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Robust extremes in chaotic deterministic systems
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This paper introduces the notion of robust extremes in deterministic chaotic systems, presents initial
theoretical results, and outlines associated inferential techniques. A chaotic deterministic system is
said to exhibit robust extremes under a given observable when the associated statistics of extreme
values depend smoothly on the system’s control parameters. Robust extremes are here illustrated
numerically for the flow of the Lorenz model [E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963)].
Robustness of extremes is proved for one-dimensional Lorenz maps with two distinct types of
observables for which conditions guaranteeing robust extremes are formulated explicitly. Two ap-
plications are shown: improving the precision of the statistical estimator for extreme value distri-
butions and predicting future extremes in nonstationary systems. For the latter, extreme wind speeds
are examined in a simple quasigeostrophic model with a robust chaotic attractor subject to nonsta-
tionary forcing. © 2009 American Institute of Physics. [doi:10.1063/1.3270389]

The statistical theory of extreme events aims at the
probabilistic prediction of events of unusual intensity
(e.g., intense rainfall/wind, insurance or financial losses).
A standard approach is to model the frequency distribu-
tion of such events through so-called extreme value prob-
ability distributions. Recent theoretical work has proved
that extreme value laws also hold in certain chaotic de-
terministic dynamical systems. How do the extreme value
laws depend on the control parameters of physical sys-
tems and on the used observables? A smooth dependence
has been recently observed in a model of the atmospheric
jet at midlatitudes. This paper aims to make first steps
toward a theory of such “robustness of extremes” and to
highlight its potential usefulness for statistical inference
and prediction in nonlinear systems. Two applications are
shown: (1) to reduce uncertainty in statistical estimation
and extrapolation beyond experimentally used control
parameter values and (2) to build predictive probabilistic
models for extremes in nonstationary deterministic sys-
tems. We illustrate point (1) for the Lorenz 1963 model,
also showing that robustness of extremes holds in a suit-
able parameter range. For point (2), we examine wind
speeds in the atmospheric model discussed above, which
is much more complex than the Lorenz model and whose
ergodic properties are unknown. These ideas are poten-
tially useful for the study of extremes and their trends in
the climate system.

I. INTRODUCTION

The response of physical systems to variations in exter-
nal control parameters is the subject of many fields of re-
search, including Kolmogorov—Arnold-Moser (KAM)
theory, bifurcation theory, and phase transitions; see, e.g.,
Refs. 1-3 and references therein. For nonlinear systems, bi-
furcations are associated with qualitative changes in dynami-
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cal behavior, which can be sudden and dramatic in the case
of global bifurcations or “crises,” see, e.g., Refs. 1, 4, and 5.
However, chaotic deterministic systems also often display
smooth responses to parameter variation. Notions of robust
chaos and statistical stability have been developed to under-
stand this latter phenomenon. Robust chaos is defined by the
absence of periodic windows and coexisting attractors in
some neighborhood of the parameter space for a given
syste:m,6 which means that chaotic behavior is not destroyed
by small parameter variations. This is a qualitative feature
and is found in several systems from neural networks’ to
(piecewise) smooth maps,&9 see Elhadj and Sprott10 and ref-
erences therein. A related notion is that of a robust strange
attractor (entailing C'-openness of the defining conditions).
Tucker'' showed that the system of Lorenz'? has a robust
strange attractor for a suitable range of parameter values.
Moreover, all robust strange attractors containing an equilib-
rium are singular hyperbolic (see Morales et al.” for a defi-
nition and proof), the attractor of the Lorenz'? model being a
main example. Statistical stability is a more quantitative no-
tion entailing continuity of the Sinai-Ruelle-Bowen (SRB)
measure (and associated metric entropies) with respect to the
parameters. Statistical stability has been proved for the logis-
tic and Hénon families when parameters are restricted to a
nowhere dense subset and for other classes of one-
dimensional (1D) maps; see Refs. 14 and 15 and references
therein.

In this paper we investigate how the extremal properties
of chaotic deterministic systems respond to parameter varia-
tion. We consider the statistical properties of extreme values
that arise when the system enters asymptotically small re-
gions of phase space. Such extreme values can be highly
significant when modeling physical systems such as the cli-
mate system. The statistical theory of extremes was origi-
nally developed for stochastic processesl&lg but substantial
progress has been made recently in transferring this theory to

chaotic deterministic systems.zo_23 We make first steps to-
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ward a theory of robust extremes. In particular, we formulate
the notion of robust extremes, prove robustness of extremes
for a simple class of systems, and demonstrate how knowl-
edge of robust extremes can be used to improve inferences
about the extreme values of complex systems. Note that the
robustness of extremes depends on both short-range and
long-range recurrence time statistics and therefore is not
equivalent to statistical stability or robust chaos, as discussed
in Sec. VL.

