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Abstract

This work analyzes the statistics of time series of water level and significant wave 
height recorded at Ancona, Italy, by a tide gauge and a buoy, respectively, during the 
period  2000-2005.  Beyond  standard  statistical  analysis,  extreme  value  statistics  is 
examined.
Ancona is an interesting site because the amphidromic point for the M2 (i.e., the lunar 
semidiurnal) constituent lies nearby, making this constituent secondary with respect 
the  diurnal  one.  Since  the  M2 component  is  the  largest  in  the  Adriatic  Sea,  the 
analysis of data without this component can give a better understanding of behaviour 
of other tidal constituents as well as non-tidal components.
The study of the water level and the significant wave height is of great interest for 
defining the coastline. 



1. Introduction

It  is  customary  nowadays,  in  tidal  heights  analysis,  to  use  hourly  values  of 
surface elevation obtained from a digital tide gauge. The values recorded by these 
gauges are the result of interaction between astronomical tides and fluctuations due to 
sea currents and meteorological events.

The analysis and prediction of tides in the Adriatic Sea is the subject of many 
studies  (e.g.  Polli,  1959;  Defant,  1961).  In  the  last  years  such  studies  have  been 
limited  to  northern  Adriatic  Sea,  where  the  sea  elevation  reaches  the  maximum 
amplitude (e.g.  Malacic  et  al.,  2000; Lionello  et  al.,  2005).  The Adriatic  Sea is  a 
marginal sea and the classical astronomical tide theory does not work. Tidal effects 
occur  as  a  side-effect  of  the  sea  level  variability  of  the  Mediterranean  trough 
shallower water as combinations of incident and reflected Kelvin and Poincaré waves 
(Taylor,  1921).  Hendershott  and Speranza  (1971)  revisited  the  Taylor  theory  and 
showed that in the analyzed semi-closed basins all Poincaré modes are evanescent and 
the  partial  reflection  of  the  Kelvin  wave  causes  a  displacement  of  the  M2 
amphidromic point from the channel axis toward the western coast. Moreover, other 
constituents  may have  their  amphidromic  point  out  of  the  sea (inland),  making  it 
virtual. 

The  M2  amphidromic  point  for  the  Adriatic  Sea  lies  right  off  Ancona  and, 
therefore, the behaviour of the tide at Ancona is particularly interesting with respect to 
other Adriatic sites. Simulating the tide in an Adriatic location is not simple for the 
reasons mentioned above. Additional non-astronomical factors such as configuration 
of  the  coastline,  local  depth  of  the  water,  ocean-floor  topography,  and  other 
hydrographical and meteorological factors may play an important role in altering the 
range and times of arrival of tides.

The knowledge of water level is important for different reasons, among these the 
evolution of beaches. The dissipation energy per volume unit caused by sea action on 

a beach is given by  

€ 

D= h
dh

dy, where  h is the water level and  y is the coordinate 

going from the sea to land (across the shoreline). If we assume that D is a constant, 
increasing h, dh/dy must decrease and the shoreline retreats. 

On the  other  hand,  the  knowledge  of  fluctuations  of  high  and  low  water  is 
necessary  to  define  tidal  datum, although for  a  correct  definition  of  such datums 
observations taken over 19 years are needed. For marine applications, a vertical datum 
is defined as a base elevation used as a reference from which to determine relative 
heights or depths. It is called a tidal datum when defined by a certain phase of the 
tide. Tidal datums are local datums and should not be extended into areas which have 
differing  hydrographic  characteristics  without  substantiating  measurements.  The 
application  areas  of  tidal  datums  are  manifold,  from  coastal  management  to 
emergency management;  for defining the legal  boundaries of a country or to help 
defining the nautical charts.

An  important  aspect  concerning  sea  level  is  the  analysis  of  extreme  values. 
Extreme values are of great importance from an economical point of view. Since sea 
defences  can be built  only knowing return time associated  with extreme recorded 
values. A point process model has been used for the inference of extreme values. It 
requires a procedure based on threshold exceedances. This method is applicable under 
very  general  conditions.  It  is  reliable  and  flexible,  thus  quite  suitable  for  the 



formulation of standards. Moreover, such a method allows accurate estimation of risk. 
For example, flood risk can be quantified in a straightforward way as a return period 
associated to a given return level. 

