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a b s t r a c t

This paper studies the dynamical mechanisms potentially involved in the so-called atmospheric low-
frequency variability, occurring at midlatitudes in the Northern Hemisphere. This phenomenon is
characterised by recurrent non-propagating and temporally persistent flow patterns, with typical spatial
and temporal scales of 6000–10000 km and 10–50 days, respectively.
We study a low-order model derived from the 2-layer shallow-water equations on a β-plane channel.

The main ingredients of the low-order model are a zonal flow, a planetary scale wave, orography, and a
baroclinic-like forcing.
A systematic analysis of the dynamics of the low-order model is performed using techniques and

concepts fromdynamical systems theory. Orography height (h0) andmagnitude of zonalwind forcing (U0)
are used as control parameters to study the bifurcations of equilibria and periodic orbits. Along two curves
of Hopf bifurcations an equilibrium loses stability (U0 ≥ 12.5m/s) and gives birth to two distinct families
of periodic orbits. These periodic orbits bifurcate into strange attractors along three routes to chaos:
period doubling cascades, breakdown of 2-tori by homo- and heteroclinic bifurcations, or intermittency
(U0 ≥ 14.5 m/s and h0 ≥ 800 m).
The observed attractors exhibit spatial and temporal low-frequency patterns comparing well with

those observed in the atmosphere. For h0 ≤ 800 m the periodic orbits have a period of about 10 days
and patterns in the vorticity field propagate eastward. For h0 ≥ 800 m, the period is longer (30–60
days) and patterns in the vorticity field are non-propagating. The dynamics on the strange attractors
are associated with low-frequency variability: the vorticity fields show weakening and strengthening of
non-propagating planetary waves on time scales of 10–200 days. The spatio-temporal characteristics are
‘‘inherited’’ (by intermittency) from the two families of periodic orbits and are detected in a relatively large
region of the parameter plane. This scenario provides a characterisation of low-frequency variability in
terms of intermittency due to bifurcations of waves.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Weather and climate are complex natural systems since they
involve many temporal and spatial scales and a large number
of physical processes. In this paper we restrict our attention to
large-scale atmospheric flows on time scales of several days to
weeks.
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1.1. Statement of the problem

A classical problem in the theory of General Atmospheric
Circulation is the characterisation of the recurrent flow patterns
observed at midlatitudes in the northern hemisphere winters [1].
This issue has been subject of much scientific attention at least
since Baur’s definition of Grosswetterlagen [2], or Rex’s description
of Atlantic blocking [3]. One of the motivations for the interest
is the potential importance of this problem to understand the
persistence and predictability of atmospheric motion beyond the
time scales of baroclinic synoptic disturbances (2 to 5 days).
Indeed, it is expected that insight into the nature of low-frequency
regime dynamics will lead to significant progress in the so-called
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extended range weather forecasting [4]. At the same time, the
problem is of great relevance in climate science, since it has
been proposed that climate change predominantly manifests itself
through changes in the atmospheric circulation regimes, that is
‘‘changes in the PDF (probability distribution function) of the
climate attractor’’ [5]. As a matter of fact, misrepresentation of the
statistics of blocking and planetary waves is widespread in climate
models [6,7]: this may have a profound impact on the ability of
suchmodels to reproduce both current climate and climate change.
There are various approaches to the problem of low-frequency

atmospheric variability and they are not equivalent—though not
independent of each other. An old theory associates recurrent
large-scale flow patterns with stationary states of the atmospheric
circulation, which correspond to equilibria in the dynamical
equations of atmosphericmotion. Small-scale weather acts then as
a randomperturbation inducing fluctuations around equilibria and
transitions between states. This mechanism would be responsible
for the existence of multimodal statistics in observed data, like the
bimodal distribution of planetary activity on zonal wavenumbers
2, 3, 4 found by Hansen and Sutera [8].
Orographic resonance theories lend support to the hypothesis

that activity of planetary waves possesses a multimodal distribu-
tion [9]. A seminal paper in this direction was that by Charney and
DeVore in 1979 [10]: they proposed that the interaction between
zonal flow and wave field via form-drag causes the occurrence of
two equilibria for the amplitude of planetary waves. This idea was
further elaborated by Legras and Ghil [11] who found intermittent
transitions between multiple equilibria representing blocked and
zonal flows. Crommelin and co-workers [12–14] explain the tran-
sitions in terms of homo- and heteroclinic dynamics near equilib-
ria corresponding to distinct preferred flow patterns. More recent
developments [15] aimed at theories allowing for multiple stable
equilibria at the same zonal wind speed, in such a way that the
amplitudes of the corresponding ultralong (planetary scale) waves
differ by values of the order of 100 m of geopotential height.
Despite this remarkable research effort, the scientific de-

bate is still very much open on whether a single equilib-
rium/mode [16–18] or multiple equilibria/modes [19,10,20–22]
characterise the large-scale atmospheric circulation.
Spectral analysis is an alternative way of characterising low-

frequency atmospheric variability. Examination of the so-called
Hayashi spatio-temporal spectra show that the low-frequency
component of the variance of the 500 mb geopotential heights is
concentrated in the region of periods larger than 10 days and zonal
wavenumbers less than 5 [23]. Benzi and Speranza [19] re-examine
previous studies of amplification ofwaveswith zonalwavenumber
3 [24] and of onset of Pacific anomalies [25]. They summarise the
main physical features of low-frequency atmospheric variability:

• it is on average almost totally non-propagating; planetary
waves show a slight tendency to propagate westwards for
wavenumbers 1–2 and eastwards for wavenumber 4;
• it seems related to ultralong wave amplification through a non-
standard form of baroclinic instability inwhich orography plays
an essential role;
• it is characterised by vertical coherence of the anomalies
(e.g. Figs. 9–10 of [25]).

Hansen and Sutera [8] hypothesise a baroclinic conversion
process balancing dissipation at wavenumbers 2, 3, 4, which is
not associated to the ordinary baroclinic instability, given the
equivalent barotropic nature of the difference fields between the
two modes of their wave indicator. It has been known since
Charney and Eliassen’s work [26] that the interaction between
eddy field and orography on planetary scales is characterised by a
non-propagating amplification of the eddy field: this is one of the
common features observed inmany studies of transitions between
regimes (see e.g. [27] and references therein).
The central question debated here is: does the atmospheric
variability characterising the Northern Hemisphere midlatitude
circulation result from dynamical processes specific to the
interaction of zonal flow and planetary waves with orography, and
what are these processes?