The classical statistical theory of extremes is briefly re-
viewed in Sec. II and the notion of robust extremes is for-
mulated in Sec. III with a formal definition given in Sec. IV.
Section IV discusses how to derive the dependence of a sys-
tem’s extremal properties on its control parameters, thereby
determining whether or not the system exhibits robust ex-
tremes, and demonstrates the procedure for 1D Lorenz maps.
Section V discusses the implication of these results for the
three-dimensional (3D) flow of the Lorenz63 model, also
illustrating lack of robustness and the link with lack of hy-
perbolicity. Extensions of this analysis to more complex sys-
tems are discussed in Sec. VI. Two applications demonstrat-
ing the benefits accruing from robust extremes are presented
in Sec. VII. The first reduces uncertainty in estimates of the
statistical properties of extreme values; the second predicts
extremal properties in nonstationary systems. The applica-
tions are illustrated with extreme wind speeds from a quasi-
geostrophic model.**

Il. THE GENERALIZED EXTREME VALUE
DISTRIBUTION

Extreme value theory traditionally studies the tail behav-
ior of stochastic processes with extensive applications in hy-
drology, climatology, finance, and insurance.'*™'® The princi-
pal statistical model in this theory is the generalized extreme
value (GEV) family of distribution functions,

-1/¢

H(x;§)={eXp[ (1489, €#0 "

exp[-exp(-x)],  £=0,

where w,=max{w,0}. The GEV is justified theoretically by
classical results of Fisher/Tippett and Gnedenko (see the
above references). Let {X;:j=1} be a sequence of indepen-
dent, identically distributed random variables and let My
=max(X,,...,Xy). If there exist normalizing constants
ay>0 and by such that

d

P[(My—-by)lay=x]—H(x) as N— (2)

d

for a nondegenerate distribution function H (where — de-
notes convergence in distribution), then H belongs to the
GEV family (1). The parameter £ is called the tail index and
determines the behavior of the upper tail of the GEV distri-
bution, which is unbounded if £=0 and has a finite upper
end point x, if £<0. The tail index can be obtained analyti-
cally given the distribution function F' of the X;: indeed con-
dition (2) holds if and only if

gun)/g(u) — %, 3)
where g(x)=1-F(x) if €>0 and g(x)=1-F(x,—1/x) if
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£<0. Condition (3) is called regular variation.> The status
of the GEV distribution as the only nondegenerate limiting
distribution for linearly normalized maxima of sequences of
independent and identically distributed random variables ex-
tends to maxima of stationary stochastic processes under two
additional conditions,”® known as the D(u,) and D’ (u,) con-
ditions in the statistical literature. Loosely speaking, the
D(u,) is a condition that requires weak mixing of the sto-
chastic process and D’(u,) controls the tendency of large
values to form clusters in time, see Ref. 26 for details.

This theory provides a statistical framework with which
to make inferences about values of an observed process
which fall beyond the range of the available observations.
The frequency distribution of observed maxima in blocks of
large but finite length N is modeled with the GEV distribu-
tion function

_ o, \-lE
G(x;,u,mé)=e><p{—<l+§x7#) ] (4)

when £# 0, where the normalizing constants by and ay are
subsumed into the definition of the GEV distribution to yield
the location parameter u and scale parameter o>0. The ob-
served block maxima are then considered as a sample drawn
from Eq. (4) and the parameters (w,o,&) are estimated by,
e.g., maximum likelihood. In meteo-climatic applications,
where the block length is often 1 yr, this is called the annual
maximum method. A quantity of interest for planning pur-
poses is the value x,, that has a probability p to be exceeded
by the annual maximum: this is called the return level asso-
ciated with the return period of 1/p yr. The return level is
simply the quantile of Eq. (4),

X, = - %{1 — [~ log(1 - p)] 4, (5)

when &£# 0. Uncertainty in the estimation of the tail index &
can have a large impact on predicting return levels beyond
the observed range or with return periods that are larger than
the record length.19

lll. ROBUST EXTREMES

To motivate the notion of robust extremes consider the
model (referred to as Lorenz63 hereafter) of Lorenz,12

Z=xy- Bz, (6)

derived from the Rayleigh equations for convection in a fluid
layer between two plates. Here P is the Prandtl and p is the
Rayleigh number; see Sparrow27 for a dynamical study. For
the “classical” values P=10, 8=8/3, and p=28, Eq. (6) has
a strange attractor'' that is robust in the sense of Morales
et al.”?