2. Water level data

For this report, hourly data  are used, gathered from the Ancona station (Fig. 1) 
for the period 2000-2005. The time series of observed water level, running from the 
1st January 2000 to 31st December 2005, is shown in Fig. 2.

The  data  for  this  station  are  provided  by  the  “Agenzia  Nazionale  per  la 
Protezione dell’Ambiente e per i Servizi Tecnici (APAT), which manages a network 
of buoys and tide gauges whose observations are made available  through Internet 
(http://www.idromare.com) and other media. 

Fig. 1. The Adriatic basin and the location of Ancona tide gauge.

Tide gauges record water level. Although the water level series are available on the 
web site from 1986, there are several periods with missing data. Also, the time series 
from  2000  to  2005  have  very  few  missing  observations.  A  quality  check  was 
performed and the missing data were replaced by a linear interpolation between the 
previous and the next values. If a spike was found, again it was replaced by a linear 
interpolation between two contiguous sea levels.

The statistics characterizing these observations as a function of year are listed in 
Table 1. The mean value is always negative indicating a possible bias for the gauge; 
moreover it changes during the years. This means that we can define only a yearly 



mean sea level.  In order to define the Mean Sea Level as a tidal datum, a period of 
18.6 years should be considered, since it is the period of nutation. Too little data are 
available to allow for the above definition of trend, so that no appreciable change may 
be reliably inferred during the considered period (Fig. 3, Tab.1).

Table 1. Statistics of observations as a function of year at Ancona

Year Number Mean Std Dev
2000 8784 -0.05317 0.179646
2001 8760 -0.01191 0.162019
2002 8760 -0.02375 0.183347
2003 8760 -0.05606 0.180090
2004 8784 -0.03226 0.178699
2005 8760 -0.05476 0.174413

Fig. 2. Time series of water level observations from 1st Jan 2000 to 31st Dec 2005.

Figure 3 shows oneway analysis of observed water level by month. It is worth 
noting that the observed annual cycle might be associated with the position of the 
Earth with respect to the Sun. On the other hand, the overall  variability,  which is 
associated to the variability of residuals, is mainly caused by meteorological effects, 
which  are  maximal  during  the  autumn  and  winter  season  (see  Fig.  4).  Many 
occurrences of water levels higher and lower than 99th percentile, indicated by the 
upper and lower limits of bars, occurred from September to March. 



Fig. 3 Oneway analysis of observed water level (m) by month. In this figure, also the 
median is shown, as well as the 10th, 25th, 75th and 90th quantiles.



Figure 4. Monthly standard deviation of residuals at Ancona. 

3. Harmonic and spectral analysis

In classical harmonic analysis, the tidal forcing is modeled as a set of spectral 
lines,  i.e.,  the  sum  of  an  infinite  set  of  sinusoids  at  specific  frequencies.  These 
frequencies are specified by various combinations of sums and differences of integer 
multiples of some fundamental frequencies arising from planetary motions (Godin, 
1972). A least-squares fit can be used to determine the relative phase and amplitude of 
each  frequency  in  the  response.  This  phase/amplitude  data  thus  provides  a 
compression of the data in the complete time series, which can then be compared with 
similar data at other locations to understand the characteristics of tidal dynamics, or 
can be used to synthesize time series of tidal  effects  at  other  times  for predictive 
purposes.

There  are  several  drawbacks  to  classical  harmonic  analysis.  The first  is  that, 
ignoring the modulation of perihelion,  which is effectively constant over historical 
time, about 18,6 year time series is required to resolve all of the listed frequencies 
(that is, the number of wavelengths of each constituent in the record differs by at least  
1 unit  from all  other  constituents).  In practice,  record lengths are often 1 year  or 
shorter. In order to handle this issue an assumption is made that the phase/ amplitudes 
of response sinusoids with similar frequencies are in the same proportion as those of 
the equilibrium response under the reasonable premise that the ocean response should 



be  similar  at  similar  frequencies.  In  such  a  cluster,  large  equilibrium  peaks  are 
surrounded  by small  subsidiary  peaks  in  frequency space  which  provides  ‘‘nodal 
modulations’’ (or more correctly, ‘‘satellite modulations’’) to the main peak.