1.2. Our approach

We derive a ‘‘minimal model’’ for the midlatitude atmospheric
circulation, containing the essential ‘‘ingredients’’ to capture the
basic features of low-frequency variability: zonal flow, a large-
scale planetary wave, orography, and a baroclinic-like forcing. The
model is obtained by Galerkin projection of the 2-layer shallow-
water equations onto a small number of spatialmodes: in the zonal
direction we select wavenumbers m = 0 (for the zonal flow) and
m = 3 (for the large-scale wave). The latter is chosen because it
is where themaximum of the low-frequency stationary variance is
attained, see e.g. Fig. 2 in [23]. We retain wavenumbers 0, 1, 2 in
the meridional direction. The basic idea is to search for dynamical
processes inherent to the largest spatial scales, using a conceptual
model which is sufficiently simple for this purpose. We do not aim
at a realistic representation of atmospheric motion, although our
modelling approach is motivated by the observational evidence
discussed in the previous section. We return to this point at the
end of Section 4.
The full shallow-water equations are a system of 6 partial

differential equations for the horizontal velocity field u`, v` and
thickness h` for ` = 1, 2. Forcing is modelled as relaxation to an
apparent westerly wind and orography is included in the bottom
layer. Orography height and the forcing zonal wind strength are
controlled by parameters h0 and U0 respectively. Working with
a shallow-water model, instead of the more traditional quasi-
geostrophic models, offers the advantage that physically relevant
values can be used for h0: this parameter is bound to be small
in the quasi-geostrophic models traditionally used to study low-
frequency variability, due to the perturbative nature of orography
in quasi-geostrophic theory (see e.g. [28]).

1.3. Summary of the results

The major achievement in this work is to propose a charac-
terisation of low-frequency atmospheric behaviour in terms of
intermittency due to bifurcations of waves. Non-propagating plan-
etary waves arise in our model from the interaction of zonal
flow with orography. The waves are associated to mixed baro-
clinic/barotropic instabilities,where the baroclinicity is not that as-
sociated to midlatitude synoptic systems (indeed, wavenumber 3
is not themost unstable baroclinicmode). Rather, instabilities here
bear resemblance to the orographic baroclinic instability (see [29]
and references therein).
Low-frequency behaviour with the appropriate time scales

(10–200 days, where the lower-frequency components of 60–200
days can be interpreted as harmonics of the higher-frequency
components of 10–60 days) is exhibited by our ‘‘minimal model’’
for physically relevant values of the parameters (U0 ≈ 15 m/s and
h0 ≈ 1000 m). Here, the dynamics of our minimal model takes
place on strange attractors which are formed through sequences
of bifurcations of periodic orbits (waves) as the forcing wind speed
U0 increases.
The model dynamics is stationary for U0 ≤ 12.2 m/s

due to the presence of a stable equilibrium corresponding to a
steady westerly wind. This steady flow becomes unstable through
Hopf bifurcations (associated with mixed baroclinic/barotropic
instabilities) as the forcingU0 increases. This gives rise to two types
of stable waves: for lower orography (about 800 m), the period is
about 10 days and there is eastward propagation in the bottom
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Fig. 1. Top: Lyapunov diagram for the attractors of the system (see Appendix A.2
for the algorithm used here). Bottom: bifurcation diagram of attractors of the
low-order model in the (U0, h0) parameter plane, same parameter window as
above (see Appendix A for the algorithm). The marked locations are codimension-2
bifurcations. See Table 1 for the colour coding. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

layer; for more pronounced orography, the period is longer (30–60
days) and the waves are non-propagating. These waves remain
stable in relatively large parameter domains and bifurcate into
strange attractors through a number of scenarios (see below) in the
parameter quadrantU0 ≥ 14.5m/s and h0 ≥ 850m. The dynamics
on these strange attractors is associated with irregularly recurring
vorticity patterns, which are inherited from the periodic orbit that
gives birth to the strange attractor.
The Lyapunov diagram (top panel of Fig. 1) shows a classifi-

cation of the dynamical behaviour in the different regions of the
(U0, h0)-plane. Bifurcations of equilibria and periodic orbits (bot-
tompanel) explain themain features of the Lyapunov diagram (see
Appendix A for the algorithms). The twoHopf curvesH1,2 give birth
to stable periodic orbits. In turn, these periodic orbits bifurcate into
strange attractors through three main routes to chaos:

• Period doubling cascade of periodic orbits (the curves P1,2,3);
• Hopf–Neı̆mark–Sacker bifurcation of periodic orbits (the curve
T2), followed by the breakdown of a 2-torus;
• Saddle-node bifurcation of periodic orbits taking place on a
strange attractor (the curve SP4), the so-called intermittency
route [30].

Similar routes have been described in many studies of low-order
atmospheric models [31,11,32–34]. We here establish a new link
Table 1
Colour coding for the Lyapunov diagram and bifurcation diagram in Fig. 1.

Colour Lyapunov exponents Attractor type

Green 0 > λ1 ≥ λ2 ≥ λ3 Equilibrium
Blue λ1 = 0 > λ2 ≥ λ3 Periodic orbit
Magenta λ1 = λ2 = 0 > λ3 2-torus
Cyan λ1 > 0 ≥ λ2 ≥ λ3 Strange attractor
White Escaping orbit

Colour Bifurcation type Bifurcating attractor

Green Saddle-node bifurcation Equilibrium
Red Hopf bifurcation Equilibrium
Magenta Hopf–Neı̆mark–Sacker bifurcation Periodic orbit
Grey Period doubling bifurcation Periodic orbit
Blue Saddle-node bifurcation Periodic orbit

between intermittency due to nonlinear instability of waves and
low-frequency variability.
An outline of the rest of the paper is now given. Section 2

presents the derivation of the low-order model from the 2-layer
shallow-water equations. The bifurcation diagramof the low-order
model is discussed in Section 3.1, followed by analysis of the
routes to chaos in Section 3.2. Section 3.3 explains the model
phenomenology in terms of mathematical concepts (bifurcations,
intermittency) and Section 3.4 provides physical interpretation.
Finally, in Section 4 our results are discussed in the context of the
existing scientific literature.

2. Model

We consider atmospheric flow in two layers. In each layer
the velocity field (u, v) is 2-dimensional. The thickness h of
each layer is variable, which is the only 3-dimensional aspect of
this model. The governing equations are given by a system of
six partial differential equations. By means of truncated Fourier
expansions and a Galerkin projectionwe obtain a low-ordermodel
which consists of a 46-dimensional system of ordinary differential
equations.

2.1. The 2-layer shallow-water equations

The constants H1 and H2 denote the mean thickness of each
layer, and the fields η′1 and η

′

2 denote deviations from the mean
thickness, where primes indicate that the variable is dimensional.
The thickness fields of the two layers are given by

h′1 = H1 + η
′

1 − η
′

2, (1)

h′2 = H2 + η
′

2 − h
′

b, (2)
where hb denotes the bottom topography profile; see Fig. 2. The
pressure fields are related to the thickness fields by means of the
hydrostatic relation

p′1 = ρ1g(h
′

1 + h
′

2 + h
′

b), (3)

p′2 = ρ1gh
′

1 + ρ2g(h
′

2 + h
′

b), (4)
where the constants ρ1 and ρ2 denote the density of each layer.
The governing equations are nondimensionalised using scales L,

U , L/U , D, and ρ0U2 for length, velocity, time, depth, and pressure,
respectively, and are given by

∂u`
∂t
+ u`

∂u`
∂x
+ v`

∂u`
∂y
= −

∂p`
∂x
+ (Ro−1 + βy)v`

− σµ(u` − u∗`)+ Ro
−1EH∆u` − σ rδ`,2u`

∂v`

∂t
+ u`

∂v`

∂x
+ v`

∂v`

∂y
= −

∂p`
∂y
− (Ro−1 + βy)u`

− σµ(v` − v
∗

` )+ Ro
−1EH∆v` − σ rδ`,2v`

∂h`
∂t
+ u`

∂h`
∂x
+ v`

∂h`
∂y
= −h`

(
∂u`
∂x
+
∂v`

∂y

)
(5)
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Fig. 2. Layers in the shallow-water model.

where u` and v` are eastward and northward components of
the 2-dimensional velocity field, respectively. In addition, the
nondimensional pressure terms are given by

p1 =
ρ1

ρ0
F(h1 + h2 + hb),

p2 =
ρ1

ρ0
Fh1 +

ρ2

ρ0
F(h2 + hb).