We study the extremes of the variable x proportional to
the intensity of the convective motion.'? Orbits of length 10"
time units are generated from Eq. (6) with both n=5 and
n=8. Values of x are sampled every 0.5 time units along an
orbit.”® Maxima over blocks of 1000 time units are extracted
from each series and their frequency distributions are mod-
eled with the GEV distribution function (4), which is fitted
by maximum likelihood."®' The procedure is repeated for

i=(y-x)P, y=x(p-2)-y,
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FIG. 1. [(a)-(c)] Estimates of the GEV parameters u, o, ¢ (respectively) vs
the value p; used in Eq. (6) for time series length 10" with n=5 (dashed) and
n=8 solid. Approximate 95% confidence intervals are added for n=5 (gray
shading). [(d)—(f)] Pooled estimates (dashed) and confidence intervals (gray
shading) obtained with Eq. (12) are plotted together with the true values
obtained for n=8.

each of 21 values of p (p;=27+0.05; for j=0,1,...,20) and
the estimates of the GEV parameters are plotted against p in
Figs. 1(a)-1(c).

For the short time series (with n=5 corresponding to a
sample of 100 block maxima) the estimates oscillate wildly
around the smoothly varying “true” values obtained with
n=8 (corresponding to 10° maxima). This smooth variation
in the statistics of extreme values is what we term robust
extremes in a broad, operational sense; a rigorous definition
is used in Sec. IV requiring continuity of the tail index & with
respect to the control parameters of the system.

Felici et al.” found similarly smooth behavior in a
model for the atmospheric circulation at midlatitudes in the
Northern Hemisphere. This is a 192-dimensional system of
ordinary differential equations providing a simplified repre-
sentation of relevant atmospheric physical processes (baro-
clinic conversion, barotropic stabilization, thermal diffusion,
and viscouslike dissipation). The chaotic attractor of the
model is numerically shown to be robust with respect to a
parameter T, representing baroclinic forcing.30 The extremes
of the system’s total energy are found to have a smooth scal-
ing law with respect to TE.29 That study was in turn moti-
vated by a question in climate science: Are meteo-climatic
extremes robust with respect to variations in atmospheric
CO,, or do they exhibit abrupt changes or “tipping points”?31
This issue is of great relevance in climate science for predic-
tion and adaptation purposes, as well as for the rigorous
quantification of change and trends in extremes. We conjec-
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ture that the phenomenon of robust extremes may occur in
many classes of systems (e.g., lasers, networks) beyond the
two examples of geophysical flows considered here.

IV. ROBUST EXTREMES IN 1D LORENZ MAPS

This section contains the main theoretical results of our
paper and the exposition is necessarily more technical. Sup-
pose that the evolution of a model of interest is described by
a parametrized family f|:R"—R" of continuous-time dy-
namical systems, smoothly depending on the parameter
a € R. For example, let the model be defined by the solution
of a system of ordinary differential equations in the phase
space R". Let ¢:R"—R be an observable (e.g., ¢ is the
projection on x for Lorenz63 in Fig. 1 or the total energy of
the system in Felici et al.”™). Suppose that for fixed a the
system has an attractor A,: this is defined as a compact in-
variant subset of R” which is transitive (there exists x e A,
with a dense orbit) and has an open trapping basin [there
exists a neighborhood U of A, such that f/(U)C U for all
t>0, see Morales et al.ls].

To define the statistical properties of the attractor in a
physically relevant way, one must assume the existence of a
SRB measure u,: indeed, SRB measures have basins of at-
traction with a positive volume, meaning that they are ob-
servable in concrete physical experiments.3 ? The existence of
a unique SRB measure w, allows a unique stationary sto-
chastic process to be associated with the observed evolution
of a deterministic system: indeed, by the invariance of u,, the
random variables X o= d)O]Aa’_l)lo, with t,>0 and j € N, form
a stationary stochastic process on the probability space
(A, y). As explained in Sec. II, if the normalized maxima
of this stochastic process converge in distribution to a non-
degenerate limit H, and Leadbetter’s conditions hold,26 then
H, is a GEV distribution function whose tail index &, is
determined by regular variation in the distribution function F
[condition (3)]. In this case, we say that the pair (f1, ®) has
robust extremes if &, depends continuously on a.