The appearance of the total signal will be a sinusoid whose phase and amplitude 
varies slowly with time. These changes are slow enough to be considered effectively 
constant for record lengths of up to 1 year.

At much shorter record lengths another problem arises. The frequency resolution 
further degrades until even dissimilar constituents are irresolvable. The best solution 
is to apply inference. This technique for finding the absolute phase/amplitude requires 
that  the  relative  differences  in  phase/amplitude  between  the  two  unresolved 
constituents is known from other nearby data. If this is not the case, it is thought best 
to either discard the smaller constituents or only fit to the largest in a given frequency 
interval, or to use the equilibrium response to establish the desired differences.

Another  drawback  of  classical  analysis  is  that  it  provides  no  easy  way  to 
determine whether the resulting phase/amplitude of a given sinusoid is meaningful in 
a deterministic way (i.e., it is truly a tidal line), or whether it results from fitting to a  
component of the non-tidal broad-spectrum variability.  In general a fit  is likely to 
include elements of both and some kind of confidence interval for the deterministic 
part is useful. To address this issue, the ‘‘response’’ method was invented (Munk and 
Cartwright,  1966).  Although  this  provides  better  results  than  classical  harmonic 
analysis, it has not found widespread use.

Further problems with classical harmonic analysis arise in coastal regions where 
the tidal response is in the form of a wave propagating onshore. In large estuaries, the 
seasonal change in salinity and flow may change the dynamic response but as these 
changes can vary from year to year, the tidal process is not stationary.
Instead,  spectral  peaks  are  broadened  so  that  they  are  no  longer  pure  lines,  but, 
depending on the situation, such variations may be treated as lines in the analysis. 
Within smaller estuaries, tidal height variations may be significant compared to water 
column depth and a variety of non-linear effects can occur. For example, floods in 
general shorten and intensify the rising tide, whereas ebbs get longer. As long as these 
effects are reasonably deterministic they may be handled by adding extra ‘‘shallow 
water’’  constituents  which  occur  at  sum/difference  frequencies  of  the  major 
constituents. 

More problematic  in these regions are the effects  of internal variability.  Tidal 
interactions  with  varying  topography  can  produce  large  internal  waves  and  bores 
whose characteristics are highly sensitive to ambient stratification. In such cases the 
assumption of ‘‘line’’ frequencies becomes questionable and other techniques such as 
wavelet analysis have been suggested (Jay and Flinchem, 1999). More comprehensive 
descriptions  of  analysis  techniques  their  uses  and  limitations  are  given  in,  e.g., 
Foreman et al. (1995) and Godin (1991).

The data recorded by tide gauges D(t)=T(t)+M(t) are a sum of a tidal signal T(t) 
(with m tidal constituents) plus a non-tidal signal M(t). The response of water to non-
tidal forcing may have periodic constituents that are not strictly associated with tides. 
For example, current driven by breezes, normal modes associated with the oscillations 
of  basin  (seiches),  impact  of  different  kinds  of  wind  that  occur  with  seasonal 
frequency and radiative effects on sea water, can give a sort of periodicity to water 
level  that  is  not  dependent  on  tide  causes.  Thus  the  signal  M(t) could  also  have 



periodic constituents. 
We are interested in analysis both tidal and extra-tidal constituents. The analysis 

has  been performed  by means  of  tidal  analysis  software  (Pawlowicz et  al.,  2002) 
derived  from  an  algorithm  developed  by  Godin  (1972)  and  Foreman  (1978). 
Moreover,  we  have  analyzed  the  periodic  behaviour  trough  the  classical  spectral 
analysis and by means of spectral analysis. Results are shown in Fig. 6: the diurnal 
constituent is the highest one. The annual constituent shows a higher value than other 
constituents but the K1 and M2.

