theorem 3.2 and Theorem 3.3. The setting
of the problem is now briefly recalled, also see Sec. 3.1.2. Suppose K : R2 → R2 is
a dissipative (area contracting) Cn-diffeomorphism, where n ≥ 2. Define the direct
product map

Pα,0 : R2 × S1 → R2 × S1, (x, y, θ) 7→ (K(x, y), θ + α), (3.26)

where S1 = R/Z. We consider Cn-small perturbations Pα,ε of Pα,0, to be written as

Pα,ε : R2 × S1 → R2 × S1,

(x, y, θ) 7→
(
K(x, y) + εfε(x, y, θ, α), θ + α + εgε(x, y, θ, α)

)
,

see (3.11). Here the dependence of Pα,ε on the parameters (α, ε) is Cn. In general
Pα,ε has not a skew-product structure such as the rotating Hénon map (3.4). We
assume that K has a saddle fixed point p = (x0, y0). This corresponds to an invariant
circle Cα of saddle type of Pα,ε at ε = 0. Normal hyperbolicity of Cα guarantees its
persistence under small perturbations, see Proposition 3.2. Our proof of Theorem 3.3
is based on a version of the KAM Theorem holding for finite differentiability. We
begin by proving Theorem 3.2

3.3.1 Basins of attraction: The Tangerman-Szewc argument
generalised

Let K : R2 → R2 be a dissipative diffeomorphism having a saddle fixed point
p = (x0, y0). Suppose the stable and unstable manifolds W s(p) and W u(p) inter-
sect transversally at the homoclinic point q ∈ W s(p) ∩ W u(p), see Figure 3.4. Also
assume that W u(p) is bounded as a subset of R2. The Tangerman-Szewc Theorem

c

d

p

q

∂u

∂s

U ′

Figure 3.4: Segments ∂s and ∂u of the stable and unstable manifold, respectively, of
a saddle fixed point p bound a region U , see text for more explanation.

states that the basin of attraction of the closure of W u(p) contains the open region
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U ′ bounded by the two arcs ∂s ⊂ W s(p) and ∂u ⊂ W u(p) with extremes p and q,
see Figure 3.4. This argument is by now standard, see e.g. [95] Appendix 3. It is
also used to prove existence of strange attractors close to homoclinic tangencies of a
saddle fixed point of a dissipative diffeomorphism, cf. [86, 120, 127].

We first prove Theorem 3.2 for ε = 0. This is a straightforward generalisation of
the above Tangerman-Szewc Theorem. For small ε, the result is obtained by using
persistence of normally hyperbolic invariant manifolds [60] and two transversality
lemmas.

Proof of Theorem 3.2. Consider the circle Cα = Cα,0, invariant under map Pα,0 in
(3.26). The manifolds W u(Cα) and W s(Cα) are given by W u(p)×S1 and W s(p)×S1,
respectively. They intersect transversally at a circle H = {q} × S1, consisting of
points homoclinic to Cα. Consider the two arcs ∂s ⊂ W s(p) and ∂u ⊂ W u(p) with
extremes p and q (Figure 3.4).They bound an open set U ′ ⊂ R2. Define Ds and Du

to be the portions of stable, and unstable manifold of Cα, respectively, given by

Ds = ∂s × S1 ⊂ W s(Cα) and Du = ∂u × S1 ⊂ W u(Cα).

Both surfaces Ds and Du are compact, and their union forms the boundary of the
open region U = U ′ × S1, which is topologically a solid torus.

The volume of U decreases under iteration of Pα,0. Denoting by meas(·) the
Lebesgue measure both on R2 and on R2 × S1, due to Condition 2 in Theorem 3.2 we
have

meas(P n
α,0(U)) = 2π

∫

Kn(U ′)

dxdy = 2π

∫

U ′

|det DKn| dxdy ≤ 2πκn meas(U ′).

This implies that the forward evolution of every point (x, y, θ) ∈ U approaches the
boundary of P n

α,0(U):

dist
(
P n

α,0(x, y, θ), ∂P n
α,0(U)

)
→ 0 as n → +∞.

Indeed, suppose that this does not hold. Then there exists a % > 0 such that for all
n there exists N > n such that the ball with centre PN

α,0(x, y, θ) and radius % > 0 is
contained inside PN

α,0(U). But this would contradict the fact that meas(P n
α,0(U)) → 0

as n → +∞.
The boundary of P n

α,0(U) also consists of two portions of stable and unstable
manifold of C :

∂P n
α,0(U) = P n

α,0(D
s) ∪ P n

α,0(D
u).

The diameter of P n
α,0(D

s) tends to zero as n → +∞, because all points in Ds are
attracted to the circle Cα. Since W u(Cα) is bounded, all evolutions starting in U are
bounded and approach W u(Cα), that is,

dist(P n
α,0(x, y, θ), P n

α,0(D
u)) → 0 as n → +∞

for all (x, y, θ) ∈ U . This implies that ω(x, y, θ) ⊂ clos W u(Cα) for all (x, y, θ) ∈ U .
To extend this result to small perturbations Pα,ε of Fα, the following transversality

lemmas are used.
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Lemma 3.6. [94, 103] Consider a map f : V → M , where V and M are Cr-
differentiable manifolds and f is Cr. Suppose V is compact, W ⊂ M is a closed
Cr-submanifold and f is transversal to W at V (notation: f t W ). Then f−1(W ) is
a Cr-submanifold of codimension codimV (f−1(W )) = codimM(W ). Further suppose
that there is a neighbourhood of f(∂V ) ∪ ∂W disjoint from f(V ) ∩ W , where ∂V and
∂W are the boundaries of V and W . Then any map g : V → M , sufficiently Cr-close
to f , is also transversal to W , and the two submanifolds g−1(W ) and f−1(W ) are
diffeomorphic.

Lemma 3.7. [59] Let V1, V2, and M be Cr-differentiable manifolds and consider
two diffeomorphisms fi : Vi → M , i = 1, 2. Then f1 t f2 if and only if f1 × f2 t ∆,
where f1×f2 : V1×V2 → M ×M is the product map and ∆ ⊂ M ×M is the diagonal:
∆ = {(y, y) | y ∈ M}.

Fix r ∈ N and take ε < εr, where εr is given in Proposition 3.2. Then the map
Pα,ε has an r-normally hyperbolic invariant circle Cα,ε of saddle type. Furthermore,
the manifolds W u(Cα,ε), W s(Cα,ε), and Cα,ε are Cr-close to W u(Cα), W s(Cα), and Cα.
We now show that the two manifolds W u(Cα,ε), W s(Cα,ε) still intersect transversally.
To apply Lemma 3.6 we restrict to two suitable compact subsets Au ⊂ W u(Cα) and
As ⊂ W s(Cα) as follows. Consider the segments pc ⊂ W u(p) and pd ⊂ W s(p) in
Figure 3.4. Define

Au = pc × S1, As = pd × S1.

In this way, the circle H is the intersection of the manifolds Au and As, bounded
away from their boundaries. Consider the inclusions i : Au → M and j : As → M .
By the closeness of W u(Cα) to W u(Cα,ε) there exists a Cr-diffeomorphism h : Au →
Au

ε ⊂ W u(Cα,ε) such that the map i is Cr-close to iε ◦ h, where iε : Au
ε → M is the

inclusion [94]. Similarly, there exists a diffeomorphism k : As → As
ε ⊂ W s(Cα,ε) such

that the map j is Cr-close jε ◦ k, where jε : As
ε → M is the inclusion. By Lemma 3.7

the map i × j : Au × As → M × M is transversal to the diagonal ∆. For ε small, the
map (iε ◦ h) × (jε ◦ k) : Au × As → M × M is Cr-close to i × j:

Au × As i×j−−−→ M × M

h×k

y

Au
ε × As

ε

iε×jε−−−→ M × M.

Since ∆ is closed and Au × As is compact, Lemma 3.6 implies that there exists an
ε∗, with 0 < ε∗ < εr, such that (iε ◦ h) × (jε ◦ k) t ∆ for ε < ε∗. Furthermore, the
submanifolds

(i × j)−1(∆) and
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆)

are diffeomorphic. We also have that
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆) is diffeomorphic to

Au
ε ∩ As

ε, and (i × j)−1(∆) = Au ∩ As = H .
This shows that the intersection Hε = Au

ε∩As
ε is diffeomorphic to H . Define Du

ε as
the part of W u(Cα,ε) bounded by the invariant circle Cα,ε and the circle of homoclinic
points Hε. Define Ds

ε = k(Ds) similarly. Then the manifolds Du
ε ⊂ W u(Cα,ε) and

Ds
ε ⊂ W s(Cα,ε) form the boundary of an open region U ⊂ M homeomorphic to

a torus. By the closeness of the perturbed manifolds W s(Cα,ε) and W u(Cα,ε) to the
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unperturbed W s(C ) and W u(C ), both U and W u(Cα,ε) are bounded. Also notice that
Pα,ε is dissipative: by taking ε∗ small enough, we ensure that |det(DF (x, y, θ))| < c̃ <
1 for all ε < ε∗ and (x, y, θ) in U . Therefore, all forward evolutions beginning at
points (x, y, θ) ∈ U remain bounded. Like in the first part of the proof, one has

ω(x, y, θ) ⊂ clos W u(Cα,ε)

for all (x, y, θ) ∈ U , α ∈ [0, 1] and ε < ε∗.

3.3.2 Quasi-periodic invariant circles

So far, we did not discuss the dynamics in the saddle invariant circle Cα,ε of map
Pα,ε in (3.11). Generically, the dynamics on Cα,ε is of Morse-Smale type. In this
case, the circle consists of the union of the unstable manifold of some periodic saddle.
Theorem 3.3 describes a complementary case, for which the dynamics is quasi-periodic.
Fix τ > 2 and define the set of Diophantine frequencies Dγ by

Dγ =

{
α ∈ [0, 1] |

∣∣∣∣α − p

q

∣∣∣∣ ≥ γq−τ for all p, q ∈ N, q 6= 0

}
, (3.27)

where γ > 0. Since we will apply a dissipative version of the KAM theorem in the case
of finite differentiability (see [17, 18]), a certain amount of smoothness of the circle
Cα,ε is needed, depending on the Diophantine condition specified in (3.27). Therefore
we require that the perturbed family of maps Pα,ε is Cn, for n large enough.

Proof of Theorem 3.3. Consider map Fα in (3.26), and let p = (x0, y0) be a saddle
fixed point of the dissipative diffeomorphism K. The invariant circle Cα,0 of Fα can
be seen as a graph over S1:

Cα,0 =
{
(θ, x0, y0) ∈ R2 × S1 | θ ∈ S1

}
.

Fix r ∈ N large enough and ε < εr, where εr is taken as in Proposition 3.2. By the
Cr-closeness of Cα,0 and Cα,ε (Proposition 3.2), the circle Cα,ε of Pα,ε can be written
as a Cr-graph over S1:

Cα,ε =
{
(θ, xε(θ), yε(θ)) ∈ R2 × S1 | θ ∈ S1

}
, (3.28)

where xε : S1 → R, xε(θ) = x0 + O(ε), and similarly for yε(θ). So the restriction of
Pα,ε to Cα,ε has the following form

Pα,ε
∣∣
Cα,ε

: Cα,ε → Cα,ε, Pα,ε(θ) = θ + α + εgε(x0, y0, θ, α) + O(ε2).

By (3.28), we may consider Pα,ε as a map on S1. Fix γ > 0, τ > 3 and take Dγ

as in (3.27). For α ∈ Dγ, the map Pα,ε can be averaged repeatedly over the circle,
putting the θ-dependency into terms of higher order in ε, compare [23, Proposition
2.7] and [29, Sec. 4]. After such changes of variables, Pα,ε is brought into the normal
form

Pα,ε(θ) = θ + α + c(α, ε) + O(εr+1).
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In fact, it is convenient to consider α as a variable, and to define the cylinder maps

Pε : S1 × [0, 1] → S1 × [0, 1], Pε(θ, α) = (Pα,ε(θ), α)

R : S1 × [0, 1] → S1 × [0, 1], R(θ, α) = (Rα(θ), α),

where Rα : S1 → S1 is the rigid rotation of an angle α. We now apply a finite
differentiability version of the KAM Theorem to the family of diffeomorphisms Pε,
see e.g. [17, 18]. There exists an integer m with 1 ≤ m < r and a Cm-map

Φε : S1 × [0, 1] → S1 × [0, 1], Φε(θ, α) = (θ + εA(θ, α, ε), α + εB(α, ε)), (3.29)

such that the restriction of Φε to S1 × Dγ makes the following diagram commute:

S1 × Dγ
R−−−→ S1 × Dγ

Φε

x Φε

x

S1 × Dγ
Pε−−−→ S1 × Dγ .

The differentiability of Φε restricted to S1 × Dγ is of Whitney type. Since Pα,ε
∣∣
Cα,ε

is Cm-conjugate to a rigid rotation on S1, the circle Cα,ε is in fact Cm. This proves
parts 1 and 2 of the Theorem.

Furthermore, the constant γ in (3.27) can be taken equal to εr. This gives that
the measure of the complement of Dγ in [0, 1] is of order εr as ε → 0.

3.4 Overview and future research

In this Chapter we prove that Hénon-like strange attractors occur in a family Tα,δ,a,ε

of diffeomorphisms of the solid torus R2 × S1. The family Tα,δ,a,ε is a perturbation
of the quadratic family Qa(x) = 1 − ax2, and has a skew-product structure over S1.
The strange attractors we obtain coincide with the closure of the one-dimensional
unstable manifold W u(Orb(p)), where Orb(p) is a hyperbolic periodic orbit of saddle
type which is a sink for the restriction of Tα,δ,a,ε to S1.

In a slightly different context, we show that the invariant set clos W u(C ) attracts
an open set of points, where C is an invariant circle of saddle type. This is proved
for a family Pα,ε of diffeomorphisms of R2 × S1, obtained as follows. We first consider
the direct product of a rigid rotation on S1 with a diffeomorphism of R2 with a
saddle fixed point having a point of transversal homoclinic intersection. Then Pα,ε is
a perturbation of this product map.

Future research will focus on scenario’s in which A = clos W u(C ) is a strange
attractor, i.e., it is topologically transitive and has a dense orbit with a positive Lya-
punov exponent, where C is a quasi-periodic invariant circle of saddle type. Attractors
having these properties are called quasi-periodic Hénon-like attractors, see Chapter
two and compare the numerical examples in Figures 3.3 and 3.5. Similar types of
attractors have been found in several numerical studies [65, 66, 74, 91, 119].

We like to mention three other points of interest related to the above problem.
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1. Consider first the strange attractors we obtain for the map Tα,δ,a,ε (3.4), see
Theorem 3.1 and compare Figure 3.1. An open problem is to characterize the
bifurcations occurring when approaching the boundary of a resonance region for
the dynamics in S1 (Arnol′d tongue). This corresponds to the transition from
Hénon-like to quasi-periodic Hénon-like attractors.

2. Secondly, the transition between the strange attractors obtained in Theorem 3.1
for the map Tα,δ,a,ε (3.4), and the attractors for maps which are perturbations of
Tα,δ,a,ε where the skew-product structure is slightly perturbed, e.g., by adding
terms depending on (x, y) to the angular dynamics.

3. Finally, the transition from attractors of Tα,δ,a,ε (3.4), for which δ = 0 and
α irrational to attractors of maps which are perturbations of Tα,δ,a,ε as in the
previous item.

In all cases homoclinic bifurcations [95] are likely to play a fundamental role.
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Figure 3.5: (A) Attractor of map (3.10) in the quasi-periodic case. Parameter values
are fixed at a = 0.8, b = 0.4, δ = 0, α = (

√
5 − 1)/2, ε = 0.7, initial conditions

x0 = 1.5, y0 = 0, θ0 = 0. Projection on the (θ, y)-plane. (B) Same as (A), with
projection on the (x, y)-plane in the background (in grey) with ‘slices’ of the attractor
2πθ ∈ [0.1 × j, 0.1 × j + 0.001], for j = 0, 1, . . . , 62 (in black).



Chapter 4

Hopf-saddle-node bifurcation for
fixed points of diffeomorphisms

4.1 Introduction

In this Chapter we examine two model maps for the Hopf-saddle-node (HSN) bifur-
cation of fixed points of diffeomorphisms. The purpose is to understand the typical
bifurcation patterns by means of a case study, where the two model maps are con-
structed ‘as generic as possible’.

The HSN bifurcation for equilibria of vector fields has been investigated by several
authors [16, 28, 31, 39, 48, 56, 69, 75, 78, 111]. We show that in the model maps
phenomena occur which are qualitatively different from the previously considered
vector field situations. The differences can be roughly divided into three groups:

1. Resonances along a curve of Hopf bifurcations of invariant circles [78, 112].

2. Resonant dynamics on a normally hyperbolic invariant 2-torus.

3. Breakdown of an invariant 2-torus and occurrence of strange attractors near
heteroclinic intersections of the invariant manifolds of two fixed points of saddle-
focus type with different stability indices.

The two models are introduced in the next section, and their construction is described
in Sec. 4.1.2. The dynamics of the two model maps is briefly presented by means of
numerical simulations in Sec. 4.1.3, where we also give an outline of the rest of this
Chapter.