We now show that 1D Lorenz maps have robust ex-
tremes. A C' map T,:[-1,1\{0} —[~1,1] is a Lorenz map
if it satisfies (i) [(77) (x)| = c\" for some A >1 (provided x is
not a preimage of 0); (ii) T, is continuous except at 0, where
T,07)=1 and T,(0%)=1; (iii) 7/ (x)=1(x)|x|*"" near 0, for
some ae(0,1) and some function /(x), which is slowly
varying at 0 and Hélder continuous; and (iv) T, admits an
absolutely continuous invariant measure with density 6,(x)
=du,/ dx of type bounded variation. In particular the density
has at most a countable number of discontinuities and its
support has upper end point at x*=1, where 6,(x) vanishes.
For T,, the attractor A, is the whole interval [—1,1].

Our proof of robustness of extremes for parametric fami-
lies of 1D Lorenz maps is based on regular variation (3),
which yields the actual value of the tail index &, as a func-
tion of the parameter «. The two additional conditions D(u,,)
and D' (u,) must be verified (see Sec. II), since the stochastic
process arising from observing a dynamical system is not
formed by independent random variables. To this end, we use
a recent result by Gupta et al.:> the conditions D,(u,) and
D'(u,) hold for 1D Lorenz maps and for a large class of
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observables, where D,(u,,) is a weaker form of Leadbetter’s
D(u,) condition. Freitas and Freitas® showed that D(x,,) can
be replaced by D,(u,), which is more suitable for stochastic
processes arising from chaotic deterministic systems since it
follows from sufficiently fast (e.g., exponential) decay of
correlations. We also show that £, may depend on the pa-
rameter « in two different ways according to where the ob-
servable ¢ is maximized:

0))] ¢ is maximized at the upper end point ¢ =@(x*) of
the distribution function F of X, = ¢.
(I) ¢ has a maximum at x, € (=1, 1)\{0} with 6,(x,) # 0.

In loose terms, the maximum is “on the peel” of the
attractor for (I) and is “within the attractor” for (II). For
simplicity, specific examples of observables are used for
each of the above two cases. Our arguments easily generalize
to other functional forms.

To examine case (I) we work with the observable ¢(x)
=x. Using invariance of u, and the Lebesgue differentiation
theorem, one can show that there exists a function A, with
h(0) strictly bounded away from zero and from infinity (that
is, 1(0) € [a,b] for some 0<a<b<<+) and h(1/u) slowly
varying as u — o, such that for #,u>0,

Kol d(x) > @ = Vut] = polx > 1~ 1ut]
= sl T2 = Ut ')
= 0,(0)h(1/tu)(tu) ™"
+ o(h(1/tu)(tu)~"'®) (7)
as u— . Defining g(u)=1-F(¢p:—1/u), we have

gur) _ pldpx) > ¢ Vur] _ 6,(0) +0(1)f”“
gu)  pald(x) > ¢y~ 1u]  0,00)+0(1)

as u—oo, provided 6,(0)#0 (which numerical experiments
indicate it does indeed hold). This shows that F is regularly
varying with index —1/a@. Combining this with Ref. 33,
Theorem 3.2, we find that F is in the domain of attraction of
a GEV with tail index é=—a.”

To examine case (II) we consider the example ¢(x)
=C-Dlx-x|° with D, 5> 0. Using an argument as above we
obtain

(8)

glut)  Bu(xp) +o(1) _, s
= t )

g()  O4(xp) +0(1)
as u—oc. The tail index {é=-¢ is thus constant in a: it only
depends on the “curvature” of the observable ¢ near the
extremal point x,,. Both Egs. (8) and (9) can be generalized to
observables with a strict absolute maximum at x, [where
xo=x" for Eq. (7)] such that ¢(x)=C—D|x—xo|°+0(|x—x0|%)
as x—x, with D, 6>0.

In summary, if the maxima in the 1D Lorenz maps are
GEYV distributed, then the tail index varies smoothly with the
system parameter « for large classes of observables. The
regularity of the density 6,(x) plays a significant role in case
(I): here 0,(0)=0, and the value of &) continuously de-
pends on « through the density’s Holder constant at x=0. For
case (IT), we have shown that the tail index depends on the
form of the observable (and not on «) for values of x, with
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0,(xg) # 0. For Lorenz maps, the density 6,(x) is nonzero for
m-almost all values of xy. Hence for generic maxima within
the attractor the value of ¢ would appear constant as « is
varied.