Zooming  on  higher  frequencies  and  lower  period  (Fig.  5),  we  can  note  that 
together to the 24 hour component, there are near components with an appreciable 
power density. These components are not associated with seiches, as it will be seen 
later.  After  eliminating  the  contribution  of  tidal  constituents  found  by  the  t_tide 
software we have looked through the residual frequencies to see if an important signal 
is present in the spectrum.

Figure 5. Tidal high frequency components at Ancona. It is worth noting the strong 
diurnal  component,  differently  from  the  observed  ones  at  other  stations  such  as 
Venice, where the predominant component is the semidiurnal one.



Figure  6.  Power  spectral  density  of  the  residuals  as  seen  at  Ancona.  The  first 
component of seiches is indicated.

4. Seiches

At  higher  frequencies  it  is  possible  to  see  the  presence  of  seiches.  The 
contribution  to  total  spectrum is  not  very  high.  As  opposed  to  tidal  constituents, 
seiches  occur  only several  times in a year  as a response of sea to meteorological 
forcing  from  the  south  boundary  of  the  Adriatic.  The  oscillation  of  seiches  is 
important above all  on the northern Adriatic that represents the head of the basin. 
Numerical simulations of tide for the Adriatic (Lionello et al., 2004), showed that the 
amplification factor of the seiches at Ancona is close to 1 whereas at Venice it is 
larger (1.4).

The spectral  power density of the seiches components is shown in Fig.  6, as 
obtained by first  removing the tidal  constituents  and then using the  Welch's  PSD 
estimation. The first oscillating normal mode, having a period between 21 and 22 
hours has stronger power spectral density than the second normal mode.

5.  Point process approach applied to water level
For the  statistical analysis of extreme values, one has to deal with the non-

stationarity of the data, due to the seasonal cycle. The most straigthforward way is to 
perform inference on the  sequence of  the yearly maxima extracted from the  time 
series: this is the so-called annual maximum method, which relies on the Generalized 
Extreme  Value  (GEV)  distribution.  A  problem  with  this  approach  is  that  one  is 



discarding most of the available data: if the data record is short (as it is the case for all 
time series analyzed here), the resulting GEV parameter estimates have very large 
uncertainties and are unreliable for practical purposes, especially for computation of 
return levels (which requires extrapolation to large values). An alternative and very 
fruitful approach is to use the so-called point process modelling, which is based on the 
following  theorem:  let   be  a  sequence  of  independent  and  identically  distributed 
random variables and define 

}.,,1:)),1/({( niXniN in =+= (1)

Then,  for  sufficiently  large  u and  in  the  limit  n→∞,  on  regions  of  the  form 
(0,1)×[u,∞),  is approximately a Poisson process, with intensity measure on  given by 

(2)

In  this  framework,  time-dependence  (non-stationarity)  of  the  time  series  is 
modeled  in  a  straightforward  manner:  time-dependent  parameters  (µ(t),σ(t))  and 
threshold u(t) are chosen, whereas ξ is kept constant to avoid numerical convergence 
problems. In this report, to model seasonal variability, we adopt the following choices 
for the point process model: a threshold 

u(t)=a+bsin(2π(t-d)/365.25) (3)

and time-dependent GEV parameters (µ(t),σ(t)) given by 

(4)

and 

(5)

with constant ξ. Therefore, the parameter vector to be inferred from the data is 

(6)

A maximum likelihood method is used for the inference of these parameters: in fact, 
by a suitable normalization of the likelihood function one obtains that the parameters 

ξσµ ,, 00  of the stationary point process given by  are those of the annual maximum 
GEV distribution, see Coles (2001). In the following analysis, this stationary model is 
used as well  and yields reasonable inferences.  However, given the strong periodic 
component in the residual time series, it is appropriate to take periodicity into account 
in the statistical model. This is also confirmed by by means of the likelihood ratio test 
(Coles,  2001).  Lastly,  sensitivity  studies  are  regularly  performed  to  assess  the 
robustness of the threshold choices.