4.1.1 Setting of the problem

The purpose of this Chapter is to describe the dynamics of the local 3D model maps
G and Q:

G :

(
w
z

)
7→

(
eiωw[1 − γ(γµ + az + γz2)]

z + γ(1 − |w|2 − z2)

)
+

(
γ3(ε1w

4 + ε2z
4)

0

)
, (4.1)

Q :




x
y
z


 7→




Re (eiωw[1 − γ(γµ + az + γz2)])
Im (eiωw[1 − γ(γµ + az + γz2)])

z + γ(1 − |w|2 − z2)


 +




γ3ε1(y
4 + z4)

γ3ε2(x
4 + z4)

γ3ε3(x
4 + y4)


 . (4.2)
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Both families depend on the three real parameters (γ, µ, ω). The family G is given
in the coordinates (w, z), where w = x + iy ∈ C and z ∈ R, while Q is given in real
coordinates (x, y, z). Moreover, a = a1 + ia2 is a complex constant while εj is real for
j = 1, 2, 3.

Before explaining the construction and the purpose of the model maps G (4.1) and
Q (4.2), we give two definitions. Let α ∈ Rp be a multi-parameter, and denote by
S1 = R/2π ⊂ C the unit circle. Let Fα : R3 → R3 be a C∞-family of diffeomorphisms.
We say that Fα is an HSN-family of diffeomorphisms if

F0(0) = 0, and spec DF0(0) = {eiω0 , e−iω0 , 1} ⊂ S1, (4.3)

where the complex conjugate eigenvalues satisfy the non-resonance conditions

einω0 6= 1 for n = 1, 2, 3, 4. (4.4)

Let Xα be a C∞-family of vector fields on R3. We call Xα a HSN-family of vector
fields if

X0(0) = 0 and specDX0(0) = {±iω0, 0}, ω0 6= 0. (4.5)

To have a generic HSN bifurcation of equilibria, the 3-jet of Xα at the origin has to
satisfy appropriate open and dense conditions, for example those given in Lemma 4.3,
Appendix 4.B, also see [56, 75, 78].

Remark 4.1. The values n = 1, 2, 3, 4 in (4.4) are the so-called strong resonances [112,
78, 71]. They are excluded since they correspond to HSN bifurcations of higher
codimension.

A standard approach for the study of a bifurcation of fixed points for a family of
diffeomorphisms Fα consists in the derivation of the Takens approximating vector
field [112]. Let DF0(0) = S + N be the decomposition in semisimple and nilpotent
part of DF0(0). By Takens’s theorem there exists a change of coordinates, defined in
a neighbourhood of the origin of R3 × Rk and preserving the parameters, such that
in the new coordinates the diffeomorphism Fα takes the form

Fα = S ◦ X1
α + M.

Here the Taylor expansion of the remainder M near the origin is identically zero.
Moreover, X1

α denotes the time-1 map of the flow of a family of vector fields Xα,
defined on R3 and such that

X0(0) = 0 and specDX0(0) = {0}.

However, if F is an HSN-family of diffeomorphisms, one can apply a slightly different
version of this theorem, given in Lemma 4.5, Appendix 4.D. Indeed, there exists a
coordinate transformation such that in the new coordinates the diffeomorphism takes
the form

Fα = X1
α + M, (4.6)

where the 3-jet of the remainder M is zero. In this case Xα is an HSN-family of vector
fields, i.e., equation (4.5) holds. This approach has the advantage that a fair amount
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of information is available on HSN-families of vector fields [56, 75, 78]. In particular,
given a two-parameter HSN-family of vector fields Xα, satisfying the generic conditions
given in Lemma 4.3 (Appendix 4.B), there exist a coordinate transformation and a
reparametrisation β = β(α) which brings Xα to the form

Yβ(w, z) + O(‖w, z‖4),

where Yβ is the third degree polynomial family of vector fields on R3 given by

Yβ(w, z) =

(
(−β2 + iω)w − awz − wz2

−β1 − s |w|2 − z2

)
, (4.7)

with a = a(β) ∈ C and s = ±1, see [78].

Our approach for the study of an HSN bifurcation of diffeomorphisms is the con-
verse of the standard one. We start from the time-1 map Y 1

β of the vector field in (4.7)
and construct the two models G (4.1) and Q (4.2) by adding perturbative terms of
order strictly higher than three (see the next section for details). By the combination
of Lemma 4.5 and Lemma 4.3, this yields models which are representative for a large
class of HSN-families of diffeomorphisms. However, the choice of the higher order
perturbative terms depends on the value of ω, and this motivates the use of different
models. Two situations are considered here.

1. For G (4.1), the parameter ω is confined to a neighbourhood of ω0 = 2π/5.
In particular, G is constructed to study a 1:5 resonance along a curve of Hopf
bifurcations. This is a special case of item 1 at the beginning of this introduction.

2. On the other hand, the investigation specified in item 2 at the beginning of this
introduction is carried out by means of Q (4.2). Correspondingly, for Q the
parameter ω is allowed to vary in the interval [0, 2π].

The dynamics of the polynomial vector field Yβ (4.7) is the starting point for the
construction of G and Q, which is described in the next section.

4.1.2 Preliminaries

This section is divided in three parts. First the dynamics of generic HSN-families of
vector fields is discussed, then we present the construction of the model maps G (4.1)
and Q (4.2). In the third subsection, we outline our theoretical expectations for the
dynamics of G and Q, given our knowledge on the vector field case.

The Hopf-saddle-node bifurcation for vector fields

We start the discussion by analysing the third degree polynomial family of vector fields
Yβ (4.7), closely following [78]. The two-parameter family Yβ is axially symmetric: for
all θ ∈ R, Yβ commutes with the rotation Rθ of angle θ ∈ R around the z-axis, given
by

Rθ : R3 → R3, Rθ(w, z) = (eiθw, z).
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In cylindrical coordinates (r, ϕ, z), where w = reiϕ, the vector field Yβ takes the form

ṙ = r(−β2 − a1z − z2),

ϕ̇ = ω − a2z,

ż = −β1 − z2 − sr2.

(4.8)

The equations for (ṙ, ż) in (4.8) are independent on φ, and yield the planar reduction

ṙ = r(−β2 − a1z − z2),

ż = −β1 − z2 − sr2.
(4.9)

Notice that the planar reduction (4.9) is Z2-equivariant, namely, it is symmetric under
the transformation (r, z) 7→ (−r, z).

According to the signs of s and a1, the topological structure of the phase por-
trait of the reduced system (4.9) belongs to one of four classes (if a time-reversal is
allowed [78]). We only describe the case s = 1, a1 < 0, for which both Hopf and
heteroclinic bifurcations occur. The bifurcation diagram of the planar system (4.9)
consists of the curves SN , P , H and HET :

S = {(β1, β2) | β1 = 0}

P =

{
(β1, β2) | β1 = −β2

2

a2
1

+ o(β2
2)

}

H = {(β1, β2) | β1 < 0, β2 = 0}

HET =

{
(β1, β2) | β1 < 0, β2 =

a1

3a1 − 2
β1 + o(β1)

}
.

Compare Figure 4.1, where we also indicate the phase portraits of the planar system
system (4.9). Saddle-node, pitchfork, and (Andronov-)Hopf bifurcations of equilibria
take place for parameters on the curves SN , P , and H respectively, while HET is
a curve of heteroclinic bifurcations of equilibria. Two equilibria O± = (±√−β1, 0)
exist in regions 2 up to 6. In regions 3, 4, and 5 the equilibria O± are of saddle type
and have a one-dimensional heteroclinic connection along the z-axis. This connection
is persistent in (4.9) due to the Z2-symmetry. Furthermore, a third equilibrium C

coexist with O± in regions 3, 4, 5. The equilibrium C is attracting in region 3 and
repelling in regions 4 and 5. Entering region 4 from region 3 across curve H, the
equilibrium C loses stability through a Hopf bifurcation, whereby an attracting limit
cycle T is created. As (β1, β2) approach the curve HET , the limit cycle T grows in
size and in period. For (β1, β2) ∈ HET , the limit cycle T turns into a heteroclinic
connection formed by the z-axis and by the unstable manifold of O+, which has merged
with the stable manifold of O−.

The dynamics of the three-dimensional polynomial family Yβ (4.8) is easily re-
constructed from the dynamics of (4.9). The equilibria O± of (4.9) correspond to
equilibria of Yβ belonging to the z-axis. For simplicity, we keep the same names for
the bifurcations and the invariant manifolds of Yβ and of the planar reduction (4.9).
On the curve P the equilibrium O+ loses stability through a Hopf bifurcation, and a
limit cycle C is created. Across curve H, the limit cycle C loses stability through a
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Figure 4.1: Left: bifurcation diagram of the polynomial reduced planar system (4.9)
in the unfolding case determined by s = 1, a1 < 0, from [78]. Phase portraits in the
(r, z)-plane are given on the right.

Hopf (also called Nĕımark-Sacker, see footnote 6 in Sec. 2.1.3) bifurcation, where an
attracting torus T is created. Then T merges into a heteroclinic sphere-like structure
on the curve HET .

We now discuss the dynamics of a generic HSN-family Xα of vector fields, i.e., an
HSN-family satisfying the hypotheses of Lemma 4.3. Denote by Xβ the vector field
Xα expressed in the coordinates and parameters provided by Lemma 4.3:

Xβ(w, z) = Yβ(w, z) + O(‖w, z‖4), (4.10)

where Yβ is the vector field in (4.7). Only the unfolding case determined by Re a =
a1 < 0, s = 1 is considered here. A large part of the bifurcation diagram of Yβ

(Figure 4.1) persists in the family Xβ. In particular, Xβ has the same local bifurcations
as Yβ: there are curves S, P , and H of saddle-node, Hopf, and Nĕımark-Sacker
bifurcations of Xβ, near the corresponding curves of Yβ.

The main differences between the vector fields Xβ and Yβ occur in the parame-
ter region close to the curve HET . The heteroclinic sphere of Yβ is destroyed by a
generic ∞-flat perturbation [29]. For a generic vector field Xβ, the two-dimensional
manifolds of the saddle foci O± intersect transversally along an even number of het-
eroclinic orbits [16, 31, 69]. In the parameter plane, the region of existence of such
a heteroclinic structure is a narrow horn. The boundary of this horn is formed by
two bifurcation curves, on which ‘inner’ and ‘outer’ tangencies of the manifolds oc-
cur, compare [20, 21]. Moreover, the heteroclinic connection along the z-axis does
not take place in the generic case, and this allows the occurrence of Shil′nikov ho-
moclinic bifurcations [16, 31, 48, 56, 78]. The possible occurrence of heteroclinic
and Shil′nikov bifurcations implies that the germ of the vector field Yβ (4.7) is not
topologically stable [28, 110]. The torus T of Xβ breaks down when approaching
the heteroclinic structure. This phenomenon is only partially understood from the
theoretical viewpoint [1, 7, 8, 23, 42, 56, 78, 93]. For parameters inside a resonance
tongue, homoclinic tangency bifurcations of periodic orbits lying inside T are of-
ten related to the breakdown of the torus and to the creation of strange attrac-
tors [2, 61, 69, 70, 76, 77, 117, 123].
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Figure 4.2: Left: magnification of Figure 4.1 near the sector of interest in the (β1, β2)-
parameter plane. Right: in the (γ, µ)-parameter plane, where (γ, µ) are given by the
scaling (4.11), the sector of interest (left picture) is blown up near the origin.

Construction of the model maps

The models G and Q are obtained by perturbing an approximate time-1 map of the
flow of Yβ (4.7), in the case a1 < 0, s = 1. We restrict to a subset of the (β1, β2)-
parameter plane given by a sector containing region 4 and parts of regions 3 and 5.
The relevant sector is bounded by dashed lines in Figure 4.1, whereby only negative
values of β1 are considered. New parameters (γ, µ) are introduced by

β1 = −γ2, β2 = γ2µ, (4.11)

where γ > 0 and µ ∈ R. The effect of this reparametrisation is sketched in Fig-
ure 4.2. The dashed sector in Figure 4.1 (magnified in Figure 4.2 left) is blown up near
the origin and mapped onto a horizontal strip in the (γ, µ)-plane (Figure 4.2 right).
Thereby, the bifurcation curves H and HET both turn into horizontal lines in the
(γ, µ)-parameter plane.

Remark 4.2. Notice that, for the model maps, ω must be taken as parameter to-
gether with (γ, µ). Indeed, the HSN bifurcation has codimension at least three for
a diffeomorphism, while it has codimension two in the generic vector field case. In
particular, for a HSN-family of vector fields, ω can be set to one by a time-scaling.

Beyond the reparametrisation (4.11), the variables and the time of (4.7) are rescaled
as follows:

w = γŵ, z = γẑ, t = t̂/γ. (4.12)

In the rescaled variables (ŵ, ẑ), the sizes of the limit cycle C and of the torus T are
O(1) as γ → 0. Denote by Yγ,µ,ω the vector field Yβ (4.7) written in the new variables
and parameters given by (4.12) and (4.11). By dropping all hats, Yγ,µ,ω reads

Yγ,µ,ω = Y1 + Y2, with Y1 =

(−γµw − awz − γwz2

1 − z2 − |w|2
)

, Y2 =

(
iωw/γ

0

)
. (4.13)

The vector field Yγ,µ,ω is integrated with a time step γ > 0. Since Y1 commutes with
Y2, the time-γ map of Yγ,µ,ω is given by the composition of the time-γ maps Y γ

1 and
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Y γ
2 (this is a corollary of the Baker-Campbell-Hausdorff formula [116]). So we first

compute an approximated time-γ map of Y1 by performing one step of length γ of the
Euler integration formula:

(
w
z

)
7→

(
w
z

)
+ γ

(−γµw − awz − γwz2

1 − z2 − |w|2
)

. (4.14)

Then the map (4.14) is composed with the time-γ map Y γ
2 , yielding the axially sym-

metric map S:

S :

(
w
z

)
7→

(
eiωw[1 − γ(γµ + az + γz2)]

z − γ(−1 + |w|2 + z2)

)
. (4.15)

To construct the model maps G (4.1) and Q (4.2), resonant terms of order strictly
larger than three are added to S (4.2), compare Lemma 4.5. In particular, non-
axisymmetric resonant terms of order four are added to S, in order to break the axial
symmetry. The choice of these order four terms depends on the value of ω we wish to
focus on.

Model G – 1:5 resonance To study the dynamics in the vicinity of a resonant fre-
quency ω0, with ω0/(2π) = p/q ∈ Q, the model map G (4.1) is used. However,
instead of using ω as control parameter, we introduce a scaled detuning pa-
rameter δ by ω = ω0 + γδ. In this Chapter we only consider the resonant value
ω0/(2π) = 1/5, which is the lowest-order resonance compatible with the assump-
tions in (4.4). For ω0/(2π) = 1/5 the lowest-order non-axisymmetric resonant
terms in the ∂/∂w and in the ∂/∂z-direction are w4 and Re w5, respectively.
Since even by adding these terms to S (4.15) the z-axis remains invariant, a
(non-resonant) term in z4 is added to the w-component. This yields the map

(
w
z

)
7→

(
ei(ω0+γδ)w[1 − γ(γµ + az + γz2)]

z − γ(−1 + |w|2 + z2)

)
+

(
γ3(ε1w

4 + ε2z
4)

γ4ε3 Re w5

)
, (4.16)

where ε1 and ε2 are complex while ε3 is real. A few simplifications are applied
to (4.16), in order to obtain the model G (4.1), see Appendix 4.E for details.

Model Q – all frequencies To study the dynamics in the frequency interval ω ∈
[0, 2π] we use the model map Q (4.2). This map is obtained by writing S (4.15)
in Cartesian coordinates (x, y, z), where w = x + iy, and by adding to S the
fourth order polynomial

γ3ε1(y
4 + z4)

∂

∂x
+ γ3ε2(x

4 + z4)
∂

∂y
+ γ3ε3(x

4 + y4)
∂

∂z
,

where εj is real for j = 1, 2, 3. The purpose of adding this perturbation term is
to have ‘generic’ higher order terms in Q.

The coefficients εj, j = 1, 2, 3, and γ are perturbation parameters. However, in the
sequel we treat εj as constants varying in a fixed compact set, while only γ is used as
perturbation parameter, varying in a neighbourhood of 0. Moreover, the constant a
is assumed to vary in a fixed compact set such that a1 is negative and bounded away
from zero.
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Figure 4.3: Left: bifurcation set of the time-γ map Y γ
γ,µ,ω of the vector field (4.13)

in the parameter region of interest. Ap/q is the set of all parameter values for which
the rotation number on the invariant circle C is p/q ∈ Q. See text for the meaning of
H and HET . Right: expected bifurcation set of the model maps G (4.1) and Q (4.2)
in the generic case. Ap/q is an Arnol′d tongue of rotation number p/q, HET is an
exponentially narrow horn where transversal heteroclinic intersections occur. Of the
surface H, only a Cantor-like foliation by curves survives.

The expected dynamics of the model maps

To introduce the dynamical phenomena we are interested in, and the related (γ, µ, δ)-
parameter regions, our expectations for the model maps G (4.1) and Q (4.1) are now
discussed.

The models G and Q are perturbations of an approximate time-γ map of the
axisymmetric vector field Yγ,µ,ω (4.13), where γ is the perturbation parameter. By
general theory [5, 6, 17, 18, 35, 36, 38, 46, 56, 60, 78, 88, 94, 95, 99, 103], normally
hyperbolic invariant manifolds and nondegenerate (quasi-periodic) bifurcations of the
time-one map Y γ

γ,µ,ω persist in the model maps G and Q (assuming genericity of the
model maps). Compare the discussion in Chapter two, on the relation between the
periodically driven and the autonomous Lorenz-84 system. On the one hand, due to
axisymmetry, the dynamics of the map Y γ

γ,µ,ω is highly degenerate (below we are more
specific about this). However, the bifurcation set of Y γ

γ,µ,ω provides a ‘geometrical
skeleton’ for the structure of the parameter space of G and Q, which we now sketch.