This analysis clarifies that robust extremes are not
equivalent to or implied by any of the concepts of robust
chaos mentioned in Sec. I. Indeed, neither the “geometric”
definition of robust strange attractors by Ref. 13 nor the “em-
pirical” definition by Banerjee et al.® entails continuous de-
pendence on the parameter for the SRB measure at the upper
end point [see condition (7)]. A particular form of statistical
stability holds for the geometrical models of the Lorenz at-
tractor: the continuity with respect to the parameter of the
SRB measure in the weak-* topology.35 However, not even
this property is sufficient for robustness of extremes. The
sensitivity of the GEV parameters is dependent on the sensi-
tivity of the SRB measure density in the vicinity of the set
where the observable is maximized: this is a local property
of the system [compare again with Eq. (7)]. Moreover, for
weakly dependent stochastic processes (such as those asso-
ciated with chaotic deterministic dynamical systems) Lead-
better’s conditions D’ (u,) and D(u,) need to be verified and
in general this is not straightforward. We return to this point
at the end of Sec. VL.

V. THE LORENZ FLOW, REVISITED

What do the results of Sec. IV imply for the flow of the
Lorenz63 model (6)? The Lorenz63 flow has an attractor
APCR3 which supports a unique SRB measure u, for
p=28, see Ref. 36. A standard approach for the study of the
Lorenz63 flow is to consider 1D Lorenz maps, which arise as
simplified geometric models of the full 3D flow."*7 Spe-
cifically, a 1D Lorenz map T, is obtained for the flow of Eq.
(6) via an identification map S in a Poincaré section. The
map S is formed by identifying points within each stable
manifold of the strong stable foliation, see Ref. 11. It can be
shown that the parameter « is given by |\,|/\,, where X, is
the unstable and A, the weakly stable eigenvalue of the Lo-
renz63 flow at the origin.27’38 Therefore, the results of Sec.
IV can be applied to the flow of Eq. (6). Again, we distin-
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FIG. 2. Histogram and smoothed density from an orbit of Lorenz63 ob-
served through ¢,(x,y,z)=x for p=28, and computed as in Sec. Il with
n=6, starting from point (x,y,z)=(0.1,0.2,0.3) with a transient of 10 000
time units.
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FIG. 3. Maximum likelihood estimates of the tail index & for two observ-
ables for a time series of length 10" with n=8 (corresponding to 103 block
maxima, see Sec. III for details). For each pje (Ref. 25), the uncertainty
bands are computed as twice the standard deviation of the ten distinct esti-
mates obtained with ten “chunks” of 10* maxima each.

guish two cases according to whether the observable is maxi-
mized on the peel of or “within” the attractor A,. We con-
sider two examples:

d1(x,y,2)=x and  y(x,y,z)=1-(x=5)"4 (10)

Figure 2 shows a histogram corresponding to the pro-
jected measure w,° d)]l. The tail index depends smoothly on
p through the ratio [\,/\, [obtained in Eq. (8) for T, with
¢(x)=x] and the identification map S (see above). The ro-
bustness of the tail index is preserved, since S is smooth in p.
This is confirmed by the numerical results in Sec. III. Note
that the tail index is not constant for the observable ¢;: this
is visualized in Fig. 3 by scanning a wider p-interval than in
Fig. 1. Also, the tail index for ¢, is nonrobust for large p.
The sharp drop near p=59 in Fig. 3 corresponds to a sudden
change in the empirical distribution function of the block
maxima: the normalized quantiles of the block maxima for
p=58 look much more similar to those for p=60 than for
p=59 (Fig. 4). The explanation is that folds appear in the
Poincaré map as p increases beyond 32. The folds corre-
spond to critical points in the 1D Lorenz map Ta,37 whereby
hyperbolicity is destroyed and Eq. (8) no longer holds in this

-1

-2

-3

FIG. 4. (Color online) Quantile-quantile plots of 10 000 block maxima of
Lorenz63 for p=58 vs p=59 (left) and p=60 (right). The block maxima
have been standardized by subtracting the mean and dividing by standard
deviation.
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758 58.5 59 59.5 60

FIG. 5. Maximal Lyapunov exponent €, of the attractor of Eq. (6) as a
function of p.