To apply the point process model, first the daily maxima of the time series are 
computed; the resulting sequence of daily maxima is used as basis for the inference. 
Using a constant threshold u=0.4, one has 45 threshold exceedances (see Fig. 7 top, 
left and center panels).  However, the correlation is not very low (Fig. 7 top, right 
panel). Using a stationary point process model with the above threshold yields the 



estimates  in  Tab. 2 (top  row)  for  the  GEV  parameters  of  the  annual  maximum 
distribution.  Notice that  the point  estimates  are  very similar  to  those  obtained by 
straightforward  GEV  inference  (not  shown  here),  but  the  uncertainties  are  much 
smaller (particularly so for the parameter ξ), due to the fact that a considerably larger 
fraction of the available data is being used. However, the diagnostic plots (Fig. 8 top) 
reveal that the fit is not quite accurate. Using a threshold value of 0.3 yields similar 
estimates  (Tab. 2,  bottom  row)  and  the  diagnostic  plots  (Fig. 8 bottom)  look 
somewhat  more  reassuring.  Choosing  lower  values  for  the  threshold  yields 
increasingly more correlation in the sequences of exceedances and should be avoided.

Figure 7: Top, left panel: a constant threshold u = 0.4 (compare with Tab. 2, top row) 
is applied to the sequence of the daily maxima extracted from the time series in Fig. 2. 
The sequence of threshold exceedances and their  autocorrelations are plotted in the 
center  and  right  panel,  respectively.  Bottom:  same  as  top  for  the  time-dependent 
threshold in (3), with parameters as in (7).



Figure 8: Top, bottom: diagnostic plots of the stationary point process inferences in 
Tab. 2 top and bottom, respectively.

u n. exc.
0.4 45 0.563 0.021 0.062 0.009 -0.26 0.122
0.3 123 0.559 0.019 0.062 0.009 -0.21 0.076

Table 2:    Maximum likelihood estimates (,,)  of  the GEV parameters inferred by 
stationary point process modeling from the sequence of daily maxima of the hourly 
time series  in  Fig. 2.  The associated standard errors   have been computed by the 
observed information matrix. The threshold value u used to select the extreme values 
used  for  the  inference  and  the  number  of  exceedances  above  the  threshold  are 



reported in the first and second column from left, respectively. Diagnostic plot for the 
inference in the top row are given in Fig. 8.

0.589 0.041 0 0 0 0

-2.246 0.243 0 0 0 0

-0.056 0.083

Table 3:   Maximum likelihood estimates of the parameter vector (6) of a stationary 
point process model, inferred from the sequence of daily maxima of the hourly time 
series in Fig. 2. The time-dependent threshold u(t) as in (3) used to select the extreme 
values is reported in (7). The maximized log-likelihood is 880.3. 

0.484 0.019 0.031 0.007 0.157 0.006

-2.798 0.176 0 0 0 0

-0.007 0.062

 

Table 4:   Same as Tab. 3 for a point process model with  µ depending on time as 
in (4) and constant σ. The maximized log-likelihood is 990.7. 

0.497 0.023 0.025 0.024 0.205 0.022

-2.769 0.179 -0.028 0.103 0.208 0.088

-0.019 0.062

 

Table 5:   Same as Tab. 4 for a point process model with both µ and σ depending on 
time as in (4)-(5). The maximized log-likelihood is 993.4. 

The time-dependent threshold (3) is then applied, with 



(a,b,d)=(0.26,0.16,-80), (7)