The dashed rectangle in Figure 4.2 right corresponds to a horizontal layer in
the (γ, µ, ω)-parameter space for the diffeomorphism Y γ

γ,µ,ω. See the sketch in Fig-
ure 4.3 left. Hopf bifurcations take place in the halfplane

H = {γ > 0, µ = 0, ω ∈ R},

while heteroclinic bifurcations on the half-surface

{γ > 0, µ =
−a1

3a1 − 2
+ o(1) as γ → 0, ω ∈ R}.

The parameter region of interest in is a horizontal layer containing the surfaces H
and HET in its interior. For parameters in this layer (i.e., for |µ| sufficiently small)
the time-γ map Y γ

γ,µ,ω has an invariant circle C . For µ negative, between the surfaces
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H and HET , the circle C is repelling and it coexists with an attracting invariant
torus T . For later reference, a set Aρ is sketched in Figure 4.3 left, given by all
parameter values for which the rotation number on C is a fixed constant ρ. The
set Aρ is a codimension one submanifold for all ρ ∈ R. This is one of the two main
degeneracies of the diffeomorphism Y γ

γ,µ,ω. The other degeneracy, due to axisymmetry,
is the occurrence of a sphere-like invariant set for parameters on HET .

We now describe the implications for the model maps G (4.1) and Q (4.2), which
are perturbations of the axially symmetric map S (4.15). Since S is an approximate
time-γ map of the flow of Yγ,µ,ω (see the previous subsection), the parameter region of
interest for S is shifted with respect to the sketch in Figure 4.3 left. The exact amount
of this shift is computed later on (Sec. 4.2), for the moment we keep the discussion at
a conceptual level. The hyperbolic invariant manifolds of the diffeomorphism Y γ

γ,µ,ω

are expected to persist in the maps G and Q. Therefore, the equilibria O± occurring
in regions 3,4,5 (compare Figure 4.1) turn into fixed points of saddle-focus type for
the models G and Q. As usual, we keep the same names for invariant manifolds and
bifurcations of S, G, Q, and of Y γ

γ,µ,ω. So the invariant circle C and the invariant
torus T of Y γ

γ,µ,ω correspond to an invariant circle and an invariant torus for the
model maps S, G, Q.

We first consider a parameter region lying above and sufficiently far from H, la-
belled by 3 in Figure 4.3 left. In this region, for the maps G and Q the set Aρ persists
as a surface only for those rotation numbers ρ satisfying a Diophantine condition,
see [17, 18]. The set of all such surfaces forms a Cantor-like foliation in the parameter
space. For rational ρ = p/q, the sets Ap/q turn into tongue-shaped regions (Arnol′d
tongues [6, 4]) in the parameter space of the maps G and Q, see the sketch in Fig-
ure 4.3 right. In the interior of a tongue Ap/q, the circle C is phase-locked to a periodic
attractor with period q. Saddle-node bifurcations of periodic orbits take place at the
boundaries of the tongues. Apart from this well-known alternation of periodicity and
quasi-periodicity on C , no complicated dynamics is expected to occur for G and Q,
for parameter values sufficiently far from H.

On the other hand, complicated dynamics is expected near H. A theory of bi-
furcations of an invariant circle exists only for the case when the rotation number is
Diophantine [17, 18, 35]. Much less is known in the resonant case, see [9, 36, 37].
According to [17, 18, 35], H is expected to turn into a frayed bifurcation boundary
for G and Q, roughly given by the intersection of H with the Cantor foliation formed
by the union of the surfaces Aρ for which the rotation number ρ on C is Diophantine
(compare the sketch in Figure 4.3 right). Near H the complement of this frayed bi-
furcation boundary is the union of the so-called ‘bubbles’ [9, 35, 36, 37], where the
theory does not prescribe what is happening to the bifurcating circle. Bubbles occur
near parameter values for which:

1. The rotation number on the circle is rational. Generically this corresponds to a
phase-locked circle, with periodic points of saddle and node type [5, 6].

2. The rotation number on the circle has a resonance with the normal frequency.

One of the main points of interest is the interplay between Hopf bifurcations and res-
onances, i.e., the bifurcation structure in the bubbles of the first type. As mentioned
in Sec. 4.1.2, the model G is used for this part of the investigation. Slightly abusing
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notation, we again denote the frayed Hopf bifurcation boundary of G and Q by the
symbol H.

We now turn to a different part of the parameter space. The surface HET in
Figure 4.3 left is expected to turn into a narrow horn for the models G and Q,
compare Figure 4.3 right. This horn is denoted HET as well in the sequel. For
parameters in the interior of the horn, the two-dimensional manifolds of the fixed
points O+ and O− intersect transversally or have tangencies. For parameters near the
horn, the torus T is expected to break down, and occurrence of strange attractors
is likely [1, 3, 9]. There are only partial theoretical explanations for this breakdown.
One of these involves the occurrence of homoclinic tangencies inside some resonance
tongues where the torus T is phase-locked to an invariant circle, see Chapter two for
examples.

4.1.3 Sketch of the results

In this Chapter we investigate three groups of dynamical phenomena

1. The interaction between resonances on the circle C and Hopf bifurcations of C ,
and the induced bifurcations of invariant circles and tori. The model used for
this purpose is G. In particular, we analyse the bifurcation set of G near a 1:5
resonance bubble on the Hopf bifurcation boundary H, compare Figure 4.3 right.

2. Resonant dynamics on the invariant torus T . This study is performed by means
of the model map Q. The relevant parameter region lies between the Hopf
boundary H and the HET -horn, see Figure 4.3 right. Here the global organisa-
tion of the tongues (the Arnol’d web) is quite complicated, due to the interaction
between the two internal frequencies of the torus T .

3. Phenomena occurring in the map G near the heteroclinic horn HET : bifur-
cations of the torus T , occurrence of strange attractors and of heteroclinic
tangencies. The parameter region is a neighbourhood of the HET -horn, which
we call the heteroclinic region.

The rest of this Chapter is organised as follows. In the next three subsections we
briefly illustrate the dynamics of the model maps in each of the three parameter
regions outlined above. This part of the investigation is performed by means of nu-
merical simulations. The study is presented in more detail in sections 4.3, 4.4, and 4.5.
Results obtained by analytical means are reported in Sec. 4.2 and in the second part of
Sec. 4.3. In Sec. 4.2 the axially symmetric model map S (4.15) is examined. Quanti-
tative asymptotic information is obtained, about the location of the Hopf bifurcation
boundary and of the heteroclinic region. In the second part of Sec. 4.3 we present
analytical results concerning the bifurcation diagram of the map G (4.1) near the 1:5
bubble.

All proofs are contained in Appendix 4.A. A derivation of the normal form (4.10)
is given in Appendix 4.B. A similar normal form lemma holds for HSN-families of
diffeomorphisms, see Appendix 4.C. Two versions of Takens’s theorem [112] are given
in Appendix 4.D. The construction of the model maps is justified by the version
given in Lemma 4.5, which establishes the connection between HSN-diffeomorphisms
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and HSN-vector fields. On the other hand, in Secs. 4.2 and 4.3 the model maps are
analysed by looking at approximating vector fields provided by the ‘classical’ version
of Takens’s theorem [112].

The Hopf bifurcation boundary

We here present a sketch of the bifurcation diagram of the model G (4.1), obtained
by numerically computing the Lyapunov exponents of the attractors, see Figure 4.4.
To produce Figure 4.4, the attractors of G are classified on the basis of the Lyapunov
exponents (l1, l2, l3), with l1 ≥ l2 ≥ l3, according to the rules in Table 4.1. The
coefficients of G are ε1 = ε2 = 1, a1 = −1, a2 = 1/

√
2. Only the 1:5 resonance

ω0/(2π) = 1/5 is considered here. Moreover the parameter γ is fixed at 0.1. Therefore
the results are presented in the parameter plane (µ, δ), where ω = ω0 + γδ.

Remark 4.3. For clarity, when giving numerical values of the parameters δ and ω,
we always use δ/(2π) and ω/(2π) in the sequel. This is also indicated in the labelling
and the captions of all figures.

Figure 4.4 is produced by scanning the (µ, δ)-parameter plane on horizontal lines
δ = const, from right to left. First δ is fixed at, say, −0.1. Then µ is set to µ = 1.5,
and a fixed number of iterates of the map G is computed. If the orbit has converged to
an attractor, i.e., if it has not left a neighbourhood of the origin, the three Lyapunov
exponents are computed. Then µ is decreased by a small step and the procedure is
restarted, until µ reaches 0. The same is repeated for many values of δ.

Remark 4.4. Notice that by this method we cannot detect

1. The existence of saddle-type or repelling invariant manifolds;

2. Coexistence of several attractors.

On the one hand, several features of Figure 4.4 are in accordance with the expectations
discussed in the previous section. An attracting invariant circle C occurs for large µ.
The grey strip pointed by an arrow at the right of Figure 4.4 is a resonance gap where
two period five points occur, an attractor and a saddle. This period five gap is a
section of a three-dimensional Arnol′d tongue by means of a vertical plane γ = const,
compare Figure 4.3 right. The boundaries SN 5

± of the period five gap are two curves
of saddle-node bifurcations of a period five point, which take place on the circle C .
See the magnification in Figure 4.5 left and compare with the bifurcation diagram
in Figure 4.5 right. Near SN 5

±, the circle C still exists and it is phase-locked, but
for parameters inside the gap, the circle C may lose its normal hyperbolicity. Apart
from this kind of resonance phenomena, for sufficiently large µ no dramatic differences
appear between the model G and the time-γ map of the vector field Yγ,µ,ω (4.7).

On the other hand, the situation is much more complicated near the intersection of
the Hopf bifurcation boundary H with the period five gap. The curves SN 5

± intersect
the Hopf boundary at two points HSN 5

± where the circle C is phase-locked to one
period five orbit undergoing an HSN bifurcation. At the points HSN 5

±, the curves
SN 5

± are tangent to two curves H5
± of Hopf bifurcations of a period five orbit. Two

degenerate Hopf bifurcations DH5
± take place along the curve H5

+. Moreover, several
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Figure 4.4: Numerical scan of the attractors of G in the (µ, δ/(2π))-parameter plane.
The five tones of grey correspond to distinct classes of attractors of G. See Table 4.1
for the the greyscale coding.

colour Lyapunov exponents attractor type

black l1 > 0 = l2 > l3 strange attractor

black l1 > 0 > l2 > l3 strange attractor

grey 3 l1 = 0 > l2 = l3 invariant circle of focus type

grey 2 l1 = l2 = 0 > l3 invariant 2-torus

grey 1 l1 = 0 > l2 > l3 invariant circle of node type

grey 0 0 > l1 > l2 = l3 fixed point of focus type

grey 0 0 > l1 = l2 >= l3 fixed point of focus type

grey 0 0 > l1 > l2 > l3 fixed point of node type

white no attractor is detected

Table 4.1: Legend of the grey scales for Figure 4.4, 4.5 left, 4.6, and 4.15. The attrac-
tors are classified by means of the Lyapunov exponents (l1, l2, l3). Grey 0 indicates
the palest tone, as in the strip pointed by an arrow in Figure 4.4 (a magnification is
given in Figure 4.5 left). Grey 3 indicates the darkest tone, as in the tongues at the
left of Figure 4.4. Grey 2 (darker) and 1 (paler) are intermediate tones.
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Figure 4.5: Left: magnification of Figure 4.4 around the period five tongue and the
1:5 bubble on the Hopf boundary. Right: numerically computed bifurcation diagram
of period five points of the map G near the Hopf bifurcation boundary. The notation
is explained in the text. Same (µ, δ/(2π))-window as the left picture.

additional bifurcation curves of invariant circles and invariant tori are detected near
the 1:5 bubble. We refer to Sec. 4.3.1 for details.

In Sec. 4.3.2 we analytically prove the existence of all the bifurcations of period
five points of G as mentioned above. This is achieved by studying a vector field
approximation for the map G, obtained by the Takens theorem [112].

Torus dynamics and the Arnol′d resonance web

In this subsection we present the resonance phenomena which characterise the dynam-
ics on the invariant torus T . The results are obtained by numerical simulations with
the model map Q (4.2), and the relevant region in the parameter space is labelled by
4 in Figure 4.3 right. Since γ is kept fixed, the results are illustrated in the (µ, ω)-
parameter plane. A numerical overview of the (µ, ω)-plane is given in Figure 4.6 top,
obtained by interpreting the Lyapunov exponents of the attractors of Q in the same
way as for Figure 4.4. Notice that the positions of the Hopf boundary H (µ ≈ 0.97)
and of the heteroclinic region (0.3 . µ . 0.5) are approximately the same for G and
Q, compare with Figure 4.4.

Two types of resonances may occur on the torus T : one related to the fast ‘longitu-
dinal’ rotation, and the other one related to the relatively slow ‘latitudinal’ rotation.
Either type occurs in tongue-shaped regions in the (γ, µ, ω) space, but unlike the
tongues of the circle C , those of T have all possible orientations. The intersection
of these tongues with a plane γ = const yields a pattern of resonance gaps and gap
intersections in the (µ, ω)-parameter plane, called the Arnol′d web. An illustration of
this web is given in Figure 4.6 bottom, which is a magnification of Figure 4.6 top.

Remark 4.5. The visualisation of the Arnol′d web as in Figure 4.6 bottom is the
main reason for the use of the model Q besides the model G (4.1).

Quasi-periodic saddle-node bifurcations of an invariant circle [17, 18], taking place in-
side the torus T , bound each resonance gap. Again, near such bifurcations we expect
the whole range of phenomena described by Chenciner [35, 36, 37]. Moreover, since the



118 Chapter 4. Hopf-saddle-node for diffeomorphisms

0.25

0.29

0.33

0.37

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

ω

2π

µ

0.16

0.18

0.2

0.22

0.39 0.41 0.43 0.45

ω

2π

µ

Figure 4.6: Top: numerical scan of the attractors of the map Q in the (µ, ω/(2π))-
parameter plane. The greyscale code is given in Table 4.1. Bottom: magnification of
top picture near a region characterised by several resonance gap crossings.
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invariant circle undergo other bifurcations inside the gaps (e.g., quasi-periodic Hopf
bifurcations) phenomena like in [9] are also expected to occur. Finally, a a concrete
route for the Newhouse-Ruelle-Takens scenario [89, 100] is possible near the crossings
(intersections) of several resonance gaps. Indeed, for parameters inside a gap crossing,
the two internal frequencies of the torus T satisfy two rational relations. This means
that a lattice of attracting periodic points occurs inside T . If these points become
of saddle type, this situation preludes to the creation of a two-dimensional strange
attractor contained in T . We refer to Sec. 4.4 for numerical examples of the dynamics
near such gap crossings.

Quasi-periodic strange attractors near the heteroclinic region

Numerical evidence like in Figures 4.4 and 4.6 top suggests that strange attractors
of G and Q occur more often (in the sense of relative measure in parameter space)
near the heteroclinic region HET than in the other regions. Two types of strange
attractors may be distinguished on the basis of the Lyapunov exponents (l1, l2, l3):
those for which the l1 > 0 and l2 < 0, and those with l1 > 0 and l2 ≈ 0. We
conjecture that the former attractors are of Hénon-like type [11, 86, 95, 113, 120],
i.e., that these coincide with the closure of the unstable manifold of a periodic orbit
of saddle type. On the other hand, strange attractors for which l1 > 0 and l2 ≈ 0 are
conjectured to be quasi-periodic Hénon-like strange attractors [24, 25, 27], meaning
that these coincide with the unstable manifold of a quasi-periodic invariant circle of
saddle type. Compare Remark 1.1 and see the discussion in Chapters two and three.
Numerical evidence suggests that the large majority of the strange attractors of the
maps G and Q is of quasi-periodic Hénon-like type. Hénon-like attractors of G and
Q occur with much less frequency in the parameters.

We now sketch one of the typical scenarios for the creation of strange attractors
in the heteroclinic region. A sequence of quasi-periodic period doublings [17, 18] is
involved in this route. At first an attracting invariant circle L occurs (Figure 4.7 A).
When decreasing µ, three consecutive quasi-periodic period doublings take place, and
an attracting circle L8 is created (Figure 4.7 B). These three quasi-periodic bifur-
cations are of ‘length doubling’ type, in the sense that the attractor created at the
bifurcation point is one connected closed curve such that its length is roughly twice
the length of the circle which is losing stability [31]. A slight variation in µ yields loss
of normal hyperbolicity of L8, and a strange attractor appears (Figure 4.7 C). This
strange attractor is formed by one narrow ‘belt’, closely winding around the region
where L8 formerly occurred. By further decreasing µ, various parts of the ‘belt’ melt
with each other (Figure 4.7 D). Notice that the second Lyapunov exponent of the
strange attractors in Figure 4.7 (C) and (D) is zero (within the numerical precision).
Therefore these strange attractors appear to be of quasi-periodic Hénon-like type.