Several nondimensional numbers appear in the governing equa-
tions: the advective time scale σ , the nondimensional β-
parameter, the Rossby number Ro, the horizontal Ekman number
EH , and the inverse Froude number F . These parameters have the
following expressions in terms of the dimensional parameters:

σ =
L
U
, β =

β0L2

U
, Ro =

U
f0L
,

EH =
AH
f0L2

, F =
gD
U2
.

Standard values of the dimensional parameters are listed in Table 2.
The dynamical equations will be considered on the zonal β-

plane channel
0 ≤ x ≤ Lx/L, 0 ≤ y ≤ Ly/L.
Suitable boundary conditions have to be imposed: we require all
fields to be periodic in the x-direction. At y = 0, Ly/L we impose
the conditions
∂u`
∂y
=
∂h`
∂y
= v` = 0.

The model is forced by relaxation to an apparent westerly wind
given by the profile
u∗1(x, y) = α1U0U

−1(1− cos(2πyL/Ly)), v∗1(x, y) = 0,

u∗2(x, y) = α2U0U
−1(1− cos(2πyL/Ly)), v∗2(x, y) = 0,

where the dimensional parameter U0 controls the strength of the
forcing and the nondimensional parameters α1 and α2 (Table 2)
control the vertical shear of the forcing. For the bottom topography
we choose a profile with zonal wave number 3:
hb(x, y) = h0D−1(1+ cos(6πxL/Lx)),
where the dimensional parameter h0 controls the amplitude of the
topography. We require that the bottom topography is contained
entirely in the bottom layer which implies the restriction h0 ≤
H2/2.

2.2. The low-order model

The governing equations in (5) form a dynamical system
with an infinite-dimensional state space. We reduce the infinite-
dimensional system to a system of finitely many ordinary
differential equations by means of a Galerkin projection. This
amounts to an expansion of the unknown fields u`, v`, h` in terms
of known basis functions, depending only on spatial variables,
with unknown coefficients, depending only on time. An orthogonal
projection onto the space spanned by the basis functions gives a set
of finitely many ordinary differential equations for the expansion
coefficients.
As basis functions we will use the Fourier modes with half

wavenumbers. For an integer k ≥ 0 and a real number α > 0
these functions are given by

ck(ξ ;α) :=


1
√
α

k = 0√
2
α
cos

(
kπξ
α

)
k > 0,

(6)

sk(ξ ;α) :=

√
2
α
sin
(
kπξ
α

)
,

where ξ ∈ [0, α], and the numerical factors serve as normalisation
constants.
Deciding which Fourier modes to retain in the Galerkin projec-

tion is a non-trivial problem. A priori it is not known which choice
captures the dynamics of the infinite-dimensional system in the
best possible way. In [35–37] this problem has been addressed in
the setting of a Rayleigh–Bénard convection problem by checking
qualitative changes in dynamical behaviour and quantitative in-
formation on the location of branches of equilibria and their bi-
furcations, while increasing the number of retained modes. In our
paper we choose a different approach: first of all, we construct
a minimal model, retaining only those Fourier modes which are
essential to reproduce atmospheric low-frequency behaviour. Ob-
servational evidence (see the Introduction) suggests that the fun-
damental physical processes involved in low-frequency behaviour
manifest themselves at zonal wavenumbers less than 5 [19]. For
the above reasons, we choose wavenumbersm = 0, 3 in the zonal
direction, and the wavenumbers n = 0, 1, 2 in the meridional di-
rection. Let
R = {(0, 0), (0, 1), (0, 2), (3, 0), (3, 1), (3, 2)}
denote the set of retained wave number pairs. Moreover, set a =
Lx/L and b = Ly/L. Then all nondimensional fields are expanded as

u`(x, y, t) =
∑

(m,n)∈R

[̂uc`,m,n(t)c2m(x; a)

+ ûs`,m,n(t)s2m(x; a)]cn(y; b),

v`(x, y, t) =
∑

(m,n)∈R

[̂vc`,m,n(t)c2m(x; a)+ v̂
s
`,m,n(t)s2m(x; a)]sn(y; b),

h`(x, y, t) =
∑

(m,n)∈R

[̂hc`,m,n(t)c2m(x; a)

+ ĥs`,m,n(t)s2m(x; a)]cn(y; b).
In this way the truncated expansions satisfy the boundary
conditions.
By substituting the truncated expansions in (5) and projecting

(with respect to the standard inner product) the governing
equations on the Fourier modes, we obtain a system of ordinary
differential equations for the time-dependent Fourier coefficients.
With the above choice of the retained wavenumbers, we need
9, 6, and 9 coefficients for the fields u`, v`, and h`, respectively.
However, due to conservation of mass, it turns out that the
coefficients ĥ`,0,0 are constant in time and therefore they can
be treated as a constant. Hence, the low-order model is 46-
dimensional. Formulas to compute the coefficients of the low-
order model are presented in Appendix B.

3. Results

We here investigate the dynamics of the low-order model,
starting from a description of the bifurcations in Fig. 1 (Section 3.1).
It is shown how low-frequency dynamical behaviour is linked
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Table 2
Standard values of the fixed parameters.

Parameter Meaning Value Unit

AH Momentum diffusion coefficient 1.0× 102 m2 s−1

µ Relaxation coefficient 1.0× 10−6 s−1

r Linear friction coefficient 1.0× 10−6 s−1

f0 Coriolis parameter 1.0× 10−4 s−1

β0 Planetary vorticity gradient 1.6× 10−11 m−1 s−1

ρ0 Reference density 1.0 kg m−3

ρ1 Density (top layer) 1.01 kg m−3

ρ2 Density (bottom layer) 1.05 kg m−3

g Gravitational acceleration 9.8 m s−2
α1 Zonal velocity forcing strength (top layer) 1.0
α2 Zonal velocity forcing strength (bottom layer) 0.5
Lx Channel length 2.9× 107 m
Ly Channel width 2.5× 106 m
H1 Mean thickness (top layer) 5.0× 103 m
H2 Mean thickness (bottom layer) 5.0× 103 m
L Characteristic length scale 1.0× 106 m
U Characteristic velocity scale 1.0× 101 m/s
D Characteristic depth scale 1.0× 103 m
to strange attractors, which occur in a relatively large parameter
domain. The onset of chaotic dynamics is explained in terms
of bifurcation scenarios (‘‘routes to chaos’’, Section 3.2). Lastly,
physical interpretation of the dynamics is given in terms of
atmospheric low-frequency variability (Section 3.4).

3.1. Organisation of the parameter plane

In this section we give a detailed description of the bifurcation
diagram and we explain how this clarifies various parts of the
Lyapunov diagram. The bifurcations detected in our model are
standard, and they are discussed in detail in, e.g., [38].