parameter regime. Appearance of windows of periodicity6
and sudden changes in the attractor are typical symptoms of
hyperbolicity loss. Two windows of periodicity are identified
in Fig. 5 by a vanishing maximal Lyapunov exponent ¢ 1.39
Attracting periodic orbits with different topological struc-
tures occurs within each of these parameter intervals, see
Fig. 6. The value p=59 falls in the transition region between
the two windows of periodicity, where €, has a peak which is
larger than for p=58,60. Closeness to the periodic windows
induces intermittency in the strange attractor for p=59. This
is visualized in Fig. 7 through a smoothed projection of the
invariant measure of A, on the (x,z)-plane. Intermittency
induces a rather different spatial distribution of the “orbit
visits” for p=59 than for p=58,60; the former is character-
ized by a steeper, stepwise decrease in the invariant measure
near the “edge” of the attractor (compare with the left panel
of Fig. 4).

The observable ¢, in Eq. (10) corresponds to the case
within the attractor of Sec. IV: indeed, ¢, is maximized on
the plane {x=5} C R?, which intersects A, for all p e [27,66].
Constancy of the tail index ¢ is readily verified for this ob-
servable. An average estimate of £=-0.251 with standard
deviation of 0.002 is obtained over p €[27,66] (Fig. 3), in
good agreement with Eq. (9). Note that constancy of & holds
for the observable ¢, also in the parameter region where the
tail index for the observable ¢, is nonrobust due to lack of
hyperbolicity.

p=58.7 p=59.25

FIG. 6. Projection on (x,z) of orbits of Eq. (6) in the window (x,z)
e[-30,30]%[10,100] for p=58.7,59,59.25.
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p=58 p=60

FIG. 7. (Color online) Projection on (x,z) of the invariant density of Eq. (6)
obtained by kernel-smoothing 10° points along an orbit within the window
(x,z) €[26,32]%[60,105] for p=58,59,60 (same scale is used for the
densities).

VI. HOW GENERAL ARE ROBUST EXTREMES?

Do the results of Sec. IV hold for other observables and
other systems? As shown in Secs. IV and V, the nature of the
observable ¢ plays a crucial role in robustness of extremes.
If ¢ is maximized within the attractor, the argument leading
to Eq. (9) seems to be valid under weak conditions and is
insensitive to loss of hyperbolicity: the resulting constancy
of ¢ is a rather general property. For constancy to hold it is
sufficient that the unprojected invariant measure w, provides
good sampling near the set where ¢ is maximized. Caution is
required if this set is a point x: in general u, is supported on
a fractal set of zero Lebesgue measure in phase space. Even
if x, belongs to the attractor for some parameter value, typi-
cally parameter variations will bring x,, “outside of the attrac-
tor.” This problem is avoided for the observable ¢, in Fig. 3
because the attractor A, always intersects the extremal set.

To have robustness of extremes in the case on the peel
(i.e., when ¢ is not maximized within A,), the projected
measure must be robust at its upper end point x*. This con-
dition is specified in Eq. (7) for the 1D Lorenz map. Typi-
cally, physical observables such as energy, vorticity, or wind
speeds are unbounded in phase space (see Sec. VII and also
Ref. 24); therefore, a condition like Eq. (7) is required. How-
ever, robustness at the upper end point cannot be expected in
general, as shown in Fig. 3. Windows of periodicity are to be
expected in the parameter sets of Hénon-like and nonuni-
formly hyperbolic systems,1 The limit distribution H (see
Sec. IV) is singular for periodic attractors; therefore extreme
statistics vary discontinuously with respect to the control pa-
rameter.

It is reasonable to expect robust extremes in systems
with an axiom-A attractor: indeed, such systems possess a
SRB measure which is differentiable in the parameter.“o’41
Unfortunately, for many physical systems encountered in ap-
plications it is exceedingly difficult to prove the existence of
a SRB measure, let alone its differentiability. One can adopt
a pragmatic point of view and simply assume that the system
under consideration has a SRB measure which depends
smoothly on control parameters, provided that numerical ex-
plorations suggest that this is the case: this will be our ap-
proach in Sec. VII B. This assumption is compatible with the
chaotic hypothesis,“"‘3 stating that a many particle system in
a stationary state can be regarded, for the purpose of com-
puting macroscopic properties, as a smooth dynamical sys-
tem with a transitive axiom-A global attractor (a version ex-
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ists for fluid dynamical systems44). In line with this, we
expect that various types of system may display robust ex-
tremes at the experimental, observable level: robust chaotic
systems,6’10 systems with a robust attractor,"” many-particle
and fluid dynamical systems,“’44 high-dimensional
systems,45 and geophysical flows.** This may also explain
the robustness which is observed in Fig. 3 for p between 32
and 58, where the attractor of the Lorenz63 system is not
robust (see Sec. V).