In the above route, the strange attractor is formed by a gradual process, involving
several period doublings of an attracting invariant circle. We refer to Sec. 4.5 for
other routes. Similar scenarios have been described for the Poincaré map P analysed
in Chapter two of this thesis. One of the organising centres of the bifurcation diagram
of P is an HSN bifurcation of fixed points of diffeomorphisms.
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Figure 4.7: Attractors of the model map G (4.1) for δ/(2π) = 0.0247 fixed, and at
four values of µ. Left column: projections on (x, y), where w = x+ iy. Right column:
projections on (x, z). (A) µ = 0.53, (B) 0.49, (C) 0.48, (D) 0.46.
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4.2 The axially symmetric model map

Both models G (4.1) and Q (4.2) are perturbations of the axially symmetric family
S (4.15). In cylindrical coordinates (r, φ, z), where w = r exp(iφ), S reads

S :




r
φ
z


 7→




r |1 − γ(γµ + az + γz2)|
φ + ω + arg(1 − γ(γµ + az + γz2))

z − γ(−1 + r2 + z2)


 . (4.17)

Since the dynamics in the (r, z)-components is independent on φ, we consider the

reduced planar map S̃

S̃ :

(
r
z

)
7→

(
r |1 − γ(γµ + az + γz2)|

z − γ(−1 + r2 + z2)

)
, (4.18)

which is tangent to the identity at the origin and only depends on the parameters
(γ, µ). Since S is an approximate time-γ map of the vector field Yγ,µ,ω (4.13), the
locations of the Hopf and heteroclinic bifurcations of S are shifted with respect to
the locations of the corresponding bifurcations of Yγ,µ,ω. These shifts are computed in
the next proposition up to order O(γ). We recall that γ is a perturbation parameter,
varying in a neighbourhood of 0, while a is a constant belonging to a fixed compact
set, see Sec. 4.1.2. A fundamental tool for the proof (see Appendix 4.A) is the Takens

approximating vector field of the planar map S̃ (4.18).

Lemma 4.1. 1. For all values of µ and of the constant a ∈ C, and for γ sufficiently
small, the map S̃ (4.18) has a unique fixed point (r0, z0)(γ, µ), of the form

z0 = − µ

a1

γ + O(γ2), r0 = 1 + O(γ2). (4.19)

This fixed point undergoes a Hopf bifurcation at µH(γ) = a2
1+O(γ), is attracting

for µ > µH(γ), and repelling for µ < µH(γ). The estimates in (4.19) on the
order of γ are uniform on compact sets in the constant a and in the parameters
(µ, ω).

2. In a neighbourhood of the origin (r, z, γ) = (0, 0, 0), we have

S̃ = T γ

S̃
+ O(γ3) (4.20)

where T γ

S̃
is the time-γ map of the planar vector field TS̃

TS̃

(
r
z

)
=

(
−a1rz

1 − r2 − z2

)
+ γ

(
r
(
−µ + a1

2
− a1

2
r2 − (1 + Re(a2+a)

2
)z2

)

z − (1 + a1)r
2z − z3

)
.

(4.21)

3. The vector field (4.21) has a Hopf bifurcation of equilibria for parameters on the
curve µH(γ) = a2

1 + O(γ), and it has a heteroclinic connection for

µHET =
a1

2
− b

3
− 2a1(1 − a1) − bc

3
− 1

c + 3
+ O(γ), (4.22)

where b = 1 + Re(a2 + a)/2 and c = −2/a1.
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4. The fixed point (r0, z0)(γ, µ) of S̃ in (4.19) corresponds to an invariant circle

C =
{
(r0, z0, φ) | φ ∈ S1

}

of the map S (4.17), having radius r0 and contained in a horizontal plane {z =
z0}, where (r0, z0) do not depend on ω. The circle C has the same stability

properties as the fixed point (r0, z0) of S̃. The rotation number on C also depends
on ω but the dynamics on C is always a rigid rotation. Denote ω = ω0 + γδ,
where ω0/(2π) = 1/5. For parameter values (γ, µ, δ5(γ, µ)), where

δ5(γ, µ) = −a2µ

a1

γ + O(γ2), (4.23)

all points on C have period five for the map S.

5. For µ bounded away from µH(γ), and for γ sufficiently small, the circle C per-
sists as a normally hyperbolic invariant manifold for the maps G (4.1) and
Q (4.2). The bounds on µ and γ are uniform on compact sets in all other
parameters and coefficients of G and Q.

Remark 4.6. 1. As mentioned in item 1 of Lemma 4.1, all estimates on the order
of γ are uniform on compact sets in the constant a and in the parameters
(µ, ω). Moreover, in the case of (4.20) the estimates hold in a sufficiently small
neighbourhood of the origin in the variables (w, z).

2. The map S is degenerate, due to the fact that the dynamics on C is a rigid
rotation also for rational rotation numbers. However, description of S provides
the ‘skeleton’ dynamics of the models G and Q. Indeed, the position of the Hopf
boundary and of the heteroclinic strip in the two models agrees up to order O(γ)
with the values µH and µHET given in Lemma 4.1. In particular, for a1 = −1
and γ = 0.01 we have µH = 1 and µHET = 0.35. Comparison with Figures 4.4
and 4.6 top suggests that these approximate values are accurate within the error
bound, which is of order O(γ).

3. We will show later that the period five tongue of G splits linearly in the param-
eter ε1 and quadratically in γ around the 1:5 resonant surface (γ, µ, δ5(γ, µ)),
where δ5(γ, µ) is given in (4.23). Moreover, the 1:5 bubble splits linearly in ε1

and quadratically in γ around the curve

(µH(γ), δ5(γ, µH(γ))) =
(
a2

1 + O(γ),−a1a2γ + O(γ2)
)

in the parameter space (γ, µ, δ). For these parameter values, the circle C of S
consists of period five points and undergoes a Hopf bifurcation.

4.3 Hopf bifurcation boundary near the 1:5 reso-

nance bubble

This section is divided in two parts. We first present in more detail the numerical
bifurcation diagram of the map G (4.1) near the 1:5 bubble, introduced in Sec. 4.1.3.
The analysis of the bifurcations of period five points is carried out in Sec. 4.3.2, by
means of a Takens approximating vector field for the map G.
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4.3.1 Dynamics near the 1:5 bubble

In this section we describe the dynamics of the model G (4.1) near the 1:5 bubble,
by means of numerical simulations. The coefficients of G are set to the values: ε1 =
ε2 = 1, a1 = −1, a2 = 1/

√
2, as in Sec. 4.1.3. In particular, since γ is fixed at 0.01,

the results are presented in the (µ, δ)-parameter plane.
The bifurcation diagram of period five points of G near the 1:5 bubble is given

in Figure 4.5 right (Sec. 4.1.3). Several bifurcations of invariant circles and invariant
tori, not displayed in Figure 4.5 right, occur at the left of the Hopf boundary near
the HSN 5

− point. A partial bifurcation diagram of invariant curves and invariant tori
is given Figure 4.8. The curve H5

+ is the same as in Figure 4.5 right. On the other
curves we have

SNC5
−: quasi-periodic saddle-node bifurcations of a period five invariant circle.

HC5
−: quasi-periodic Hopf bifurcations of a period five invariant circle.

SNT −: quasi-periodic saddle-node bifurcations of an invariant torus.

In fact, these are frayed bifurcation boundaries and not continuous curves, compare
the discussion in Sec. 4.1.3. The curve SNC5

− is tangent to H5
+ at a degenerate Hopf

bifurcation DH5
− of period five points. Furthermore, there exists a narrow parameter

region HET 5
−, lying very close to SNT −, where both transversal heteroclinic intersec-

tions and heteroclinic tangencies of two period five orbits of saddle-focus type occur.

To further clarify Figure 4.8 we describe a small ‘movie’ of the attractors and
repellors of G. Four parameter values, labelled 1 to 4, are selected on the vertical line
µ = 0.72 in Figure 4.8, where δ is decreased each time. At point 1, the period five
attracting circle C 5

− coexists with two period five orbits P5
±, which are of saddle-focus

type and have different stability indices (see Figure 4.9 (A)). When crossing the line
SNT −, an attracting torus T and a repelling torus Tr are born, and the period five
circle C 5

− coexists with both T and Tr. See Figure 4.9 (B), computed for parameters
on the point 2 in the box of Figure 4.8. The period five circle C 5

− is contained in the
solid torus bounded by Tr, and the latter is contained in the solid torus bounded by
T . Therefore the repellor Tr forms the basin boundary between the attractors T

and C 5
−.

Near the region HET 5
−, the torus Tr approaches a heteroclinic structure formed

by the intersection of the two-dimensional manifolds of the period five orbits P5
±.

Eventually it is destroyed and replaced by strange repellor (Figure 4.9 (C), parameters
lie on point 3 in the box of Figure 4.8). By decreasing δ past region HET 5

−, a period
five torus repellor T 5 appears, which surrounds the circle C 5

−. See Figure 4.9 (D),
computed for parameters on point 4 in the box of Figure 4.8. The period five torus T 5

collapses with the circle attractor C 5
− at the bifurcation curve H, whereby C 5

− turns
into a repellor. By further decreasing δ through the curve H5

+, one of the two period
five orbits in Figure 4.9 (A) undergoes a Hopf bifurcation and turns into a repellor.
At that moment, a period five invariant circle C 5

+ of saddle type is created. Across
the curve SNC5

−, the two period five circles C 5
± melt with each other and disappear

through a quasi-periodic saddle-node bifurcation.
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The bifurcation diagram in Figure 4.8, obtained by looking at the attractors and
repellors of G, is incomplete. Finer methods (based on Fourier analysis [34, 50, 63,
85]) could be used to pursue the study of the quasi-periodic bifurcations near the
1:5 bubble. In particular, more codimension two bifurcations seem to occur in the
neighbourhood.

4.3.2 Mathematical analysis of a vector field approximation

In this section we perform a bifurcation analysis for a vector field approximation of
the model G (4.1). For ease of reading, the equation of G (4.1) is given here again:

G :

(
w
z

)
7→

(
ei(ω0+γδ)w[1 − γ(γµ + az + γz2)]

z + γ(1 − |w|2 − z2)

)
+

(
γ3(ε1w

4 + ε2z
4)

0

)
.

Throughout the section we assume that ω0 is fixed at 2π/5. The role of perturbation
parameter is played by γ. The parameters (µ, δ) and the remaining coefficients of G
are assumed to vary in a fixed compact set. For γ = 0, the linear part DG at the
origin of R3 = {w, z} is the axial rotation Rω0

(w, z) = (eiω0w, z). Notice that G is
not in Poincaré normal form, due to the presence of the non-resonant term ε2z

4. By
normal form theory [39, 112], there is a transformation such that this term is removed
in the new coordinates. We write G in the new coordinates, and restrict to terms
of order four in (w, z). This amounts to setting ε2 = 0 in G, which will be assumed
throughout the rest of the section.

Notice that the fifth iterate G5 is tangent to the identity map at the origin of
R3 × R = {w, z, γ}, while G self is not. This makes G5 suitable for application of
Takens’s theorem [112], also see Appendix 4.D. In fact we apply Takens’s theorem to
a sort of ‘fifth root’ H of G5, where H is defined by

H(w, z) =

(
eiγδw[1 − γ(γµ + az + γz2)] + γ3e−iω0ε1w

4,

z + γ(1 − |w|2 − z2).

)
(4.24)

The relation between G and H is made precise in the next lemma.

Lemma 4.2. For the maps G (4.1) and H (4.24) we have

G5 = H5 + O(γ4), (4.25)

where the estimate on the order of γ is uniform on compact sets in the other coefficients
and parameters of G and H, and hold in a sufficiently small neighbourhood of the
origin in the variables (w, z).

For the map H (4.24) we compute a vector field approximation TH such that the time-
γ map T γ

H approximates H up to order four in γ. As in Lemma 4.2, the estimates
on the order of γ given in the next theorem are uniform on compact sets in the
remaining coefficients and parameters of the map G and hold in a sufficiently small
neighbourhood of the origin in the variables (w, z). Also see Sec. 4.2.
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Theorem 4.1 (Takens approximation). Consider the vector field TH given by

TH = TH,0 + γTH,1 + γ2TH,2, (4.26)

where

TH,0 =

(
w(iδ − az)

1 − |w|2 − z2

)
, (4.27)

TH,1 =

(
w

(
−µ + a

2
− a

2
|w|2 − z2

(
1 + a2+a

2

))

z − (1 + a1) |w|2 z − z3

)
(4.28)

TH,2 =

(
ε1e

−iω0w4 + Uw

Uz

)
, (4.29)

and

Uw = w
{

(z + ia
δ

2
)(1 − |w|2 − z2) − az(µ + z2 +

δ2

2
+ iazδ) + i

δ3

3
+

+
1

12

[(
(iδ − az) − a(1 − |w|2 − z2)

)2
+ 2a

(
2(iδ − az − 2z)(z − (1 + a1) |w|2 z − z3)+

+ |w|2 Re
[
(iδ − az)2 − a(1 − |w|2 − z2)

])]}
, (4.30)

Uz = − |w|2 (µ+z2 +
δ2

2
−a2zδ)+

1

3
z
{

(1−(1+a1) |w|2−3z2)(1−(1+a1) |w|2−z2)+

+ (1 + a1) |w|2 Re
[
(iδ − az)2 − a(1 − |w|2 − z2)

]}
. (4.31)

Then:

1. The time-γ map T γ
H approximates the map H (4.24) up to order four in γ, i.e.,

T γ
H = H + O(γ4).

2. The time-5γ map T 5γ
H approximates the fifth iterate G5 of (4.1) up to order four

in γ, i.e., T 5γ
H = G5 + O(γ4).

3. The vector field TH is Z5-equivariant, meaning that it commutes with the axial
rotation Rω0

, where ω0/(2π) = 1/5.

4. The vector field TH,0 + γTH,1, given by the terms up to order O(γ2) of TH ,
is axially symmetric, and its planar reduction coincides with the vector field
TS̃ (4.21).

By the last part of Theorem 4.1 and by Lemma 4.1, for γ sufficiently small the vector
field TH,0 + γTH,1 has a limit cycle C contained in a horizontal plane z = z0. For
µ > µH(γ) = a2

1 + O(γ), C is an attractor, and it is a repellor for µ < µH(γ), where
µH(γ) is the position of the Hopf bifurcation boundary for TH , up to order O(γ2).
Moreover, for γ sufficiently small and for µ bounded away from µH(γ), C persists as
a normally hyperbolic invariant manifold for the vector field TH . We are especially
interested in the bifurcations taking place near the Hopf bifurcation boundary. The
location of the bifurcations of equilibria of TH near the Hopf boundary is computed
in the next theorem, see Figures 4.10 and 4.11 for illustrations.
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Theorem 4.2 (Tongue and cone). Consider the vector field TH (4.26).

1. For γ sufficiently small, TH has ten families P5
k,± of equilibria, k = 0, . . . , 4,

depending on the parameters (γ, µ, δ′′), where

δ = −a2µ

a1

γ + δ′′γ2, δ′′ ∈
(
− |a|
|a1|

ε1,
|a|
|a1|

ε1

)
. (4.32)

The cylindrical coordinates (r±, φk,±, z±) of P5
k,± have the form

z± = − µ

a1

γ + z′′±γ2 + O(γ3), r± = 1 − µ2

2a2
1

γ2 + O(γ3),

φk,± =
1

5

(
2πk − ω0 + arctan

δ′′ − a2z
′′
±

a1z′′±

)
+ O(γ), k = 0, . . . , 4,

(4.33)

where φk+1,± − φk,± = ω0 and

z′′± =
a2δ

′′ ±
√

∆

|a|2
, ∆ = |a|2 ε2

1 − a2
1(δ

′′)2. (4.34)

2. The five equilibria simultaneously undergo saddle-node bifurcations at the sur-
faces SN 5

± parametrised by (γ, µ, δ(γ, µ)), where

δ(γ, µ) = −a2µ

a1

γ ± |a|
|a1|

ε1γ
2 + O(γ3). (4.35)

3. P5
k,+ simultaneously undergo Hopf bifurcations at the surface H5

+ parametrised
by (γ, µ′, δ′′), where

µ = a2
1 + µ′γ + O(γ2), δ = −a1a2γ + δ′′γ2 + O(γ3), (4.36)

and the parameters δ′′ and µ′ depend on each other by the relations

(
(2a1 − 5a2

2)µ
′ − 5a1a2δ

′′
)2

+
(
3a1a2µ

′ + (3a2
1 − 2a1)δ

′′
)2

= (2a1 + 2a2
1 − 5 |a|2)2ε2

1,
(4.37)

−δ′′a2(1 + a1) + (a1 − a2
2)µ

′ > 0. (4.38)

The cylindrical coordinates of P5
k,− at the Hopf bifurcations are

z± = −a1γ + z′′±γ2 + O(γ3), r± = 1 − a2
1

2
γ2 + O(γ3),

φk,± =
1

5

(
2πk − ω0 + arctan

δ′′ − a2z
′′
±

µ′ + a1z′′±

)
+ O(γ), k = 0, . . . , 4,

where φk+1,± − φk,± = ω0 and

z′′± =
a2δ

′′ − a1µ
′ ±

√
∆′

|a|2
, ∆′ = |a|2 ε2

1 − (a1δ
′′ + a2µ

′)2. (4.39)
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4. P5
k,− undergo Hopf bifurcations at the curve H5

−, defined by (4.37), where the
inequality sign in (4.38) is reversed.