Lyapunov diagram
The top panel of Fig. 1 contains the Lyapunov diagram of the

attractors of the low-order model. This is produced by scanning
the (U0, h0)-parameter plane from left to right and classifying
the detected attractor by means of Lyapunov exponents, see
Appendix A and [39,40] for details. Along each line of constant h0
we start with a fixed initial condition when U0 = 12 m/s. For the
next parameter values on this line we take the last point of the
previous attractor as an initial condition for the next one.
We do not exclude the possibility of coexisting attractors, but

this cannot be detected by our procedure. By means of more
refined procedures, with varying initial conditions, coexistence of
attractors can be detected aswell. For large values of the parameter
U0 orbits can escape to infinity (see the white parts in Fig. 1), but
this also depends on the chosen initial condition. These unbounded
orbits have also been detected in [41].

Bifurcations of equilibria
The transition from stationary to periodic behaviour in the

Lyapunov diagram (Fig. 1) is explained by Hopf bifurcations where
an equilibrium loses stability. Bifurcations are computed herewith
the AUTO–07p software [42], see Appendix A. A stable equilibrium
is found for U0 = 0 m/s and remains stable up to U0 = 12.2 m/s.
The equilibrium undergoes one ormore Hopf bifurcations forU0 >
12.2 m/s approximately: loss of stability occurs at curves H1 and
H2 in Fig. 1 (we only focus on bifurcations leading to loss of stability
here). Periodic orbits born at theH1 curve have periods of about 10
days, whereas periodic orbits born at the H2 curve have periods in
the range of 30–60 days; see Figs. 3 and 4, respectively.1

1 Unless specified otherwise, attractors are plotted on directions of maximal
amplitude. See Appendix A.3 for details. Since the projection is computed
numerically, labels for the axes are omitted.
A pair of degenerate Hopf points occur at the tangencies
between the Hopf curvesH1,2 and the curves SP1 and SP2 of saddle-
node bifurcations of periodic orbits. The bifurcation type on H1,2
changes from supercritical to subcritical at the degenerate Hopf
points. Two branches of stable periodic orbits are thus formed on
either of SP1,2 or H1,2.
Two curves SN1 and SN2 of saddle-node bifurcations of

equilibria meet in a cusp. This leads to a domain in the parameter
plane for which three equilibria coexist. The boundaries of
this domain are tangent to the Hopf curves H1 and H2 at
three different Hopf-saddle-node bifurcation points. Moreover,
a Bogdanov–Takens point occurs along one of the saddle-node
curves, where one additional real eigenvalue crosses the imaginary
axis.

Bifurcations of periodic orbits born at H1 or SP1
The periodic orbits born at the curves H1 or SP1 lose stability

through either Hopf–Neı̆mark–Sacker or saddle-node bifurcations.
The Hopf–Neı̆mark–Sacker curve T1 originates from a Hopf–Hopf
point at the curveH1, where twopairs of complex eigenvalues cross
the imaginary axis. The saddle-node curves SP3,4 are joined in a
cusp, and the curve SP4 forms part of a boundary between periodic
and chaotic behaviour in the Lyapunov diagram. Moreover, the
curve SP4 becomes tangent to the Hopf–Neı̆mark–Sacker curve T1
at a Hopf-saddle-node bifurcation point of periodic orbits.

Bifurcations of periodic orbits born at H2 or SP2
The periodic orbits born at the curves H2 or SP2 may

lose stability through either a period doubling bifurcation or
Hopf–Neı̆mark–Sacker bifurcations. The former occurs on curve
P1, which is the first of a cascade leading to a chaotic attractor,
see the next section. Hopf–Neı̆mark–Sacker bifurcations occur on
curves T2 and T3 in Fig. 1: T2 originates from a Hopf-saddle-node
bifurcation point of periodic orbits, and T3 is tangent to the period
doubling curve P1 at a 1:2 resonance point.

3.2. Routes to chaos

We have identified three different routes from orderly to
chaotic behaviour. All of them involve one or more bifurcations of
the stable periodic orbits described in the previous section.

Period doublings
The periodic orbits born at the Hopf bifurcationH2 lose stability

through a period doubling bifurcation (see previous section).
Three period doubling curves P1,2,3 are shown in Fig. 1, and we
expect that they are the first of an infinite cascade. Indeed, a
magnification of the Lyapunov diagram (Fig. 5) reveals a large
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Fig. 3. Periodic orbit born at Hopf bifurcation H1 (U0 = 13.32 m/s, h0 = 800 m) and its power spectrum. The period is approximately 10 days.
Fig. 4. Periodic orbit born at Hopf bifurcation H2 (U0 = 14.64 m/s, h0 = 1400 m) and its power spectrum. The period is approximately 60 days.
Fig. 5. Magnification of the Lyapunov diagram in Fig. 1; see Table 1 for the colour coding. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
chaotic region at the right of P3, interrupted by narrow domains of
periodic behaviour. Occurrence of these windows of periodicity is
confirmed in the diagrams in Fig. 6. However, these gaps disappear
for lower values of the parameter h0, and chaotic behaviour seems
to be persistent on a continuum.
Fig. 7 shows a twice-doubled stable periodic orbit along the cas-

cade and a strange attractor after the end of the cascade. The dy-
namics on the strange attractor exhibits low-frequency behaviour
in the range 20–200 days (see the power spectrum in Fig. 7). The
peaks around 100 and 200 days are ‘inherited’ from the twice-
doubled periodic orbit. In turn, these originate from the same
branch of periodic orbits as in Fig. 4: just before the first period
doubling bifurcation P1 (U0 = 13.9 m/s, h0 = 1200 m) this stable
periodic orbit has a period of approximately 50 days (not shown).

Broken torus
2-torus attractors occur in a narrow region separating periodic

from chaotic behaviour in the Lyapunov diagram (Fig. 5).
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Fig. 6. The three largest Lyapunov exponentsλ1 ≥ λ2 ≥ λ3 (nondimensional) as a function ofU0 . The value of the parameter h0 is fixed at h0 = 800m (top left), h0 = 1000m
(top right), h0 = 1200 m (bottom left), and h0 = 1400 m (bottom right).
Fig. 7. Attractors (left panels, same projection) and their power spectra (right) for h0 = 1200 m. Top: periodic orbit after two period doublings (U0 = 14.48 m/s). Bottom:
strange attractor after a period doubling cascade (U0 = 15 m/s).
The 2-torus attractors branch off from periodic orbits at the
Hopf–Neı̆mark–Sacker bifurcations on curve T2. The periodic orbits
losing stability here belong to the branch created at the Hopf
curve H2 (see previous section). The 2-torus attractors quickly
break down giving rise to a strange attractor (Fig. 8). This
strange attractor exhibits low-frequency behaviour in the range
10–100 days. The main spectral peaks at 56 and 11 days are
inherited from the 2-torus, which has two frequencies ω1 =
0.0178 days−1 and ω2 = 0.0888 days−1 for parameters right after
the Hopf–Neı̆mark–Sacker bifurcation. In turn the torus inherits
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Fig. 8. Same as Fig. 7 for h0 = 900 m: a 2-torus attractor (top, U0 = 14.75 m/s) and a strange attractor after the 2-torus breakdown (bottom, U0 = 14.78 m/s).
one of the frequencies from the periodic orbit, which has a period
of approximately 56 days just before the Hopf–Neı̆mark–Sacker
bifurcation (U0 = 14.74 m/s, h0 = 900 m, not shown).
The process leading to the creation of the above strange

attractor involves transition through a number of phase-locking
windows asU0 is increased. Fig. 9 shows Poincaré sections forU0 =
14.750m/s up toU0 = 14.780m/s with step 0.001m/s with h0 =
900 m fixed. Densely filled invariant circles and periodic points
in the Poincaré section correspond to quasi-periodic 2-tori and
periodic orbits of the flow, respectively. Periodicity windows with
periods 16, 25, 34, 9, and 11 are crossed as U0 is increased, until
the invariant circle breaks up and the quasi-periodic dynamics is
replaced by chaotic dynamics. The size of the attractor is growing
rapidly in phase space asU0 is changed. The breakdownof a 2-torus
often involves homo- and heteroclinic bifurcations; see Section 3.3
for details.