From this discussion it seems evident that the tail index
depends on the precise form of the SRB measure and local
behavior of the observable in the vicinity of the maximum.
Although this can be conjectured to be true in many appli-
cations the rigorous verification depends on an analysis of
the recurrence statistics of typical orbits. A systematic ap-
proach is not yet available but recent studies have involved
checking Leadbetter’s D(u,) conditions®® (or weaker ver-
sions) directly. Leadbetter’s conditions generally fail if the
maximum is on a strongly recurrent orbit (e.g., a periodic
orbit). In these situations informed conjectures on the tail
index cannot be based solely on the local form of the observ-
able and the SRB measure near the maximum.

The verification of condition D' (u,) depends on both the
short and long time range recurrence statistics. In general
D' (u,,) is harder to check in specific applications. For logistic
maps, D’ (u,) has been shown to hold for observables with a
unique maximum along the critical orbit,34 while Refs. 20
and 21 show that D’(u,) holds in a broad class of nonuni-
formly expanding dynamical systems for observables taking
maxima at u-typical values. These results provide a means to
investigate the robustness of extremes.

VII. APPLICATIONS
A. Enhancing statistical estimation

We now show how robustness of extremes can be used
to improve the precision of estimates of GEV parameters.
Consider again the setup of Sec. III. Robust extremes justify
the adoption of functional forms (at least locally) to approxi-
mate the smooth dependence on p of the GEV parameters.
Consider, for example,

§(P)=§o~ (11)

The sequences of maxima {z{,t= 1,...,m} obtained for p=p;
(j=0,1,...,20) can then be pooled to estimate these func-
tions. In particular, the parameters (g, t;, 09,0}, &) can be
estimated by maximizing the likelihood

w(p) = o+ mip,  olp) =oy+oyp,

I %2 (<l (o) ). (12)
i 0x

“Pooled” estimates obtained from the “short” sequences of
m=100 maxima [dashed lines in Figs. 1(d)-1(f)] are much
closer to the “true values” (solid lines) than the fits carried
out for each value of p independently. The global structure
expressed by Eq. (11) complements the local information
contained in the individual sequences of maxima, leading to
reduced uncertainty in the parameter estimates: compare the
width of the gray bands in the left and right columns of
Fig. 1.
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FIG. 8. Confidence intervals at the 95% level for the 100-yr return levels of
the wind speed measured at the center of the domain in the lower layer of
the quasigeostrophic model. The different values of the control parameter 7
used to generate the time series are given on the horizontal axis.

The above approach can be applied to probabilistic pre-
dictions of climate change based on sets of ensembles of
simulations with climate models where the individual runs
are obtained by perturbing control parameters (the so-called
perturbed physics approach46). Pooling extremes from the
different runs as above can reduce uncertainty in the esti-
mated return periods of extreme hazardous events. Of course,
robustness of extremes must be assumed or assessed: current
research is aiming to develop suitable statistical tests and
procedures to be used in such applications.

B. Predicting extremes in nonstationary systems

We show here how robustness can be used in interpret-
ing and predicting nonstationary extremes. We consider the
simplified two-layer quasigeostrophic model of Felici et al. »
First we examine the stationary setting by generating several
simulations of length 1000 model yr, each with a different
value for the baroclinic forcing parameter Ty (note that these
simulations do not attempt to reproduce the Earth climate in
a specific period of time). Time series of wind speeds are
computed for a point at the center of symmetry of the model
domain in the lower layer. The GEV distribution (4) is fitted
independently for each value of T through the block maxi-
mum method with annual blocks. Wind speed return levels
are obtained as quantiles of the fitted GEV distribution” in-
dependently for each 7. Figure 8 displays 100-yr return lev-
els as functions of the corresponding value of 7. Note that
we have chosen a return period which is shorter than the
length of the time series in order to limit the sampling vari-
ability. Indeed, convergence to the “truth” may require pro-
hibitively long data sets, such as the 10° maxima for Fig. 1.
The 100-yr return levels have a rather smooth dependence on
the control parameter 7. Figure 8 suggests that a property
like Eq. (7) holds for the quasigeostrophic model, where the
observable ¢ is the wind speed on the selected point of the
domain (same for the total energy24). This property is now
exploited to improve prediction in the nonstationary case.