5. For parameters on the curves HSN 5
± given by (γ, µ±(γ), δ±(γ)), where

µ±(γ) = a2
1 ±

a2(1 + a1)

|a| ε1γ +O(γ2), δ±(γ) = −a1a2γ ± a1 − a2
2

|a| ε1γ
2 +O(γ3),

(4.40)
the equilibria P5

k,± simultaneously undergo five HSN bifurcations. The coordi-
nates of the bifurcating equilibria are

z± = −a1γ ± a2

|a|γ
2 + O(γ3), r± = 1 − a2

1

2
γ2 + O(γ3),

φk,± =
1

5

(
2πk − ω0 + arctan

a1

a2

)
+ O(γ), k = 0, . . . , 4,

i.e., eiφk,± are the fifth roots of ia
|a|

e−iω0.

6. Suppose the coefficients of H are fixed at ε1 = 1, a1 = −1 and a2 = 1/
√

2 (as in
Sec. 4.3.1). Then HSN 5

± belong to the same unfolding class of Hopf-saddle-node
bifurcations. To be precise, for k = 0, . . . , 4 denote by

Yβ,k,±(w, z) =

(
(−β2,k,± + iω5,±)w − a5,±wz − wz2

−β1,k,± − s5,± |w|2 − z2

)
(4.41)

the truncated normal form of TH provided by Lemma 4.3, after translation of
TH into the singularity P5

k,±. Then the coefficients Re(a5,±) and s5,± in (4.41)
are

Re(a5,±) = −1 + O(γ), s5,± = sign(γ),

and a reversal of time is introduced by the transformation bringing TH into (4.41).

Near the 1:5 bubble, the bifurcation diagram of TH is organised by the two Hopf-
saddle-node bifurcations of equilibria HSN 5

±, proved to occur in Theorem 4.2. At
such points, there are five degenerate equilibria on C which undergo a Hopf and a
saddle-node bifurcation simultaneously. The intersection of the bifurcation surfaces
SN 5

± (4.35) and H5
± (4.36) with the plane γ = 0.01 is plotted in Figure 4.10 left,

which is in good agreement with the numerical picture obtained for the map G in
Figure 4.5 right. The coefficients of H used to plot Figure 4.10 left have the same
values used at point 6 of Theorem 4.2 and in Sec. 4.3.1 for the map G.

Remark 4.7. The dynamical analogies between the vector field TH (4.26) and the
map G (4.1) are in fact a corollary of Theorem 4.2. Indeed, the fifth iterate G5 is a
perturbation of the time-5γ map T 5γ

H . Therefore, by application of perturbation theory
the bifurcations SN 5

±, H5
±, and HSN 5

± in Theorem 4.2 persist for the map G5. By
perturbation theory we mean the implicit function theorem, the theory of persistence
of normally hyperbolic invariant manifolds [46, 60], the theory of persistence of non-
degenerate bifurcations [6, 38, 56, 78, 88, 94, 95, 99, 103], quasi-periodic bifurcation
theory [17, 18, 35, 36], and KAM theory [5, 6, 17, 18]. See the discussion in the last
subsection of Sec. 4.1.2.
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Figure 4.10: Left: the bifurcation curves H5
± and SN 5

± of the map G, according to
Theorem 4.2. Compare the numerical results in Figure 4.5 right. Right: the tongue
bounded by SN 5

± and the cone-like bifurcation set bounded by H5
±, as in Theorem 4.2.

Only a part of the surfaces is displayed, and the graph has been deformed for better
visibility.

In the parameter space (γ, µ, δ), the surfaces SN 5
± delimit a tongue whose width is

quadratic in γ, and shrinks to a line for γ → 0. The Hopf bifurcations H5
± form

a cone-like surface contained in the interior of the three-dimensional tongue, see the
illustration in Figure 4.10 right. The vertex of the cone is the point (γ, µ, δ) = (0, 1, 0),
where the derivative DTH at the equilibrium (w, z) = (1, 0) is equal to zero. This is
a special case of the three-dimensional nilpotent singularity studied in [43].

We conjecture that the bifurcations SN 5
± (4.35) take place on the horizontal in-

variant circle C . In the terminology of [78], and modulo the 1:5 symmetry, these
are called saddle-node homoclinic bifurcation. Near these bifurcations, the circle C

is normally hyperbolic and it is formed by the unstable manifolds of one of the two
families of equilibria P5

k,±. However, this structure does not persist near the curves
H5

±, since there the equilibria undergo Hopf bifurcations in the direction normal to
C . This implies loss of normal hyperbolicity of C .

A qualitative sketch of the bifurcation diagram near the 1:5 bubble is given in
Figure 4.11. The existence of the solid curves in Figure 4.11, as well as of the points
HSN 5

±, is analytically proved in Theorem 4.2. The remaining dashed curves, as well
as the degenerate Hopf bifurcations DH5

±, are conjectured to occur on the basis of
the numerical results for the map G described in the previous subsection.

We also conjecture that the bifurcations HSN 5
± of TH take place on the circle

C , yielding a Hopf-saddle-node homoclinic bifurcation (in the terminology of [78])
or Hopf-saddle-node with global reinjection in the terminology of [73]. This type
of bifurcation has not yet been studied in detail. A planar model vector field V
is considered in [73]. There are many analogies between the bifurcation diagrams
of TH (Figure 4.10) and of V . In fact, several bifurcations of V correspond to the
bifurcations of invariant circles and invariant tori of the model G (4.1) described in
the previous section. The relation between the vector fields TH (4.26) and V [73], as
well as the completion of the bifurcation diagram of TH in Figure 4.10, are subjects
of future research, see Sec. 4.6.
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Figure 4.11: Qualitative sketch of the bifurcation diagram of the vector field TH (4.26)
near the 1:5 bubble (in a ‘rotated’ (µ, δ)-plane). The curves SN 5

± and H5
± have been

proved to exist in Theorem 4.2. Occurrence of the remaining curves, as well as of the
points DH5

±, remains at this moment conjectural.

4.4 The Arnol′d resonance web

In this section we briefly describe the parameter space organisation related to the
dynamics on the invariant torus T . The results are obtained for the model map
Q (4.2) by means of numerical simulations. The region in the (γ, µ, δ)-space we focus
on is labelled by 4 in Figure 4.3 right, see Sec. 4.1.3 for a preliminary discussion.
Throughout the section, the coefficients of Q are fixed at the values given in Sec. 4.1.3.
In particular, since γ = 0.01, the results are presented in the (µ, δ)-parameter plane.

The resonances between the two internal frequencies of the torus T are organised
in gaps having a countable number of orientations in the parameter plane. Quasi-
periodic saddle-node bifurcations occur at the boundary of all gaps. These bifurcations
take place on the torus T , in the sense that for nearby parameter values the torus
still persists and it is ‘phase-locked’ to a pair of (possibly periodic) invariant circles,
an attractor A and a circle B of saddle type. In other words the torus consists of
the union T = A ∪ W u(B). In the interior of a gap the torus T possibly ceases to
exist, for example being destroyed in a homoclinic tangency of the stable and unstable
manifolds of B. However, in this situation the circles A and B still exist.

A particularly rich structure exists near the locations where various resonance gaps
‘cross’. In Figure 4.12 left several resonance gaps are plotted near one of the crossings.
We stress that infinitely many gaps and gap crossings occur near the boundary of any
given gap. Therefore the transition between two neighbouring gaps generically passes
through an infinite number of quasi-periodic saddle-node bifurcations of an invariant
circle. Another possibility, sketched in Figure 4.13, involves a sequence of heteroclinic
tangency bifurcations of two periodic points of saddle type. Two attracting invariant
circles A and B, occurring at different (but nearby) parameter values, are plotted in
Figure 4.13 (A) and (B) respectively. The circle A occurs near the right boundary of
the gap labelled by I in Figure 4.12 right, whereas B occurs near the left boundary
of gap II. Both parameter values are marked by a dot in Figure 4.12 right.
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ω̃

µ̃

ω̃̃ω

µ̃̃µ

I II

Figure 4.12: Left: parameter plane near a resonance gap crossing. To have a sym-
metric picture with respect to the axes, the variables (µ̃, ω̃) are plotted, obtained by a
transformation (µ̃, ω̃) = C(µ, ω). Parameter gaps with resonances of different orders
(inside T ) are displayed with different tones of grey. Right: magnification of left.
The dots in region I and region II mark the parameter values at which the attractors
A and B in Figure 4.13 respectively occur.

A possible theoretical scenario for the transition from A to B is the following.
The invariant torus T exists for all parameter values in a connected neighbourhood
N of the two values for which A and B occur. Depending on the parameters, the
torus T is phase-locked either to A , or to B, or to none of the two. Consider the
dynamics restricted to the two-dimensional surface given by the invariant torus T .
Two periodic orbits P± of saddle type occur inside T . In a narrow parameter sub-
set of N , the unstable manifold W u(P+) and the stable manifold W s(P−) have
transversal heteroclinic intersections or heteroclinic tangencies. When approaching
the heteroclinic structure formed by W u(P+) ∪ W s(P−), the invariant circle A is
destroyed. Then the circle B ‘reappears’ at the other side of the region of heteroclinic
intersections, see the qualitative sketch in Figure 4.14 (A) and (B). Both situations
in Figure 4.14 (A) and (B) are obtained by perturbing the time-one map of an inte-
grable vector field defined on the torus S1 × S1, the dynamics of which is sketched in
Figure 4.14 (C).

The above scenario is suggested by the ‘swapping’ between the ‘vertical straight
segments’ of A and of B, as illustrated in Figure 4.13 (C) and (D). Notice that the
‘horizontal straight segments’ of A and B are quite close. According to the above
scenario, this is due to the fact that the invariant circles pass in a narrow ‘corridor’
bounded by the manifolds W u(P+) and W s(P−), compare Figure 4.14 (A) and (B).
The validity of the above description will be subject of future research, see Sec. 4.6.

4.5 Dynamics in the heteroclinic region

We begin this section by a few comments on a magnification of Figure 4.4, given in
Figure 4.15. See Table 4.1 for the meaning of the greyscales. Many resonance tongues
occupy the (µ, δ)-parameter plane. Most of them become wider as they approach
the heteroclinic region, and eventually overlap. This corresponds to coexistence of
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Figure 4.13: (A) Attracting invariant curve A , occurring for (µ, ω) near the left
boundary of region I in Figure 4.12 left. Projection on (x, z). The ‘front half’ of
A (i.e., all points (x, y, z) for which y > 0) is plotted with thicker dots. (B) Same
as (A) for attracting invariant curve B, occurring for (µ, ω) near the right boundary
of region II in Figure 4.12 left. Parameter values of (A) and (B) are marked by two
dots in Figure 4.12 right. (C) Simultaneous projection on (x, z) of (A) (thicker dots)
and of (B), where only the ‘front half’ of both is plotted, by displaying points (x, y, z)
for which y > 0. (D) Same as (C) for y > 0.3, where B is plotted with thicker dots.

(A)A

P− P+

(B)

P− P+

B (C)

P− P+

Figure 4.14: (A) Qualitative sketch of the positions of the attracting invariant circle
A and of the stable and unstable manifolds of the periodic points P± inside the
torus T . (B) Same as (A) for attracting invariant curve B. (C) Sketch of dynamics
for the time-one map of a Hamiltonian vector field on the torus S1 × S1, of which (A)
and (B) are perturbations, see text for details.
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δ

2π

µ

Figure 4.15: Numerical scan of the attractors of G in the (µ, δ/(2π))-parameter
plane. The attractors are classified by means of the Lyapunov exponents, according
to Table 4.1.

different attracting invariant circles at the same parameter values. The black spots
in Figure 4.15 are regions where strange attractors occur. In these regions it is also
possible to have coexistence of a strange attractor and an attracting invariant circle.

For parameters inside a tongue, where an invariant circle occurs, this invariant
circle can be either of focus type (darker grey), or of node type (paler grey). Notice
that at the left-end of many tongues, before the black spots, there are alternating
regions with an invariant circle of either stability type. This is due to the occurrence
of several curves of quasi-periodic period doublings of an invariant circle, usually
occurring in finite number. Compare the scenario described in Sec. 4.1.3. It is also
possible that a strange attractor is created at once when leaving a tongue through
its boundaries, across a quasi-periodic saddle-node bifurcation of invariant circles.
This is illustrated in Figure 4.16. At first the torus T occurs (Figure 4.16 A). By
decreasing µ, the torus T approaches a saddle-node bifurcation of invariant circles
taking place on T self. We like to point out the intermittency on T right before
the saddle-node (Figure 4.16 B). Just after the saddle-node, the torus T is phase-
locked to an attracting invariant circle L (Figure 4.16 C). For parameters near the
saddle-node bifurcation, an invariant circle L ′ of saddle type coexists with L , and
the invariant torus T consists of the union T = L ∪ W u(L ′). However, when
decreasing µ this resonant torus is destroyed, probably by a homoclinic tangency of
the manifolds W s(L ′) and W u(L ′). Indeed, when L disappears through a saddle-
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Figure 4.16: Attractors of the model map G (4.1) for δ/(2π) = 0.0247 fixed, and at
four values of µ. Left column: projections on (x, y), where w = x+ iy. Right column:
projections on (x, z). (A) µ = 0.47, (B) 0.466, (C) 0.46, (D) 0.4555.
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Figure 4.17: Left: section of the attractor in Figure 4.16 (D) by a layer of width
2.e− 5 around the plane z = 0, projection on the (x, y)-plane. Center: magnification
of a portion of the section. Right: further magnification.

node together with L ′ (at the other side of the tongue), a strange attractor appears,
on which intermittency can be seen (Figure 4.16 D). By further decreasing of µ, the
intermittency disappears.

There are strong indications for the fact that the strange attractor in Figure 4.16 D
is quasi-periodic Hénon-like [24, 25, 27]. First of all, the second Lyapunov exponent
is zero within the achieved numerical precision. Furthermore, a slice by a thin layer
near the ‘equator’, followed by two magnifications, displays a Hénon-like structure in
the transversal direction, see Figure 4.17. Compare the discussion in Chapters two
and three, and see Remark 1.1.

There are striking analogies in the tongue-like structure displayed in Figure 4.15
and that described in [23] for a map M of the cylinder R× S1. The ‘fattened Arnol′d
map’ M is constructed as an approximated return map near a homoclinic tangency
of a fixed point of saddle type. Intuitively the map G can be seen as a perturbation
of the fattened Arnol′d map M , where the role of the homoclinic tangency is played
by a heteroclinic tangency of the two fixed points O± of saddle-focus type. A study
of the relation between the maps G and M is in preparation [26].

4.6 Conclusions

The dynamics of the model maps G and Q shows a variety of phenomena, including
breakdown of tori due to interaction with heteroclinic bifurcations, quasi-periodic
bifurcations of invariant circles and tori, and resonance bubbles along such bifurcation
curves. In this Chapter we have given an overview of the dynamics of the models G
and Q. In particular we focused on the study of a 1:5 resonance bubble, for which
an important theoretical tool is the Takens approximation theorem [112]. We show
the occurrence of two ‘secondary’ HSN bifurcations of period five points at the edges
of the 1:5 bubble, along a frayed boundary of quasi-periodic Hopf bifurcations. Near
the 1:5 bubble the bifurcation diagram is further enriched by several bifurcations of
invariant circles and tori, see Sec. 4.3.

Remaining open issues (e.g., see [26]) include:

1. The completion of the bifurcation diagram of the map G (4.1) near the 1:5
bubble, see Sec. 4.3.1. In particular, numerical continuation of (bifurcations
of) invariant circles is required, and can be performed by one of the methods
in [34, 50, 63, 85, 105].
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2. The study of the dynamical effect of the global reinjection in the map G and in
the vector field approximation TH , see Sec. 4.3.2.

3. Proving the occurrence of the degenerate Hopf bifurcations DH5
± in the vector

field TH , see Figure 4.11. An algebraic manipulator is used for this purpose, as
for the proof of last item in Theorem 4.2.

4. The analysis of the bifurcation structure of the map Q (4.1) near the multiple
resonance crossings, see Sec. 4.1.3. The construction of an explicit model map
on the torus S1 × S1, for a better mathematical understanding of the Arnol′d
web.

5. The construction of a return map near the heteroclinic tangencies of the fixed
points O±. The study of the relation between the tongue-like organisation of
the parameter plane for the map G and for the fattened Arnol′d map [23].

Appendix to Chapter four

4.A Proofs

Proof of Lemma 4.1.
Part 1. Denote for simplicity K(z) = γµ + az + γz2 in the equations of S̃ (4.18)

and of S (4.15). A fixed point of the planar map S̃ is given by a solution (r0, z0) of
the equations

|1 − γK(z0)| = 1, r2
0 = 1 − z2

0 .

Define u = γz and

M(u, γ) = |1 − γK(u/γ)|2 − 1 = (1 − γ2µ − a1u − u2)2 + a2
2u

2 − 1.

By the implicit function theorem, there exists a unique function u(γ) defined for small
γ and such that M(u(γ), γ) = 0, with u(γ) = O(γ2). Indeed,

M(0, 0) = 0,
∂

∂u
M(0, 0) = −2a1 6= 0,

∂

∂γ
M(0, 0) = 0.

An explicit computation yields u(γ) = −γ2µ/a1 + O(γ3). Putting z0 = u(γ)/γ and

r2
0 = 1 − z2

0 yields a fixed point (r0, z0) of S̃.