Intermittency
The saddle-node curve SP4 in Fig. 1 forms one of the boundaries

between the regions of periodic and chaotic behaviour in the
Lyapunov diagram. Fig. 10 (top left panel) shows a stable periodic
orbit born at the curve SP1; the period is 10 days. When the
parameters cross the saddle-node curve SP4, the stable periodic
disappears and a strange attractor is found; see Fig. 10 (bottom left
panel).
The dynamics on the attractor seems to consist of a sequence of

passages close to heteroclinic orbits between different objects. The
attractor coexists with (at least) the following objects.

• An unstable periodic orbit with a 2-dimensional unstable
manifold (due to one pair of complex conjugate Floquet
multipliers in the right half plane).
• Three unstable equilibria with unstablemanifolds of dimension
4, 3, and 2 (due to two, one, and one pair(s) of complex
conjugate eigenvalues in the right half plane, respectively).

Fig. 11 shows that the dynamics on the attractor consists of
different regimes.
• Regimes of nearly regular periodic behaviour correspond to
intermittency near the formerly existing stable periodic orbit,
which disappeared through the saddle-node curve SP4.
• Regimes of nearly stationary behaviour are observed when the
orbit approaches one of the three equilibria mentioned above.
• The previous two regimes are alternated with irregular
behaviour.

The intermittency regimes often occur directly after the orbit
approached one the equilibria, but this is not always the same
equilibrium. We have tested this by computing a large number
of orbits, for which the initial conditions are random points in
the tangent space to the unstable manifold of the equilibrium.
The intermittency regime can be reached immediately by starting
near the equilibria with the 4-dimensional and 3-dimensional
unstablemanifolds.When starting near the equilibriumwith the 2-
dimensional unstablemanifold, however, the orbit shows irregular
behaviour before reaching the intermittency regime.
Orbits on the attractor never approach the unstable periodic

orbit within a small distance. Again we have computed a large
number of orbits, for which the initial conditions are random
points in the tangent space of the unstablemanifold of the periodic
orbit. In general, first a long transient of irregular behaviour is
observed, and then the orbit reaches the intermittency regime.

3.3. Theoretical remarks

The results of the previous subsections are now interpreted in
terms of known theory.

Bifurcations of equilibria and periodic orbits
The codimension-1 bifurcations of equilibria and periodic orbits

we have found are standard and have been described extensively
in the literature; see, for instance, [43–45,38] and the references
therein. For each bifurcation a (truncated) normal form can be
derived by restricting the vector field to an approximation of
a centre manifold. This normal form can be used to check the
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Fig. 9. Breakdown of the 2-torus attractor, visualised in the Poincaré section û2,0,0 = 1.8, projection on (̂u2,0,1, û2,0,2): alternation of periodic, quasi-periodic, and chaotic
dynamics as the parameter U0 is varied with constant h0 = 900 m.
appropriate genericity and transversality conditions and to study
different unfolding scenarios. This methodology is described in
detail in [38], see [46] for other methods of computing normal
forms.
The codimension-2 bifurcations of equilibria (Bogdanov–

Takens, Hopf–Hopf, and Hopf-saddle-node) have been described
in detail in [38]. In this case, however, the truncated normal forms
only provide partial information on the dynamics near the bifur-
cation. The Hopf-saddle-node bifurcation for diffeomorphisms has
been studied extensively in [39,40].

Period doubling route
This scenario for the birth of strange attractors is theoretically

well-understood, see for example [47,48] and references therein.
Strange attractors obtained from infinite period doublings in one
direction may be reached at once by homo- and heteroclinic
tangencies from another direction [49]. When curves of period
doubling bifurcations formunnested islands, the chaotic region can
be reached by a variety of routes, including the breakdown of a 2-
torus or the sudden appearance of a chaotic attractor [50].

2-tori and their breakdown
It is well known that 2-torus attractors of dissipative systems

generically occur as families of quasi-periodic attractors parame-
terised over a Cantor set (of positive 1-dimensional Hausdorffmea-
sure) in a Whitney-smooth way, see [43,51,44]. These attractors
are often a transient stage between periodic and chaotic dynamics.
The birth and death of periodic orbits on an invariant torus oc-

cur when the parameters move across Arnol’d resonance tongues.
These are regions in the parameter plane bounded by pairs of
curves of saddle-node bifurcations originating from a common res-
onant Hopf–Neı̆mark–Sacker bifurcation. For parameters inside a
tongue the dynamics on the torus is phase locked,meaning that the
invariant circle of the Poincaré map (defined by a section transver-
sal to the torus) is the union of a stable periodic point and the un-
stable manifolds of an unstable periodic point (see, for example,
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Fig. 10. Same as Fig. 7 for h0 = 800 m. Top row: stable periodic orbit before the saddle-node bifurcation (U0 = 14.87 m/s). Bottom row: strange attractor after the
saddle-node bifurcation (U0 = 15 m/s).
Fig. 11. Four time series, derived from one orbit on the attractor in Fig. 10 using four different observables: norm of the orbit (red), norm of the vector field along the orbit
(green), distance of the orbit to the position of the formerly existing periodic orbit (blue), and distance to the unstable periodic orbit (magenta). Black bars underneath mark
time intervals of intermittency near either the periodic orbit or an equilibrium. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
the top right panel in Fig. 9). The circle can be destroyed by homo-
clinic tangencies between the stable and unstable manifolds of the
unstable periodic point, or the circle can interactwith other objects
via heteroclinic tangencies. See [52,47] for an extensive discussion.

Intermittency
The phenomenon of intermittency near a saddle-node bifurca-

tions is well known, but it only explains a part of the dynamics
on the strange attractor in Fig. 10. Furthermore, the geometrical
structure of the strange attractor remains unclear. In many sys-
tems, strange attractors are formed by the closure of the unstable
manifold of a saddle-like object. This Ansatz is discussed in sev-
eral works, see e.g. [47,44] and references therein. However, the
structure of the attractor in Fig. 10 seems to be more complicated,
involving interaction with several nearby invariant objects (equi-
libria, periodic orbits) of saddle type.
We consider it as an interesting problem for future research to

investigate the structure of the attractor in Fig. 10 in more detail.
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Fig. 12. Patterns of layer thickness associated with the eigenvectors at the Hopf bifurcation H1 , for U0 = 12.47 m/s and h0 = 800 m. The scale is arbitrary, since any scalar
multiple of (7) is a solution of the linearised vector field.
Fig. 13. Same as Fig. 12 at Hopf curve H2 , for U0 = 13.31 m/s and h0 = 1200 m.
At least the stable and unstable manifolds of the equilibria and the
periodic orbit should be computed, in order to gainmore insight in
the structure of the attractor. Next, the ‘genealogy’ of the attractor
should be determined, e.g., by identifying whether the present
shape is created through a sequence of bifurcations. For a more
thorough analysis it might be necessary to derive a simpler model
for this attractor, having a state space with the lowest possible
dimension.