Following Felici et al.** the following linear time trend
is imposed on Ty with speed AT;=2/100 yr:

Chaos 19, 043127 (2009)

TABLE I. Empirical quantiles for the fitted GAMLSS model (see text).

Quantiles
(%) Training Predicted
0.4 0.0 0.0
2 2.5 3.0
10 8.5 8.9
25 27.0 25.7
50 48.5 50.5
75 75.0 75.2
90 89.0 83.2
98 97.5 95.0
99.6 100.0 98.0
Te(t)=(T%— 1) +tATg, 1 € [0,1,] (13)

with 79=10 and 7,=2100 yr. Felici er al.** show that the
extremes of the total energy vary smoothly in time for this
nonstationary setup. In loose words, nonstationary extremes
remain close (locally in time) to those of the stationary sys-
tem obtained by “freezing” Tg(f) to a constant value, thereby
robustness of extremes in 7, translates to smooth variation in
extremes in time. An adiabatic ansatz is required for this: the
trend speed AT, must be sufficiently small with respect to
the time which is necessary to sample the upper tail of the
energy distribution, given by a projected measure as in
Eq. (7).

Given robustness as in Fig. 8 and assuming validity of
the adiabatic ansatz, nonstationary statistical models can be
used to predict the future variation in extremes. A time-
varying GEV distribution (4) is fitted using the generalized
additive models for location, scale, and shape (GAMLSS)
framework:*"*® the parameter £ is kept constant, whereas u
and o are functions of time fitted by cubic splines with iden-
tity link functions.

A single simulation is generated with the quasigeo-
strophic model, choosing T% and #; in such a way that the
range swept by Tx(7) covers the interval'>'® on the horizontal
axis of Fig. 8. A time series of wind speeds is then computed
for a point at the center of symmetry of the domain in the
lower layer. Yearly maxima are extracted from this nonsta-
tionary time series. The sequence of yearly maxima is split
into a training set (200-400 years, the initial 66% of the time
series) and a prediction-test set (401-500 years, the final
33%). A nonstationary GEV-GAMLSS is fitted to the train-
ing set: this yields a time-dependent GEV distribution which
is used to compute the quantiles in the left column of Table I.
Prediction is performed by a generalization of the method
described by Hastie.* These time-dependent quantiles are
plotted as curves in Fig. 9: the fraction of the training and
test data points lying below these curves yields empirical
quantiles (center and right column in Table I), whose values
compare well with the theoretical quantiles (left column). In
summary, Table I shows both goodness of fit (center column)
and predictive power (right column) of the GEV-GAMLSS.
The fraction of predicted points between the 5% and 95%
time-dependent quantiles is 0.85: closeness to the theoretical
value of 0.9 gives a further measure of predictive power.
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FIG. 9. (Color online) Wind speed maxima over blocks of 1 yr length for
the nonstationary simulation of the quasigeostrophic model. The solid lines
are the time-dependent quantiles in the left column of Table I estimated for
a GEV-GAMLSS model. The vertical dashed line separates the training and
prediction-test data sets (see text).

Remarks:

(1) The time-dependent quantiles do not define a full pre-
dictive distribution, since uncertainty in the estimation is
not taken into account when GAMLSS are used with
additive smoothers such as the cubic splines (see the
GAMLSS manual, Sec. 3.4).

(2) Construction of a predictive distribution which incorpo-
rates uncertainty is easier if parametric models (say,
through polynomials) are used for modeling u and o as
functions of time. However, this yields functional shapes
which are in principle more rigid and may not fully cap-
ture the nonlinear dependence of u and ¢ on p (compare
with Fig. 8), see Sec. VI. We believe that this is the
reason for which cubic smoothing splines are found to
work better in our example.

(3) In GEV modeling, a log link is often used for o to pre-
serve its positivity Coles.'® However this works less
well for extrapolation because the predicted o values
tend to grow excessively.

VIIl. CONCLUSIONS

This paper introduces the notion of robust extremes in
deterministic chaotic systems, presents initial theoretical re-
sults, and outlines associated inferential techniques. There is
a considerable scope to develop the mathematical theory and
thereby to obtain results for higher-dimensional systems such
as uniformly or partially hyperbolic systems, see, e.g., Ref.
50. There is also a scope to develop the inferential tech-
niques, for example, to develop statistical tests for robustness
of extremes and methods for predicting extremes in both
stationary and nonstationary systems.
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