The determinant of the derivative DS̃ at (r0, z0), given by 1 + 2γ2(µ/a1 − a1) +

O(γ3), is equal to 1 at µ = µH(γ) = a2
1+O(γ), where the trace of DS̃ at the fixed point

is 2+2a1γ
2 +O(γ3). There the derivative DS̃ has two complex conjugate eigenvalues

of modulus one. Moreover, detDS̃ is larger than 1 for µ < µH(γ) and smaller than 1
for µ > µH(γ). To check that the fixed point (r0, z0) undergoes a Hopf bifurcation at
µ = µH, the nondegeneracy conditions stated in e.g. [78] can be verified.

Part 2. The planar map S̃ (4.18) up to terms of order O(γ3) is

(
r
z

)
S̃7→

(
r
z

)
+γ

(
−a1rz

1 − r2 − z2

)
+γ2

(
r
(
−µ + z2

(
−1 + |a|2

2
− a2

1

2

))

0

)
+O(γ3). (4.42)
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We look for a vector field TS̃ such that the time-γ map TS̃ satisfies

T γ

S̃
= S̃ + O(γ3). (4.43)

The time-γ map of TS̃ is given by

T γ

S̃
= id + γTS̃ +

γ2

2
ṪS̃ + O(γ3). (4.44)

Write TS̃ = V1 + γV2, where the vector fields Vj, j = 1, 2, are to be determined and
may depend on γ. By combining (4.44) and (4.43) we have

T γ

S̃
− id = γV1 + γ2V2 +

γ2

2
V̇1 = S̃ − id + O(γ3),

which yields

V1 =
1

γ
(S̃ − id), V2 = −1

2
V̇1.

Then V1 is easily derived from (4.42), while

V̇1 =

(
−a1(ṙz + rż)
−2(rṙ + zż)

)
+ O(γ) =

(
−a1(−a1rz

2 + r(1 − r2 − z2))
−2(−a1r

2z + z(1 − r2 − z2))

)
+ O(γ).

By rearranging the terms of V1 + γV2 having the same order in γ and by disregarding
O(γ2), we obtain (4.21). This proves point 2.

Part 3. For γ = 0 the vector field TS̃ (4.21) has an equilibrium (r, z) = (1, 0). Since
the derivative DTS̃ is invertible at (r, z, γ) = (1, 0, 0), by the implicit function theorem
there exist an equilibrium (r, z)(γ) = (1, 0)+O(γ) of (4.21) for all γ sufficiently small.
Substitution of (r, z)(γ) in (4.21) yields (r, z)(γ) = (1,−γµ/a1) + O(γ2).

For the stability of this equilibrium, observe that the derivative DTS̃ at (r, z)(γ)
is such that

Tr(DTS̃) = O(γ), det(DTS̃) = −2a1 + O(γ).

So for γ small the eigenvalues of DTS̃ at (r, z)(γ) are complex conjugate, and their
real part is

1

2
Tr(DTS̃) = −z − γa1 + O(γ2) = γ(µ/a1 − a1) + O(γ2).

Therefore the equilibrium (r, z)(γ) undergoes a Hopf bifurcation at µH(γ) = a2
1+O(γ).

To find the heteroclinic connection, denote the terms of TS̃ (4.21) of order zero
and one in γ by TS̃,0 and TS̃,1 respectively, i.e., write TS̃ = TS̃,0 + γTS̃,1, where

TS̃,0 =

(
−a1rz

1 − r2 − z2

)
, TS̃,1 =

(
r(−µ + a1

2
− a1

2
r2 − bz2)

z − (1 + a1)r
2z − z3

)
, (4.45)

with b = 1 + Re(a2 + a)/2. The vector field TS̃,0 is integrable, with first integral

F (r, z) =
a1

2
rc

(
1 − r2

1 − a1

− z2

)
, c = − 2

a1

,
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and with integrating factor rc−1. Moreover, TS̃,0 has a heteroclinic connection given

by the zero level set F−1(0). Multiplying TS̃,0 by the integrating factor rc−1 gives a
Hamiltonian vector field X0. So the vector field

rc−1TS̃ = rc−1TS̃,0 + γrc−1TS̃,1 = X0 + γX1

is a perturbation of the Hamiltonian vector field X0. The value of the parameter µ
for which the heteroclinic connection of X0 survives for rc−1TS̃ is given by the zeroes
of the integral ∫ ∫

int(F−1(0)

Tr(DX1)drdz. (4.46)

This integral is written as a linear combination of three integrals Ic−1, Ic+1, Ic+3,
where

Iβ =

∫ π/2

0

sinβ θdθ.

By using the recurrence relation Iβ+1 = β
β+1

Iβ, the integrals can be reduced to Iβ−1,

which is factored out. Therefore, up to a multiplicative constant the integral (4.46) is
equal to

c

(
µ − a1

2
+

b

3

)
+

c(2a1(1 − a1) − bc
3
− 1)

c + 3
.

From this we arrive at point 3.

Part 4. The rotation number on the invariant circle C of S (4.17) is determined by
the dynamics in the φ-component, which only depends on all parameters and on z0.
Also notice that z0 does not depend on ω, since the map S̃ (4.18) does not. Moreover,
the dynamics on C is always a rigid rotation, since all coefficients in the φ-component
of S are constant along all orbits on C .

We now determine parameter values for which the rotation number on C is exactly
2π/5. Put ω = ω0 + γδ, where ω0/(2π) = 1/5. Since the map S commutes with the
axial rotation Rθ(w, z) = (exp(iθ)w, z) for all θ (and, in particular, for θ = ω0), a
point of period five on C is given by (r0, φ0, z0), where φ0 is a fixed point of

φ 7→ φ + γδ + arg(1 − γK(z0)) = φ + γδ + arctan
−γa2z0

Re(1 − γK(z0))
. (4.47)

By the implicit function theorem there exists a function δ5(γ, µ), with

δ5(γ, µ) = −a2µ

a1

γ + O(γ2),

such that the map in (4.47) is the identity. Therefore, for parameter values (γ, µ, δ5(γ, µ))
all points of C have period five.

Part 5. This is a trivial consequence of the persistence of normally hyperbolic in-
variant manifolds, see [46, 60].
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Proof of Lemma 4.2. Define the auxiliary map G̃ = (G̃w, G̃z), where the two com-

ponents of G̃ are

G̃w(w, z) = w[1 − γ(γµ + az + γz2)] + γ3e−i(ω0+γδ)ε1w
4

G̃z(w, z) = z + γ(1 − |w|2 − z2).

Then we can write G = R(ω0+γδ) ◦ G̃ and H = Rγδ ◦ G̃. For any c ∈ C of modulus one
we have

G̃w(cw, z) − cG̃w(w, z) = γ3e−i(ω0+γδ)(c4 − c)ε1w
4 and G̃z(w, z) = G̃z(cw, z).

For either c = e−i(ω0+γδ) or c = e−iγδ the term c4 − c is of order O(γ). This implies

G(w, z) = R(ω0+γδ) ◦ G̃ = G̃ ◦ R(ω0+γδ) mod O(γ4),

H(w, z) = Rγδ ◦ G̃ = G̃ ◦ Rγδ mod O(γ4), and, therefore,

G5(w, z) = G̃5 ◦ R5
(ω0+γδ) = G̃5 ◦ R5

γδ = R5
γδ ◦ G̃5 = H5 mod O(γ4).

This concludes the proof of Lemma 4.2.

Proof of Theorem 4.1. The procedure is similar to the proof of Lemma 4.1, point 4.
We search for a vector field TH such that T γ

H = H+O(γ4). Write TH = V1+γV2+γ2V3,
where Vj, j = 1, 2, 3, may depend on γ. Then

T γ
H − id = γ(V1 + γV2 + γ2V3) +

γ2

2
(V̇1 + γV̇2) +

γ3

3!
V̈1 + O(γ4). (4.48)

Therefore the condition T γ
H − id = H − id + O(γ4) yields

V1 = (H − id)/γ, V2 = −1

2
V̇1, V3 = −1

2
V̇2 −

1

6
V̈1 =

1

12
V̈1.

Denoting for simplicity K(z) = γµ + az + γz2 in the equation of H (4.24), we have

V1 =

(
w(ξ − eiγδK(z)) + γ2e−iω0ε1w

4

1 − |w|2 − z2

)
, ξ =

eiγδ − 1

γ

V2 = −1

2

(
w

[
(ξ − eiγδK(z))2 − eiγδ(a + 2γz)(1 − |w|2 − z2)

]

2
[
|w|2 Re(ξ − eiγδK(z)) + z(1 − |w|2 − z2)

]
)

,

V3 =
1

12

(
ẅ{[iδ − az]2 − aż} − 2aw{z̈[iδ − az] + Re(ẅw) + zz̈}

2{2 Re(ẅw)(−a1z) − |w|2 a1z̈ + z̈ż − 2z(Re(ẅw) + zz̈)}

)
,

where (ẇ, ż) and (ẅ, z̈) denote the components of V1 and V̇1, respectively. Notice that
terms of order O(γ) have already been discarded in V3, since they give a contribution
of order O(γ3) in the vector field TH and of order O(γ4) in the time-γ map T γ

H . By
regrouping terms of the same order in γ in TH = V1 + γV2 + γV3, and by disregarding
O(γ3), we obtain (4.27)–(4.29). Part 1 of Theorem 4.1 is now proved. The proof of
the remaining parts is straightforward.
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Proof of Theorem 4.2.
Part 1. We search for equilibria of the vector field TH (4.26) having cylindrical
coordinates (r, φ, z) and occurring at parameter values (γ, µ, δ) such that

z = O(γ), r = 1 + O(γ2), δ = O(γ), (4.49)

compare with part two of Lemma 4.1. By (4.49), the terms Uw and Uz in (4.26) are
of order O(γ). By disregarding all terms of order O(γ3), the equilibrium condition
TH = 0 reads

−iδ + γµ + az = γ2ε1e
−i(ω0+5φ) + O(γ3), r = 1 + O(γ2). (4.50)

An additional variable z′′ and a parameter δ′′ are introduced:

z = γz′ + z′′γ2, δ = δ′γ + δ′′γ2, (4.51)

where z′ and δ′ are coefficients to be determined, which depend on µ but not on γ.
The existence of the equilibria is proved by applying the implicit function theorem
to an equation of the form M(r, φ, z′′, γ, µ, δ′′) = 0, where the solutions (r, φ, z′′) are
functions of the parameters (γ, µ, δ′′). The first equation of (4.50) is split in two, one
equation for the terms in γ and another for terms of order O(γ2). The equation for
the terms in γ is divided in real and imaginary part, yielding

µ + a1z
′ = 0, −δ′ + a2z

′ = 0, (4.52)

which is directly solved for z′ and δ′. The terms of order O(γ2) give

−iδ′′ + az′′ = ε1e
−i(ω0+5φ) + O(γ). (4.53)

This is split in an equation for the modulus and another for the argument, which,
together with the second of (4.50), yield the system

M(r, φ, z′′, δ′′, γ) =




(−δ′′ + a2z
′′)2 + (a1z

′′)2 − ε2
1 + O(γ)

ω0 + 5φ − 2kπ + arctan −δ′′+a2z′′

a1z′′
+ O(γ)

r − 1 + O(γ2)


 = 0, (4.54)

where k = 0, . . . , 4. For γ = 0, this system has the solutions (r±, φk,±, z′′±) where
r± = 1, φk,± has the expression in (4.33), and z′′± is given in (4.34). For small γ the
result holds since the derivative DM with respect to (r, φ, z′′) is invertible, except
when −a2δ

′′ + |a|2 z′′ = 0. This happens if and only if ∆ = 0 in (4.34), i.e., if the
equilibria undergo saddle-node bifurcations, see the next part.

Part 2. To look for saddle-node bifurcations, the equation det(DTH) = 0 has to
be added to the three deriving from the equilibrium condition TH = 0. Moreover, δ′′

has to be included as unknown together with (r, φ, z′′). Up to and including terms of
order two in γ we have

DTH =

(
iδ − γµ − az − a

2
γ 4ε1e

−iω0γ2w3 − a
2
γw2 −w(a + 2γz + aγz)

−w(1 + γz) −w(1 + γz) −2z − a1γ

)
+ O(γ3),
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where we used that Uw (4.30) and Uz (4.31) are such that DUw = DUz = O(γ) for z
and δ as in (4.51). Therefore, the saddle-node bifurcation condition reads

det(DTH) = 10(−a2δ + a1γµ + |a|2 z) + O(γ3) = 0, (4.55)

which has to be solved together with (4.50). As in part 2, this system is first solved
for the terms of order one in γ. In particular, equation (4.50) at order γ gives (4.52),
which trivially satisfies (4.55) at order γ. The terms of order O(γ2) give the system

M(r, φ, z′′, δ′′, γ) =




−a2δ
′′ + |a|2 z′′ + O(γ)

(−δ′′ + a2z
′′)2 + (a1z

′′)2 − ε2
1 + O(γ)

ω0 + 5φ + arctan −δ′′+a2z′′

a1z′′
− 2kπ + O(γ)

r − 1 + O(γ2)


 = 0,

where k = 0, . . . , 4. Notice that the first equation is the derivative of the second with
respect to z′′. This, of course, amounts to require that the second equation has a
double solution, i.e., ∆ = 0 in (4.34). For γ = 0 this yields

δ′′ = ± |a|
|a1|

ε1, z′′ = ± a2

|a| |a1|
ε1.

Moreover, the derivative of M with respect to (r, φ, z′′, δ′′) is invertible at γ = 0,
which allows application of the implicit function theorem. In particular (4.55) and
the modulus of the first of (4.50) yield

a2γµ + a1δ = ± |a| ε1,

which are the two lines SN 5
± (4.35).

Part 3 and 4. As in part 2, an equation has to be added to (4.54). Denote by
(ν1, ν2, ν3) the eigenvalues of DTH . Then the characteristic polynomial of DTH is

−ν3 + Tr(DTH)ν2 − Sim(DTH)ν + det(DTH),

where Sim(DTH) = ν1ν2 + ν1ν3 + ν2ν3. The condition for a Hopf bifurcation is

Sim(DTH) Tr(DTH) = det(DTH) 6= 0. (4.56)

In particular, we have (4.55) for det(DTH) and

Tr(DTH) = −2(γµ + a1z + z + a1γ) + O(γ3), Sim(DTH) = −2a1 + O(γ2).

Thereby, (4.56) reads

−3a1µγ + z(2a2
1 + 2a1 − 5 |a|2) + a2

1γ + 5a2δ = 0. (4.57)

To determine the coordinates of the bifurcating equilibria, it is convenient to introduce
the variable z′′ and the parameters (µ′, δ′′) by

z = γz′ + z′′γ2, δ = δ′γ + δ′′γ2, µ = µ0 + γµ′, (4.58)
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where (z′, µ0, δ′) are constants to be determined, compare with (4.51). The system
given by the equilibrium condition TH = 0 together with (4.57) is split in two equa-
tions, one for the terms in γ and another for the terms of order O(γ2). The terms in
γ yield the system

µ0 + a1z
′ = 0, δ′ + a2z

′ = 0, −3a1µ
0 + z′(2a2

1 + 2a1 − 5 |a|2) + a2
1 + 5a2δ

′ = 0,

which has the solution

z′ = −a1, µ0 = a2
1, δ′ = −a1a2.

The terms of order O(γ2) yield

M

(
r, φ, z′′

γ, µ′, δ′′

)
=




−3a1µ
′ + z′′(2a2

1 + 2a1 − 5 |a|2) + 5a2δ
′′ + O(γ)

(−δ′′ + a2z
′′)2 + (µ′ + a1z

′′)2 − ε2
1 + O(γ)

ω0 + 5φ + arctan −δ′′+a2z′′

µ′+a1z′′
− 2kπ + O(γ)

r − 1 + O(γ2)


 = 0,

where k = 0, . . . , 4. For γ = 0, the first equation yields

z′′ =
1

c
(3a1µ

′ − 5a2δ
′′), c = 2a1 + 2a2

1 − 5 |a|2 . (4.59)

Substitution of (4.59) into the second component of M gives (4.37). Conversely, from
the second component of M we have (4.39). Substitution of (4.39) into (4.59) gives

±c
√

∆′ = −2a1a2(1 + a1)δ
′′ + 2a1(a1 − a2

2)µ
′. (4.60)

Since c < 0, this implies that the equilibrium with P5
k,+, corresponding to the “+”

sign in the left hand side of (4.60), only can have a Hopf bifurcation when the right
hand side of (4.60) is negative. This gives inequality (4.38).

Part 5. The location of the HSN 5
± points is obtained as the solution of the system

given by the equilibrium condition TH = 0 (4.50), together with the saddle-node
equation (4.55) and the Hopf condition (4.56). According to what has been said in
part 3, (4.55) is equivalent to require ∆′ = 0 in (4.60). Therefore the solutions are
obtained obtained by setting (4.38) equal to zero and substituting in (4.37) and (4.36).

Part 6. The proof is carried out by means of an algebraic manipulator, i.e., a
computer program that calculates the transformations in Lemma 4.3 up to a finite
order in the variables and parameters. The algebraic manipulator used in this proof
is based on [62].

4.B Normal forms for HSN-families of vector fields

We here sketch the normalisation steps which bring a generic HSN-family of vector
field to the form (4.7), closely following [78].

Consider a C∞-smooth family of vector fields Xα on R3, where α ∈ Rk is a
parameter. We call Xα an HSN-family of vector fields if Xα(0) = 0 at α = 0 and

spec DX0(0) = {±iν0, 0}, ν0 > 0. (4.61)
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Remarks 4.8. 1. To have a nondegenerate Hopf-saddle-node bifurcation, generic
conditions (formulated later in this section) are required on the 3-jet of Xα

around the origin of R3.