3.4. Physical interpretation

In this section we investigate the physical aspects (mainly
instability and wave propagation) associated with the attractors
analysed in the previous section. Hopf bifurcations are first
interpreted in terms of geophysical fluid dynamical instabilities,
giving rise to planetary waves. The structure of these waves is then
studied throughHovmöller diagrams of the vorticity field [53]. This
allows us to visualise structural differences and changes, such as
the onset of large-scale meanders in the westerly wind.

Hopf bifurcations
A fluid is said to be hydrodynamically unstable when small

perturbations of the flow can grow spontaneously, drawing energy
from the mean flow. At a Hopf bifurcation an equilibrium loses
its stability and gives birth to a periodic orbit. In the context of a
fluid this can be interpreted as a steady flow becoming unstable
to an oscillatory perturbation (such as a travelling wave). Two
wave instabilities are well known in geophysical fluid dynamics:
barotropic and baroclinic instabilities. The fundamental difference
lies in the source of energy: perturbations derive their energy
from the horizontal shear of the mean flow in a barotropically
unstable flow. In a baroclinically unstable flow, perturbations
derive their kinetic energy from the potential energy of the mean
flow associated with the existence of vertical shear in the velocity
field. The reader is referred to standard textbooks on geophysical
fluid dynamics for a full discussion on this subject [54–56].
At a Hopf bifurcation the Jacobian matrix of the vector field has

two eigenvalues ±ωi on the imaginary axis. Let Φ1 ± iΦ2 denote
corresponding eigenvectors, then

P(t) = cos(ωt)Φ1 − sin(ωt)Φ2 (7)

is a periodic orbit of the vector field obtained by linearisation
around the equilibrium undergoing the Hopf bifurcation. This can
be interpreted as a wave-like response to a perturbation of the
equilibrium. The propagation of the physical pattern associated to
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Fig. 14. Hovmöller diagram of the periodic orbit of Fig. 3. The magnitude of the
vorticity field is plotted as a function of time and longitude while keeping the
latitude fixed at y = 1250 km. Observe the eastward propagation in the bottom
layer.

Fig. 15. Same as Fig. 14 for the periodic orbit of Fig. 4. Observe that this wave is
non-propagating in both layers.

this wave can be followed by looking at the physical fields at the
phases P(−π/2ω) = Φ2 and P(0) = Φ1. Fig. 12 shows the layer
thickness associated with the eigenvectors at the Hopf bifurcation
H1. Clearly, positive and negative anomalies are opposite in each
layer. Moreover, this is accompanied by vertical shear in the
velocity fields (not shown in the figure). Hence, we interpret this
Hopf bifurcation as a mixed barotropic/baroclinic instability. The
same plot for the Hopf bifurcation H2 is given in Fig. 13. Here, we
see again that positive and negative anomalies are opposite in each
layer. Therefore, we interpret this Hopf bifurcation also as a mixed
barotropic/baroclinic instability.

The periodic orbits
The physical patterns associated with periodic dynamics

change with the parameters U0 and h0. Namely the propagation
features of the periodic orbits in Figs. 3 and 4 differ from those
at the Hopf bifurcations that gave birth to these orbits. The
vorticity field associatedwith the periodic orbit in Fig. 3 propagates
eastward in the bottom layer, whereas it does not propagate in the
top layer, see the Hovmöller diagram in Fig. 14. Also, the variability
is stronger in the top layer. The vorticity field associated with the
periodic orbit in Fig. 4 is non-propagating in both layers (Fig. 15).

Period doublings
The strange attractor after the period doubling sequence is

associated with non-propagating wave behaviour in both layers
(Fig. 16). The characteristic time scale is approximately 100 days.
Again the variability is stronger in the upper layer.
Fig. 16. Same as Fig. 14 for the strange attractor of Fig. 7. The non-propagating
nature is inherited from the periodic orbit of Fig. 3. Observe the irregular variability
in the bottom layer. This is due to the harmonics induced by the period doubling
bifurcations.

Fig. 17. Same as Fig. 14 for the strange attractor of Fig. 8. Again, the non-
propagating nature is inherited from the periodic orbit of Fig. 3. The two
fundamental frequencies (11 and 56 days) of the formerly existing 2-torus can still
be identified.

Broken torus
The dynamics on the broken 2-torus attractor corresponds to

non-propagating wave behaviour in both layers (Fig. 17). The
dominant time scale in the top layer (approximately 50 days) is
longer than in the bottom layer (5 to 10 days). Both time scales are
represented by peaks in the power spectrum (Fig. 8).

Intermittency
The strange attractor in Fig. 10 is characterised by intermittent

transitions between long time episodes of nearly stationary
behaviour and episodes with eastward propagating waves in the
bottom layer and non-propagating waves in the top layer, see
Fig. 18.

4. Discussion and conclusions

The results of our investigation are consistent with the
following hypothesis: that one of the basic physical processes
underlying low-frequency atmospheric variability in the Northern
Hemisphere consists of irregular planetary scale waves with non-
propagating and temporally persistent character. Such waves are
associated to mixed baroclinic/barotropic instabilities, where the
baroclinic character is non-standard and a fundamental role is
played by the interaction of the westerly flow with orography.
These features agree qualitatively not only with observational
evidence, but also with previous theories mainly based on
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Fig. 18. Hovmöller diagrams of the strange attractor of Fig. 10 for two different
time intervals. The magnitude of the vorticity field is plotted as a function of
time and longitude while keeping the latitude fixed at y = 1250 km. The lower
panels correspond to the intermittency regime near the vanished periodic orbit. The
propagating nature in the bottom layer is inherited from the periodic orbit of Fig. 4.
The top panels are associated with a stationary regime, where the orbit approaches
one of the nearby equilibria.