2. The number k of parameters should be at least sufficient to have a miniversal
unfolding [5] of the linear part DX0(0). However, since we work here modulo
equivalence, time scalings are allowed and the parameter unfolding the imagi-
nary part of the eigenvalues of DX0(0) can be considered a constant. We stress
that the case of a diffeomorphism is quite different in this respect, compare
Remark 4.2.

In suitable coordinates (w, z) in R3, Xα reads

Xα(w, z) =

(
f000(α) + (η(α) + iν(α))w +

∑
j+k+h≥2 fjkh(α) wjwkzh

g000(α) + ζ(α)z +
∑

j+k+h≥2 gjkh(α) wjwkzh

)
, (4.62)

where f000(0) = g000(0) = η(0) = ζ(0) = 0, and ν(0) = ν0.

Lemma 4.3. [78] Let Xα be an HSN-family of vector fields like in (4.62). Suppose
Xα satisfies the open and dense conditions

g002(0) 6= 0, g110(0) 6= 0,
ˆ̂
f 102(0) 6= 0,

where
ˆ̂
f 102(0) is given by

ˆ̂
f 102(0) = Re

[
f̂ 102 + f101

(
Re f̂ 210

g110

− 3ĝ003

2g002

+
ĝ111

2g110

)
− f̂ 210g002

g110

]
, α = 0, (4.63)

and the coefficients f̂ 102, f̂ 210, ĝ003, and ĝ111 at α = 0 are

f̂ 102 = f102 +
i

ν0

[
2f002(f200 − g101) −

1

2
|f011|2 − f110f 002

]
,

f̂ 210 = f210 +
i

ν0

[
f110f200 −

1

2
g200f011 − |f110|2 −

2

3
|f020|2

]
,

ĝ003 = g003 −
2

ν0

g101 Im f002,

ĝ111 = g111 −
2

ν0

[g101 Im f110 + g200 Im f011] .

(4.64)

Also assume that the derivative of the map

α 7→ (g000(α), η(α)) (4.65)

is surjective at α = 0. Then, by smooth transformations and by introducing new
parameters (β1, β2) = β(α1, α2), system (4.62) can be brought to the form

(
ẇ
ż

)
= Yβ(w, z) + O(‖w, z‖4), (4.66)
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where Yβ is the third degree polynomial vector field

Yβ(w, z) =

(
(−β2 + iω)w − awz − wz2

−β1 − sww − z2

)
. (4.67)

For β = 0, the coefficients a = a(β) ∈ C, s = ±1, and ω = ω(β) in (4.67) are

a =
f101

g002

, s = sign

(
g002

g110

)
, ω = −

ˆ̂
f 102

g2
002

ν (α = 0). (4.68)

Moreover, if the coefficient
ˆ̂
f 102(0) (4.63) is positive, then the transformation from (4.62)

to (4.66) includes a reversal of time.

The proof of Lemma 4.3 consists of four transformations, which we briefly describe
given their relevance in the construction of our model maps. See [78] for details.

Step 1 Poincaré-Dulac normal form.
By the general theory of normal forms of vector fields [5] there exists a parameter-
preserving change of coordinates (w, z) = C(ŵ, ẑ, α) which brings Xα (4.62) into the
form

(
f̂100ŵ + f̂ 101ŵẑ + f̂ 210ŵ

2ŵ + f̂ 102ŵẑ2

ĝ000 + ĝ100ẑ + ĝ110ŵŵ + ĝ002ẑ
2 + ĝ111ŵŵẑ + ĝ003ẑ

2

)
+ O

(
‖ŵ, ẑ‖4). (4.69)

Up to order three the family in (4.69) is axially symmetric. Furthermore, by a trans-
lation of the ẑ-coordinate, the coefficient ĝ100 in (4.69) can be set to zero. To do this
the condition g002(0) 6= 0 is required on the 3-jet of (4.62).

The above transformation is computed in two steps. The first is done for α = 0,
then the implicit function theorem is used for α small. At α = 0, the coefficients
of (4.69) and of (4.62) are related to each other by (4.64) and by

f̂ 100 = iν0, f̂ 101 = f101, ĝ000 = 0, ĝ110 = g110, ĝ002 = g002 (α = 0).

Step 2 Gavrilov normal form.
The Poincaré-Dulac normal form is further simplified by the simultaneous application
of a reparametrisation of time and a change of coordinates, which for α = 0 have the
form

dt = (1 + b1ẑ + b2ŵŵ) dτ, ŵ = ˆ̂w + b3
ˆ̂w ˆ̂z, ẑ = ˆ̂z + b4

ˆ̂z2,

where b1, b2, b4 ∈ R, while b3 ∈ C. Such transformation aims at eliminating some of
the cubic terms in (4.69). In particular, suitable bj’s exist such that in the new time
and coordinates Xα takes the form

(
ˆ̂
f 100

ˆ̂w +
ˆ̂
f 101

ˆ̂w ˆ̂z +
ˆ̂
f 102

ˆ̂w ˆ̂z2

ˆ̂g000 + ˆ̂g110
ˆ̂w ˆ̂w + ˆ̂g002

ˆ̂z2

)
+ O

(∥∥∥ ˆ̂w, ˆ̂z
∥∥∥

4)
, (4.70)

where Im(
ˆ̂
f 102) = 0. For the existence of this transformation, one has to assume

that both g110(0) and g002(0) are nonzero in (4.62). Again, for α small one uses the
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implicit function theorem. At α = 0, the coefficients of (4.70) are related to those of
the starting vector field Xα (4.62) by (4.63) and by

ˆ̂
f 100 = iν0,

ˆ̂
f 101 = f101 − iν0

ĝ003

g002

, ˆ̂g000 = 0, ˆ̂g110 = g110, ˆ̂g002 = g002 (α = 0),

where ĝ003 is given in (4.64).

Remark 4.9. 1. The time scaling used in this step depend both on the phase
variables and on the parameters.

2. An equivalent normal form, due to Guckenheimer, contains the cubic term w2w
instead of wz2, see [78]. This choice is not relevant since the resulting third
degree polynomial vector fields have the same bifurcation diagram. A similar
property holds for HSN-families of diffeomorphisms.

Step 3 Final scalings.
By applying a parameter-dependent rescaling of time and variables of the form

τ =
ˆ̂
f 102

ˆ̂g2
002

t, ˆ̂w =

√√√√s
ˆ̂g3
002

ˆ̂g110
ˆ̂
f 2

102

w, ˆ̂z =
ˆ̂g002

ˆ̂
f 102

z, (4.71)

(where for simplicity we re-use the starting variable names), the real coefficients
ˆ̂
f 102,

ˆ̂g110, and ˆ̂g002 in (4.70) can be scaled to one, yielding

(
(β2(α) − iω(α))w + awz + wz2

β1(α) + sww + z2

)
+ O(‖w, z‖4), (4.72)

where (a, s) are as in (4.68) and

β1 =
ˆ̂
f 2

102

ˆ̂g3
002

ˆ̂g000, β2 =
ˆ̂
f 102

ˆ̂g2
002

Re(
ˆ̂
f 100), ω = −

ˆ̂
f 102

ˆ̂g2
002

Im(
ˆ̂
f 100).

For the scaling (4.71) to be possible, the coefficient
ˆ̂
f 102(0) (4.63) must be nonzero.

Remark 4.10. If
ˆ̂
f 102(0) < 0, one is introducing a reversal of time, and another

reversal of time is applied in the next step. Both have to be taken into account when
determining the stability type of the invariant manifolds of the final system (4.67)
with respect to the starting system (4.62).

Step 4 Introduction of new parameters and reversal of time.
The regularity of the map (4.65) is equivalent to that of the map

α 7→ β = (β1(α), β2(α)).

This implies that the reparametrisation β = β(α) is locally invertible, and, therefore,
β can be used as parameter instead of α. A reversal of time brings (4.72) to the
form (4.67).
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4.C Normal forms for HSN-families of maps

The purpose of this section is to present an analogue to Lemma 4.3 for a given HSN-
family of diffeomorphisms F , depending on the multi-parameter α = (α1, . . . , αk).
Notice that fewer simplifications are possible for a diffeomorphism than for vector
fields, since we cannot scale time. Moreover in this case three parameters are needed
for the Linear Centraliser Unfolding of DF (0, 0), hence we set k = 3. Assume the
linear part of F is in Jordan normal form:

Fα(w, z) =

(
f000 + λ(α)w +

∑
j+k+h≥2 fjkh(α) wjwkzh

g000 + ν(α)z +
∑

j+k+h≥2 gjkh(α) wjwkzh

)
, (4.73)

where ν(0) = 1 and λ(0) = λ0, while f000(0) = g000(0) = 0.

Lemma 4.4. Let F be an HSN-family of diffeomorphisms as in (4.73), depending on
the multi-parameter α ∈ R3, with spec DF0(0) = {λ0, λ0, 1} ⊂ S1. Suppose F satisfies
the open and dense condition

g002(0) 6= 0, g110(0) 6= 0. (4.74)

Also assume that the derivative of the map

α 7→ (g000(α), λ(α)) (4.75)

is surjective at α = 0. Then there exist a smooth parameter-dependent transforma-
tion and a reparametrisation β = (β1, β2, β3)(α), with βj ∈ R, such that in the new
coordinates and parameters the diffeomorphism (4.73) reads

(
w
z

)
7→

(
(1 + β2)e

iβ3λ0w + awz + bwz2

β1 + z + sww + z2 + cz3

)
+ O(‖w, z‖4). (4.76)

Here the coefficients a(β) and b(β) are complex, while c(β) is real and s = ±1. Fur-
thermore, at β = 0 we have

a =
f101

g002

, b =
f102

g2
002

, c =
g003

g2
002

, s = sign

(
g002

g110

)
. (4.77)

The proof is divided in two parts. First we consider the normalising procedure for
α = 0. This is achieved by two transformations performed independently. For small α
the conclusion follows from the implicit function theorem, but the two transformations
have to be performed simultaneously. Finally, a parameter-dependent rescaling of the
variables is applied. We begin by setting α = 0.

Step 1 Poincaré normal form.
By general theory [39, 112], for α = 0 there exists a change of coordinates in R3 which
is tangent to the identity at the origin, and such that in the new coordinates only
resonant monomial appear in the expansion of F . For n ≥ 2 integer, a monomial P
of the form

P (w, z) = wn1wn2zn3
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is called resonant if it commutes with the semisimple part S of DF0(0). Because
of (4.4), in suitable coordinates (ŵ, ẑ) the 3-jet of any HSN-family at α = 0 is axially
symmetric:

(
λ0ŵ + f̂ 101ŵẑ + f̂ 210ŵ

2ŵ + f102ŵẑ2

ẑ + ĝ110ŵŵ + ĝ002ẑ
2 + ĝ111ŵŵẑ + ĝ003ẑ

3

)
+ O

(
‖ŵ, ẑ‖4). (4.78)

Step 2 Second order Poincaré normalisation (hypernormalisation) [78].
By a transformation of the form

(ŵ, ẑ) = C( ˆ̂w, ˆ̂z) = ( ˆ̂w + b1
ˆ̂w ˆ̂z, ˆ̂z + b2

ˆ̂z2).

the cubic terms ŵ2ŵ and ŵŵẑ in (4.78) can be eliminated, yielding the map F̂ :

F̂ ( ˆ̂w, ˆ̂z) =

(
λ0

ˆ̂w +
ˆ̂
f 101

ˆ̂w ˆ̂z +
ˆ̂
f 102

ˆ̂w ˆ̂z2

ˆ̂z + ˆ̂g110
ˆ̂w ˆ̂w + ˆ̂g002

ˆ̂z2 + ˆ̂g003
ˆ̂z3

)
+ O

(∥∥∥ ˆ̂w, ˆ̂z
∥∥∥

4)
,

where
ˆ̂
f 101 = f̂ 101, ˆ̂g110 = ĝ110, and ˆ̂g002 = ĝ002. Indeed, by imposing the condition

F̂ ◦ C( ˆ̂w, ˆ̂z) = C ◦ F̂ ( ˆ̂w, ˆ̂z) up to terms of order three, we get the linear system

−ĝ002λ0b1 = f̂ 210

−ĝ110λ0b1 + f̂ 101b2 +
ˆ̂
f 102 = f̂ 102

ĝ002(b1 + b1) − 2ĝ002b2 = ĝ111

(4.79)

in the variables (b1, b2,
ˆ̂
f 102), which is solvable due to the assumption in (4.74). This

finishes the proof for α = 0.

Step 3 Application of the implicit function theorem.
For α sufficiently small, by the implicit function theorem there exists a parameter-
dependent transformation for which (4.73) takes the form

(
ˆ̂
λ ˆ̂w +

ˆ̂
f 101

ˆ̂w ˆ̂z +
ˆ̂
f 102

ˆ̂w ˆ̂z2

ˆ̂g000
ˆ̂z + ˆ̂g110

ˆ̂w ˆ̂w + ˆ̂g002
ˆ̂z2 + ˆ̂g003

ˆ̂z3

)
+ O

(∥∥∥ ˆ̂w, ˆ̂z
∥∥∥

4)
, (4.80)

where
ˆ̂
λ(0) = λ0. To show that the implicit function theorem can be applied, the

computations are elementary, but long and tedious.

Step 4 Final scalings and reparametrisation.
A parameter-dependent scaling of the type

ˆ̂w =

√
s
ˆ̂g002

ˆ̂g110

w, ˆ̂z =
1

ˆ̂g002

z,

where s is given in (4.77), is applied to (4.80). For simplicity we re-use the names of
the starting variables. This yields

(
w
z

)
7→

(
(1 + β2(α))eiβ3(α)λ0w + a(α)wz + b(α)wz2

β1(α) + z + sww + z2 + c(α)z3

)
+ O(‖w, z‖4).

The regularity of (4.75) is equivalent to that of the map α 7→ β(α). This means that
β can be taken as new parameter.
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4.D The Takens vector field normal form for dif-

feomorphisms

In this section we present the two versions of the Takens theorem that are used in
this Chapter. The first is the ‘classical’ Takens theorem [112], also see [39]. We refer
to [112] for terminology.

Let F : Rm × Rp → Rm × Rp be a diffeomorphism such that F (0, 0) = (0, 0)
and πp ◦ F = πp, where πp : Rm × Rp → Rp is the projection on the p-dimensional
parameter space. Let S be the semisimple part of DF (0, 0). By Vn denote the space
of all homogeneous polynomial vector fields Vn of degree n on Rm ×Rp such that

1. S∗Vn = Vn, i.e., Vn commutes with S.

2. πp ◦ Vn = 0, i.e., Vn vanishes in the parameter direction.

Given a vector field V1 ∈ V1, denote by In
V1

the image of Vn under the adjoint operator
adV1

= [V1,−], where [−,−] are the Lie brackets. Let Gn
V1

be a subspace of Vn which
is complementary to In

V1
, i.e., Vn = In

V1
+ Gn

V1
.

Theorem 4.3. [112] Let F and S be as above. Then there exist a vector field TF on
Rm ×Rp and a diffeomorphism C : Rm ×Rp → Rm ×Rp such that

1. S∗TF = TF , πp ◦ TF = 0, and πp ◦ C = πp.

2. In the new coordinates the infinite jet of F in (0, 0) has the form

j∞
(
C−1 ◦ F ◦ C

)
= S ◦ T 1

F , (4.81)

where T 1
F is the time-1 map of TF .

3. The infinite jet of TF can be written as

j∞TF =
∞∑

n=1

Gn, (4.82)

where G1 ∈ V1 has the same 1-jet as TF in the origin and Gn ∈ Gn
G1

for n ≥ 2.

Theorem 4.3 is used in Sec. 4.3.2 to construct a vector field approximation for the
fifth iterate of the model map G (4.1). In fact, the vector field is computed only up
to order two in γ, and not up to ∞-flat terms as in (4.81).

Notice that the vector field TF provided by Theorem 4.3 is such that all eigenvalues
are zero: spec DTF (0, 0) = {0}, since the semisimple part S is factored out in (4.81).
On the other hand, to construct the model maps G (4.1) and Q (4.2) we find it more
convenient to start by a two-parameter HSN-family X of vector fields on R3 × R2,
that is, a family X for which spec DX(0, 0) = {±iω0, 0}, ω0 6= 0. Compare (4.5) and
the discussion at the end of Sec. 4.1.1. Therefore, we resort to the following version
of the Takens theorem.
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Lemma 4.5. Let F be a family of diffeomorphisms of R3 ×Rp, with πp ◦F = πp such
that

F (0, 0) = 0 and spec DF (0, 0) = {eiω0 , e−iω0 , 1} ⊂ S1.

Suppose that the eigenvalue λ0 = eiω0 satisfies the nonresonance conditions

λr
0 6= 1 r = 1, . . . , k (4.83)

for some integer k ≥ 3. Then there exists a degree k − 1 polynomial vector field TF

on R3 ×Rp, with p ◦ TF = 0, such that

F = T 1
F + M, (4.84)

where the remainder M is such that πp ◦ M = πp and jk−1M = 0.

By (4.84), T 1
F is an HSN-family of vector fields. In particular, if F is an HSN-family

of diffeomorphisms, i.e, if k ≥ 4 (compare (4.3)), then Lemma 4.5 implies that F can
be written as a perturbation of the time-1 map T 1

F of an HSN-family of vector fields.
Moreover, the 3-jet of the perturbing term M in (4.84) is zero, which means that
the Taylor expansion of M around (0, 0) only contains terms of order at least four.
This justifies our construction of the model maps G (4.1) and Q (4.2), as described
in Sec. 4.1.2. The rest of this section is devoted to sketching the proof of Lemma 4.5.

Let Mn be the space of all homogeneous polynomial maps

P : R3 ×Rp → R3 ×Rp

of degree n, with πp ◦ P = 0. We assume that the coordinates x = (w, z, α1, . . . , αp)
on R3 × Rp are such that the semisimple part S of DF (0, 0) is diagonal. A basis of
Mn is given by all monomial maps

h(x)
∂

∂w
, h(x)

∂

∂z
, h(x) = wn1wn2zn3αn4

1 . . . αnp+3

p , (4.85)

lexicographically ordered [39] and such that n1 + n2 + n3 + n4 + · · · + np+3 = n. Let
X be a vector field on R3 ×Rp such that πp ◦X = 0. Denote by φ(t, x) the flow of X
at time t, starting at point x. For r ≥ 2 write

X(x) = X1(x) + X2(x) + · · · + Xr(x) + O(‖x‖r+1),

φ(t, x) = φ1(t)x + φ2(t, x) + · · · + φr(t, x) + O(‖x‖r+1),

F (x) = F1x + F2(x) + · · · + Fr(x) + O(‖x‖r+1)

where Xn, φn(t,−), and Fn belong to Mn for all n = 1, . . . , r. The linear vector field
X1 is identified with its matrix representation in the given coordinates. The equation

jrF = jrφ(1,−), (4.86)

where the unknown is the vector field X, can be solved by induction on r. Indeed,
system (4.86) is rewritten as

eX1 = F1,∫ 1

0

e−sX1Xn(esX1x)ds = e−X1Fn(x) −
∫ 1

0

e−sX1Zn(s, x)ds, n = 2, . . . , r,
(4.87)
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where Zn(s, x) =
∑n−1

i=2 Zi,n(s, x) and Zi,n(s, x) is given by

Xn(φ(t, x)) = Xn(φ1(t)x) +
n∑

i=n+1

Zn,i(t, x) + O(‖x‖r+1).

The key point is that system (4.87) is solvable. Indeed, let (S,N) be the semisimple-
nilpotent decomposition of DF (0, 0). Then in the given coordinates we have

S =

(
S1 0
0 Ip

)
, N =

(
0 N1

0 0

)
, (4.88)

where S1 = diag{λ0, 1, }, Ip is the identity matrix of order p, and N1 is the matrix of
a linear operator N1 : Rp → R3. Observe that we can write S + N = S(I + S−1N),
and that both S and I + S−1N have a logarithm:

log(S) = diag(iω0, 0, 0, . . . , 0)
def

= B, log(I + S−1N) = S−1N, (4.89)

the second equality since N2 = 0. Therefore, the first equation of system (4.87) has
the solution X1 = B + S−1N , since

F1 = DF (0, 0) = S + N = S(I + S−1N) = exp(B) exp(S−1N) = exp(B + S−1N).

To complete the sketch of proof for Lemma 4.5, it is enough to observe that by the next
lemma the higher-order equations in system (4.87) are solvable for n = 2, . . . , k − 1,
given the assumptions in (4.83). This is the content of the next lemma.

Lemma 4.6. Let X1 = B + S−1N , where B and N are defined in (4.89) and (4.88),
respectively. Suppose that (4.83) holds. Then the linear operator

Ln : Mn → Mn, Ln(P )(x) =

∫ 1

0

e−sX1P (esX1x)ds (4.90)

is invertible for all n = 1, . . . , k − 1.

Proof. Let P be one of the monomials in the basis of Mn given in (4.85) and, to
begin, suppose that

P (x) = h(x)
∂

∂w
, where h(x) = wn1wn2zn3αn4

1 . . . αnp+3

p .

In this setting, an important property is that the nilpotent part N (4.88) has no
nonzero entries in the upper right block, which corresponds to phase-space variables
(w, z). Therefore, by denoting sS−1N(x) = (f, f , g, 0, . . . , 0), the coefficients f and g
only depend on the parameters α = (α1, . . . , αp), on ω0 and on s, but not on (w, z).
Therefore we have

esX1x = esB(I + sS−1N)x =
(
λs

0(w + f), λ
s

0(w + f), z + g, α
)

h(esX1x) = λ
s(n1−n2)
0 (w + f)n1(w + f)n2(z + g)n3αn4

1 . . . αnp+3

p .

The expression for h(esX1x) is a sum of terms in which the monomial h(x) self appears
only once, since f and g do not depend on (w, z). In particular, this implies that



4.E Choice of numerical constants for the model maps 151

the matrix of the operator Ln with respect to the basis in (4.85) (which is ordered
lexicographically), is lower triangular. Therefore the eigenvalues of Ln have the form

νw =

∫ 1

0

eiω0(n1−n2−1)sds for P (x) = h(x)
∂

∂w
or

νz =

∫ 1

0

eiω0(n1−n2)sds for P (x) = h(x)
∂

∂z
.

To check that the operator Ln is invertible, we have to show that all eigenvalues are
nonzero. If n1 − n2 = 1 or n1 − n2 = 0, then νw = 1 or νz = 1, respectively. So there
may be a zero eigenvalue only for n1 − n2 6= 0, 1. In this case we have

νw =
λn1−n2−1

0 − 1

iω0(n1 − n2 − 1)
, νz =

n1 − n2

iω0(n1 − n2)
.

Therefore Ln has a zero eigenvalue if and only if

either λn1−n2−1 = 1, with n1 − n2 − 1 6= 0 (4.91)

or λn1−n2 = 1, with n1 − n2 6= 0. (4.92)

However, given the nonresonance condition in the hypotheses, (4.91) can only happen
if either n1 − n2 ≥ k + 2 or n1 − n2 ≤ −k, while (4.92) may be satisfied only if
|n1 − n2| ≥ k + 1. Since |n1 − n2| ≤ n, there are no zero eigenvalues for all n ≤ k− 1.
This concludes the proof of Lemma 4.6.

4.E Choice of numerical constants for the model

maps

Numerical results suggest that variations of γ essentially result in a rescaling of the
bifurcation diagram in the parameters (µ, ω) for G (4.1) and Q (4.1). To be more
precise, apart from a change of scale in the other parameters, no significant alterations
occur in the bifurcation diagrams. The same behaviour has been checked for ε1 and
ε2. Therefore only the parameter plane (µ, ω) is examined in most of the numerical
simulations, while the other parameters and coefficients are kept fixed:

1. The parameter γ is kept fixed at 0.1 or 0.02.

2. The coefficients ε1 and ε2 are fixed at 1.

3. The term with coefficient a2 induces a change of order γz in the fast rotation
number, compare (4.47). Therefore we fix a2 = 1/

√
2 in the simulations.

4. The constant a1 controls the hyperbolicity of the limit cycle branching off from
the Hopf bifurcation, see Sec. 4.1.2; we fix a1 = −1.

Notice that for the model G (4.1) the coefficient ε1 can be taken real, since a transfor-
mation of the form (w, z) = Rθ(w

′, z′) = (exp(iθ)w′, z′) for suitable θ yields a system
of coordinates where Im(ε1) = 0. Moreover, the parameter ε3 is fixed at zero in G.
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This is reasonable, since the term in ε3 is of order γ4, while the ∂/∂z component of G
already contains a term in γz2. Also observe that the term in ε1 induces an effect in
the second iterate of (4.1), which is similar to the effect of the term in ε3. If (w1, z1)
denote the components of the map (4.1), then

w1w1 = |w|2
(
1−2γ(γµ+a1z+γz2)+γ2

∣∣γµ + az + γz2
∣∣2)+2γ3ε1 Re (eiωw5)+O(γ4).

Due to the term −γ |w|2 in the ∂
∂z

-component of G, in the second iterate the above
term will give a contribution to the of the form γ4ε1 Re (e−iωw5) to the ∂

∂z
-component.

Notice that some terms are missing in the 3-jet of (4.1) when compared to the
generic normal form (4.76). The coefficient of (4.1) corresponding to c(β) in (4.76)
is zero, while the coefficient corresponding to b(β) in (4.76) only depends on γ and
ω in (4.1). Since no such restrictions hold in (4.76), strictly speaking, G is represen-
tative only of a subset of all possible HSN-families. However, the following heuristic
arguments suggest that the missing monomials in G have a marginal influence on the
dynamics of the model, which justifies their suppression. Firstly, the effect of the term
in γz2 in the ∂/∂z-component dominates that of the missing term in γ2z3. Secondly,
inclusion of the coefficient Im f102 yields a contribution of the form −γ2z2 Im f102

in the φ-component, which is one order of magnitude smaller than the term γa2z
(compare (4.47)). To conclude, observe that the coefficient Re f102 influences the slow

rotation number, i.e., the rotation number of the invariant circle of S̃ (equation (4.18))
born at the Hopf bifurcation. Its value is of no relevance for the dynamics, as long as
it is sufficiently far from zero.
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area’ transition (II). Parameter plane representation, IJBC 1 (1991), 183–196.
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Summary

The research presented in this PhD thesis fits within the framework of nonlinear
deterministic dynamical systems depending on parameters. The work is divided into
four Chapters, where the first is a general introduction to the other three.

Chapter two deals with the investigation of a time-periodic three-dimensional sys-
tem of ordinary differential equations depending on three parameters, the Lorenz-84
model with seasonal forcing. The model is a variation on an autonomous system
proposed in 1984 by the meteorologist E. Lorenz to describe general atmospheric cir-
culation at mid latitude of the northern hemisphere. In the present version of the
model, two parameters are subject to periodic forcing, where the period is one year.
A third parameter is the relative amplitude of the forcing, denoted by ε. In Chapter
two we provide a coherent inventory of the dynamics of the forced model in the three-
dimensional parameter space. The model is studied in terms of its Poincaré map (also
called period- or stroboscopic map), which is a three-dimensional diffeomorphism. The
study is carried out by both numerical and analytical means. Numerical computation
of the Lyapunov exponents and of power spectra is used to describe the dynamics of
the Poincaré map.

For small values of the parameter ε the bifurcation diagram is quite similar to
that of the autonomous, unperturbed system, i.e., the system at ε = 0. However, for
positive ε new dynamical phenomena are found by numerical means in the Poincaré
map of the forced system. We conjecture that at least two types of strange attrac-
tors occur: Hénon-like and quasi-periodic Hénon-like. Hénon-like attractors are quite
well understood from the theoretical viewpoint. In particular, a Hénon-like attrac-
tor coincides with the closure of the unstable manifold of a periodic orbit of saddle
type. Quasi-periodic Hénon-like attractors are formed by the closure of the unsta-
ble manifold of a quasi-periodic invariant circle of saddle type. The quasi-periodic
Hénon-like attractors as numerically detected in the Poincaré map have dimension
close to two, the second Lyapunov exponent being approximately zero. Furthermore,
the power spectrum has both sharp peaks, which is typical for quasi-periodicity, and
broad band, which is typical for chaos.

Rigorous mathematical characterisations of Hénon-like attractors so far have only
been achieved for model systems which are much simpler than the Lorenz-84 system.
Therefore in Chapter three we consider a simplified model on the solid 2-torus (i.e.,
the product of the plane and the circle). For this model, given by the skew-coupling
of the planar Hénon-map and the Arnol′d map of the circle, we establish a new result
regarding Hénon-like attractors. For a related class of models we show the existence
of an invariant circle of saddle type such that the closure of its unstable manifold
attracts an open set of initial states. Despite this, the mathematical characterisation
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of the quasi-periodic Hénon-like attractors remains, also in these cases, largely open.
In Chapter four I turn to the study of the Hopf-saddle-node bifurcation for fixed

points of diffeomorphisms, by examining two model maps. This bifurcation is one of
the organising centres in the family of Poincaré maps of the Lorenz-84 model. The
corresponding bifurcation for equilibria of vector fields has been intensively studied
(see e.g. the textbooks of Guckenheimer-Holmes and Kuznetsov). By a theorem
of Takens, the results for the vector field provide a ‘skeleton’-description of what
we can expect for maps. The situation for maps is more complicated than that for
vector fields, due to the occurrence of resonances and chaos. In particular, we show
that near a 1:5 resonance several additional bifurcations occur. Correspondingly,
a few invariant circles and tori of different stability types may coexist in certain
parameter regions. Moreover, Hénon-like and quasi-periodic Hénon-like attractors
are numerically detected.



Samenvatting

Het onderzoek van dit proefschrift valt in het kader van de niet-lineaire, determinis-
tische dynamische systemen die van parameters afhangen. Het werk is onderverdeeld
in vier hoofdstukken, waarbij het eerste een algemene introductie is van de resterende
drie.

Hoofdstuk twee bevat een onderzoek van de dynamica van een tijd-periodiek drie-
dimensionaal stelsel gewone differentiaalvergelijkingen dat van drie parameters af-
hangt, het Lorenz-84 model met seizoensaandrijving. Het model is een variatie op een
autonoom systeem dat door de meteoroloog E. Lorenz is voorgesteld om de algemene
atmosferische circulatie op gemiddelde noorderbreedte te beschrijven. In de huidige
versie van het model worden twee parameters periodiek aangedreven, waarbij de pe-
riode één jaar is. Een derde parameter wordt gegeven door de relatieve amplitude
van de aandrijving, aangegeven met ε. In Hoofdstuk twee geven we een coherente
beschrijving van de dynamica van het aangedreven model in de drie-dimensionale
parameter ruimte. Het model wordt bestudeerd door middel van zijn Poincaré afbeel-
ding (ook periode- of stroboscopische afbeelding genoemd), die een drie-dimensionaal
diffeomorfisme is. De analyse wordt uitgevoerd met numerieke en analytische metho-
den. Numeriek berekende Lyapunov exponenten en vermogenspectra worden gebruikt
om de dynamica van de Poincaré afbeelding te beschrijven.

Voor kleine waarden van de parameter ε lijkt het bifurcatie diagram sterk op
dat van het autonome, ongestoorde systeem, dat wil zeggen het systeem voor ε = 0.
Voor positieve ε worden er echter ook nieuwe dynamische verschijnselen gevonden met
numerieke middelen. We veronderstellen dat er minstens twee typen vreemde aan-
trekkers optreden: Hénon-achtig en quasi-periodiek Hénon-achtig. Hénon-achtige aan-
trekkers zijn vrij goed begrepen vanuit een theoretisch oogpunt. Een Hénon-achtige
aantrekker bestaat namelijk uit de afsluiting van de onstabiele varieteit van een pe-
riodieke baan van zadel type. Quasi-periodieke Hénon-achtige aantrekkers worden
gevormd door de afsluiting van de onstabiele varieteit van een quasi-periodieke inva-
riante cirkel van zadel type. De numeriek berekende quasi-periodieke Hénon-achtige
aantrekkers hebben dimensie die dichtbij twee ligt, omdat de tweede Lyapunov expo-
nent bijna nul is. Verder vertoont het vermogenspectrum zowel scherpe pieken, wat
typisch is voor quasi-periodiciteit, als broad band spectrum, wat typisch is voor chaos.

Rigoureuze wiskundige karakterisering van Hénon-achtige aantrekkers werd tot
dusver uitsluitend verkregen voor modellen die veel eenvoudiger zijn dan het Lorenz-
84 systeem. Daarom beschouwen we in Hoofdstuk drie een vereenvoudigd model op de
gevulde 2-torus (dat wil zeggen het produkt van het vlak en de cirkel). Voor dit model,
dat gegeven wordt door het scheef-koppelen van de Hénon afbeelding in het vlak met
de Arnol′d afbeelding van de cirkel, krijgen we een nieuw resultaat betreffende Hénon-
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achtige aantrekkers. Voor een gerelateerde klasse van modellen tonen we aan dat er een
invariante cirkel van zadel type bestaat, zodanig dat de afsluiting van zijn onstabiele
varieteit een open verzameling van begintoestanden aantrekt. Desondanks blijft de
wiskundige karakterisering van de quasi-periodieke Hénon-achtige aantrekkers, ook
voor deze gevallen, nog grotendeels open.

In Hoofdstuk vier bestudeer ik de Hopf-zadel-knoop bifurcatie voor dekpunten
van diffeomorfismen, door twee model-afbeeldingen te bekijken. Deze bifurcatie is een
van de organiserende knooppunten in de familie van Poincaré afbeeldingen van het
Lorenz-84 model. De corresponderende bifurcatie voor vectorvelden is al intensief be-
studeerd (zie bijvoorbeeld de tekstboeken van Guckenheimer-Holmes en Kuznetsov).
Volgens een stelling van Takens vormen de resultaten voor het vectorveld een ‘skelet’-
beschrijving van wat we voor afbeeldingen kunnen verwachten. De situatie voor af-
beeldingen is gecompliceerder dan die voor vectorvelden, wegens het optreden van
resonanties en chaos. In het bijzonder tonen we aan dat er dichtbij een 1:5 resonantie
meerdere bifurcaties optreden. Daarbij is er ook sprake van coëxistentie van enkele
invariante cirkels en tori van verschillende stabiliteitstypen in bepaalde parameterge-
bieden. Verder worden Hénon-achtige en quasi-periodieke Hénon-achtige aantrekkers
numeriek gevonden.