linear instabilities, such as orographic resonance and orographic
baroclinic instability [57,9,19,29,23,8,20].
We contribute novel dynamical mechanisms to the on-going

discussion on the nature of atmospheric low-frequency variabil-
ity. Irregularly recurring persistent behaviour is explained in terms
of intermittency associated to codimension-1 bifurcations. Specif-
ically, irregular waves arise from two branches of periodic orbits
through period doubling cascades, Hopf–Neı̆mark–Sacker bifurca-
tions followed by breakdown of a 2-torus attractor, and saddle-
node bifurcations taking place on strange attractors (see Fig. 1 and
Section 3.2). Dominant time scales and propagation patterns are
inherited from the periodic orbits and are in broad quantitative
agreement with observational evidence (also see Section 1.2). This
intermittent behaviour persists in a large domain of physically rel-
evant parameter values.
Many studies invoking themultiple equilibria approach follow-

ing Charney and DeVore [10] are based on barotropic models. The
dynamics typically involves a Shil’nikov homoclinic bifurcation
near a Hopf-saddle-node bifurcation of an equilibrium, see [58]
for an overview. We do not take a definite stance on the multi-
ple mode/equilibria versus single mode/equilibrium issue. The ap-
proach in this paper is more akin to the spectral analysis ideas
of [19,23], see Section 1.1. It has already been proposed that
regimes, as identified by modes of probability distribution func-
tions, need not be associated to (metastable) steady states of the
dynamical equations [59]. We do not rule out that the intermit-
tency phenomena described in this paper might provide a dynam-
ical mechanisms for the onset of statistical modes unrelated to
metastable steady states. This issue deserves specific investigation.
Our modelling approach has major advantages with respect
to the barotropic quasi-geostrophic models often used to study
low-frequency variability. Orography is a perturbative (small)
parameter in quasi-geostrophic theories [28]. Instabilities in
barotropic flows are fuelled by the kinetic energy of the flow
rather than by the available potential energy [9]. Consequently,
the transitions between the quasi-stable equilibria of barotropic
models either involve variations of the zonal wind which of the
order of 40 m/s (much larger than in reality [57,60]), or occur at
low orography (200 m). Our usage of shallow-water models with
baroclinic-like forcing has allowed us:

1. to highlight the essential role of orography height in determin-
ing the propagating versus non-propagating character of the
waves (the latter is only found for orography larger than850m);

2. to identify the mixed barotropic/baroclinic character of the
waves excited on the zonal flow by the orography.

That our minimal model exhibits temporal variability in the
appropriate range is already a non-trivial accomplishment, given
the strongly nonlinear nature of the phenomena which we are
trying to understand. We believe, however, that a more important
achievement is the identification of the underlying physical
process, possessing qualitative features in broad agreement with
the observational evidence and previous theories. Our admittedly
unrealistic ‘‘minimal modelling’’ approach has allowed us to
perform an extensive dynamical analysis (see e.g. Fig. 1) offering
the useful physical insight enumerated above. In this sense, we
subscribe to Isaac Held’s viewpoint that the price to pay for
adopting models which are overly complex – though (potentially)
more ‘‘realistic’’ – with respect to the research question at hand is
the risk of reduced understanding [61].
The most compelling issue at this point is to assess the

consistence and robustness of the explanation which we have
identified. For example: do nonlinear interactions of waves of
different spatial scales play an essential role in the onset or the
maintenance of low-frequency atmospheric variability? We just
mention one amongst themany possibleways for this to occur: the
North Atlantic Oscillation (NAO) low-frequency large-scale pattern
is found in [62] to result from breaking of synoptic scale waves,
where the anticyclonic (cyclonic) wave breakings evolve into the
positive (negative) NAOphase, also see [63] and references therein.

5. Future work

We summarise some of the many issues for future research
work. From the more physical viewpoint:

1. to characterise the physical patterns associatedwith the regular
and irregular waves, in more complexmodels and further away
from the Hopf bifurcations;

2. to investigate nonlinear wave–wave interactions in a simple
modelling framework, incorporating a few, carefully selected
spatial scales beyond the planetary wavenumber 3 considered
here;

3. to analyse the energy cycle of the waves along the lines of [64],
see e.g. [65];

4. to analyse the relation between multimodal statistics and the
intermittency scenarios identified here.

In this study we also did not touch a large number of important
issues of a more computational and mathematical nature. An
open point is the structure near the organising centres of the
bifurcation diagram, particularly theHopf-saddle-node bifurcation
of periodic orbits (see Fig. 1). Near this point, a number of gaps
interrupts the Hopf–Neı̆mark–Sacker bifurcation curve and it is
unclear whether the gaps are related to (strong) resonances or to a
global mechanism as in [39].
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Reduction of infinite-dimensional systems to finite-dimensio-
nal systems is a challenging problem. On the one hand there
are computational procedures such as discretisation by means of
finite differences or Galerkin-like projections. On the other hand
there exist conceptual reductions to lower-dimensional models
such as restrictions to invariant manifolds containing attractors.
However, often the available theorems are not constructive. The
challenge lies in reconciling the computational methods with the
conceptual methods. The study presented in this paper is a first
step in the coherent analysis of the (infinite-dimensional) shallow-
water model. There are two important open questions.

1. Which dynamical features of the low-ordermodel persist as the
number of retained Fourier modes is increased in the Galerkin
projection?

2. Which dynamical features of the low-ordermodel persist in the
infinite-dimensional shallow-water model?

For the first, one can think of the approach used in [35–37] for a
Rayleigh–Bénard convection problem. A strongly related issue is
the investigation of models with an increasing number of layers in
the vertical direction.
A rigorous mathematical investigation of the infinite-

dimensional system should be undertaken together with com-
putational work. For example, what is the state space of the
infinite-dimensional model generated by the equations (5)? An-
swering this question requires proving the existence of (weak)
solutions. The idea would be to follow the methods used for
the 2-dimensional Navier–Stokes equations and certain reac-
tion–diffusion equations, see [66,67]. For these equations the
Galerkin method is used to construct a sequence of successive ap-
proximations which converge to a solution of the weak form of the
equations in a suitable Hilbert space. This Hilbert space then serves
as a suitable state space on which an evolution operator can be de-
fined. When this has been achieved one can try to prove the exis-
tence of finite-dimensional global attractors or inertial manifolds.
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Appendix A. Numerical methods

The numerical investigation of the low-order model consists
of a mixture of different techniques, which are described briefly
in this section. We mainly used the AUTO–07p software [42] to
compute the bifurcation curves (e.g. the bottom panel of Fig. 1).
Most of the theoretical and computational aspects underlying this
software are described in [38]. We have written tailored software
for the numerical integration and the computation of Lyapunov
exponents (e.g. the top panel of Fig. 1). Our algorithms are sketched
below.
A.1. Numerical integration

The low-order model can be written symbolically as

dxi
dt
= Ci +

d∑
j=1

Lijxj +
d∑

j,k=1

Qijkxjxk, i = 1, . . . , d. (A.1)

This system is integrated numerically by computing a truncated
Taylor expansion of the solution around time t0:

xi(t0 + h) =
N∑
n=0

x[n]i (t0)h
n
+ O(hN+1),

where the coefficients are given by

x[n]i (t0) :=
1
n!
dnxi
dtn

∣∣∣∣
t=t0

. (A.2)

Given a point x[0]i (t0), which is either an initial condition or a
previously computed point on the trajectory, we first compute

x[1]i = Ci +
d∑
j=1

Lijx
[0]
j +

d∑
j,k=1

Qijkx
[0]
j x
[0]
k .

Then, for n > 0, we have the recurrent relation

x[n+1]i =
1
n+ 1

(
d∑
j=1

Lijx
[n]
j +

d∑
j,k=1

n∑
m=0

Qijkx
[m]
j x
[n−m]
k

)
,

which follows by substituting the truncated Taylor series in (A.1)
using the Leibniz rule for differentiation of products.
We have chosen a tolerance ε = 10−16. This gives N = 20

as the optimal order. The step size is then computed as hm =
min{sm,1, sm,2}, where

sm,1 = exp
{
1

N − 1
log

(
ε
‖x[1]‖∞
‖x[N]‖∞

)}
,

sm,2 = exp
{
1

N − 2
log

(
e2ε
‖x[1]‖∞
‖x[N−1]‖∞

)}
.

A very convenient aspect of the Taylor integration method is
the possibility of producing dense output. By choosing step sizes
smaller than the one given above, one can compute points along
the orbits for any value of t .
For a more detailed account on the Taylor method, see [68].

A.2. Computation of Lyapunov exponents

We compute Lyapunov exponents by means of the algorithm
described in [69,70]. To compute the first k Lyapunov exponents
we choose at random a set of k orthonormal vectors v1,0, . . . , vk,0.
Then we simultaneously integrate the vector field and the first
variational equations:

dx
dt
= f (x),

dvi
dt
= Dxf (x(t))vi, i = 1, . . . , k.

Starting from the initial condition, we integrate the extended
system for T units of time. This gives the vectors x(T ) and vi(T ).
During the integration the vectors vi(t) tend to align themselves
along the direction of maximal expansion. To prevent the vectors
vi from collapsing onto one direction, a Gram–Schmidt procedure
is applied to the vectors v1(T ), . . . , vk(T ), which results in a set of
orthogonal vectors ṽ1(T ), . . . , ṽk(T ). Then we replace the vectors
vi(T ) by the normalised vectors ṽi(T )/ ‖̃vi(T )‖. Next, we integrate
again for T units of time using x(T ) and the normalised vectors as

http://www.willisresearchnetwork.com
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initial conditions. Repeating this procedure N times results in the
following estimates for the Lyapunov exponents:

λi =
1
NT

N∑
n=1

log (‖̃vi(nT )‖) , i = 1, . . . , k. (A.3)

For different methods to compute Lyapunov exponents, see
[71,72].

A.3. Visualisation of attractors

The attractors of the low-order model live in a 46-dimensional
space, and they have to be projected on a 2-dimensional subspace
for visualisation: we use here the directions of maximal amplitude
along the orbits (unless otherwise specified). These directions
are computed by integrating the variational equations along the
trajectory [46].

A.4. Computation of power spectra

By integrating the vector field we obtain a time series (ck)N−1k=0
bymeasuring the L2-norm of the solution at regular time intervals.
In the power spectra in this paper the solutions have been sampled
at time steps of 1/2.
From this time series we compute a discrete Fourier transform

(DFT) by

ĉk =
1
N

N−1∑
n=0

cn exp
(
−2π i

nk
N

)
. (A.4)

The power spectrum is a plot of |̂ck|2 against the Fourier frequency
fk = k/N .
Before computing a power spectrum is computed, the mean is

subtracted from the time series:

uk = ck −
1
N

N−1∑
n=0

cn.

Moreover, a Hamming window is applied to reduce leakage of
frequencies. Define the array (Hk)N−1k=0 by

Hk = 0.54− 0.46 cos
(
2πk
N

)
,

and set vk = Hkuk. The DFT is computed from the array (vk)N−1k=0 ,
and the resulting array (̂vk)N−1k=0 is normalised by dividing by the
norm of the array (Hk)N−1k=0 .
All frequencies are computed modulo 1. Due to the discrete

sampling procedure, all other frequencies are shifted within the
interval [0, 1), a phenomenon referred to as aliasing. Moreover,
since our time series is real-valued, its DFT is symmetric around the
frequency f = 1/2. Indeed, from (A.4) it follows that ĉN−k = ĉ∗k .
The DFT is computed by means of a fast Fourier transform

implemented in the FFTW library [73].

Appendix B. Coefficients of the low-order model

In the Galerkin projection the fields u`, v`, and h` are replaced
by the truncated Fourier expansions. The resulting equations are
multiplied with the basis functions and integrated over the spatial
domain. This gives a set of ordinary differential equations for the
time-dependent expansion coefficients.
The coefficients in the equations for the low-order model are

given by integrals of (products of) the basis functions, which are
readily implemented in an algebraic manipulation program. We
only present formulas for the projection of terms in the equation
for û` onto the basis function c2m(x; a)cn(y; b). The projection of
other terms are given by similar formulas. In the formulas that
follow, all integrations are over the rectangleΩ = [0, a] × [0, b].
Constant terms

These terms consist of the forcing and topography. Projection of
the forcing term gives∫∫

u∗`(x, y)c2m(x; a)cn(y; b)dxdy.

Projection of the topography term gives∫∫
hb(x, y)c2m(x; a)cn(y; b)dxdy.

Linear terms

The linear terms are due to the pressure gradient, Coriolis force
terms, dissipation, and damping terms. Projection of the term

ρ1

ρ0
F
∂h1
∂x

gives

ρ1

ρ0
F
∑
ĥc1,p,q

∫∫
c ′2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy

+ ĥs1,p,q

∫∫
s′2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy.

Projection of Coriolis term

(Ro−1 + βy)v`

gives the terms∑
Ro−1̂vc`,p,q

∫∫
c2p(x; a)sq(y; b)c2m(x; a)cn(y; a)dxdy

+βv̂c`,p,q

∫∫
c2p(x; a)sq(y; b)c2m(x; a)cn(y; a)ydxdy

+ Ro−1̂vs`,p,q

∫∫
s2p(x; a)sq(y; b)c2m(x; a)cn(y; a)dxdy

+βv̂s`,p,q

∫∫
s2p(x; a)sq(y; b)c2m(x; a)cn(y; a)ydxdy.

Projection of the Laplace diffusion term

Ro−1EH∆u`

gives

Ro−1EH
∑
ûc`,p,q

∫∫
[c ′′2p(x; a)cq(y; b)

+ c2p(x; a)c ′′q (y; b)]c2m(x; a)cn(y; b)dxdy

ûs`,p,q

∫∫
[s′′2p(x; a)cq(y; b)

+ s2p(x; a)c ′′q (y; b)]c2m(x; a)cn(y; b)dxdy.

Finally, projection of the damping term

−σ(µ+ δ`,2r)u`

gives

−σ(µ+ δ`,2r)
∑
ûc`,p,q̂u

c
`,m,n

×

∫∫
c2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy

+ ûc`,p,q̂u
s
`,m,n

∫∫
s2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy.
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∑
ûc`,p,q̂u

c
`,r,s

∫∫
c2p(x; a)cq(y; b)c ′2r(x; a)cs(y; b)c2m(x; a)cn(y; b)dxdy

+ ûc`,p,q̂u
s
`,r,s

∫∫
c2p(x; a)cq(y; b)s′2r(x; a)cs(y; b)c2m(x; a)cn(y; b)dxdy

+ ûs`,p,q̂u
c
`,r,s

∫∫
s2p(x; a)cq(y; b)c ′2r(x; a)cs(y; b)c2m(x; a)cn(y; b)dxdy

+ ûs`,p,q̂u
s
`,r,s

∫∫
s2p(x; a)cq(y; b)s′2r(x; a)cs(y; b)c2m(x; a)cn(y; b)dxdy

Box I.
Quadratic terms

The nonlinear terms in the low-order model are due to the
nonlinear advection operator in the original governing equations.
For example, the projection of the term

u`
∂u`
∂x

gives the terms in Box I in the low-order model, where the
summation runs over all pairs (p, q), (r, s) ∈ R.
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