yielding 225 exceedances. The threshold is plotted together with the data in Fig. 7 
bottom,  left  panel.  The  distribution  of  the  exceedances  shows  non-stationary 
behaviour  (Fig. 7  bottom,  center  panel),  particularly  when  compared  with  the 
constant-threshold  selection  (Fig.  7 top,  center  panel).  However,  the  selected 
exceedances  are  less  correlated  (Fig.  7 bottom,  right  panel)  than  in  the  constant-
threshold  case  (Fig.  7 top,  right  panel).  Three  different  point  process  models  are 
inferred on the above exceedances: a stationary model, a model with time-dependent 
µ but constant σ, and a model with time-dependent µ and σ. The obtained inferences 
are reported in Tab. 3, Tab. 4, and Tab. 5, respectively. An exponential link function 
has been used in the model for the parameter σ, to ensure its positivity. This explains 
the  negative  values  obtained:  in  fact,  the  value  exp(-2.77)≈0.063,  which  is  again 
similar  to  that  inferred  with  the  stationary  point  process  with  constant  threshold 
(Table 2). However, the point estimate of ξ is rather different from those obtained by 
the stationary point process model. One may conclude that disregarding the seasonal 
component  of  the  signal  induces  too  small  (negative)  estimates  for  ξ,  since  the 
distribution of the selected extreme values “looks” more sharply bounded from above 
than when using a time-dependent threshold. In fact, the smallness of the absolute 
value  of  ξ for  the  time-dependent  point  processes  inferred  in  Tab. 4 and  Tab. 5 
suggests that a straight Gumbel fit (ξ=0) might be appropriate as well.  Diagnostic 
plots for the three inferences are given in Fig. 9. These confirm that the stationary fit 
is  not adequate, whereas there is no sensible difference in the two fits with time-
periodic  µ and constant or time-periodic  σ (also, the maximized log-likelihoods in 
these two cases are rather similar).



Figure  9:  From  top  to  bottom:  diagnostic  plots  for  the  point  process  inferences 
reported in Tab. 3, Tab. 4, and Tab. 5, respectively.



Figure 10: Seasonally-varying 10-year return level of the surge at Ancona (black) plus 
σ -confidence interval (green). In red, the sequence of daily maxima of the hourly 
time series in Fig. 2 is plotted, together with the time-dependent  threshold (3) (blue), 
whose coefficients are given in (7).

To compute return levels, we choose the GEV model in which both µ and σ have 
seasonal dependence on time, that is, Eqs. (4) and (5) hold with parameter vector (6) 
given by the estimates in Tab. 5). The return levels of the surge also have seasonal 
dependence  on  time:  point  estimates  might  be  easily  obtained  via the  following 
formula for the quantiles of the GEV distribution:

(8)

for ≠0 and 
(9)

for =0. However, this approach would not provide a measure of uncertainty. To obtain 



this, we resort to simulation. The maximum likelihood procedure for the estimation of 
the  parameter  vector (6)  also  yields  a  covariance  matrix  M (from  which  the 
uncertainties in Tab. 5) are computed). Under reasonable assumptions (Coles, 2001) 
the maximum likelihood estimator is asymptotically multinormally distributed. So we 
generate  a  random  sample  of  values  of  the  parameter  vector (6),  multinormally 
distributed and with covariance matrix given by M. For each realization of the sample, 
the quantities µ(t) and σ(t) are computed by Eqs. (4) and (5) for t fixed and substituted 
in (8) or (9) with 1/p=10 years, yielding a value  which depends on the time t of the 
season. Then, mean and variance of the obtained sample of  are computed. This is 
repeated for values of time t belonging to a grid covering a time span of one year. The 
results are plotted in Fig. 10: in wintertime, the expected 10-year return level is larger 
than in summer and so is the related uncertainty.

6. Waves

Strong winds  on the surface of a body of water will cause sea waves that can 
affect the water level. A buoy is moored off Ancona. It records the significant spectral 
height of the wave motion with associated average incoming direction, taken at buoys 
belonging to the “Rete Ondametrica Nazionale” (RON). Until 31/12/2001, the data is 
recorded every three hours,  except when a value of the significant wave height is 
detected above the threshold of 3m, in which case data is measurements are acquired 
every half hour. Since 1/1/2002 all measurements are recorded every half hour. The 
timespan  of  the  time  series  ranges  from  1/1/1999  to  31/12/2004.  We  show  the 
scatterplot the wave heights with tide measurements and the wave heights with surge 
(Fig. 11). 

It  can be noted that at distribution of point corresponding at  high value wave 
height is elongated towards high values of sea level, even though a linear relationship 
is  hard  to  be  found.  Strangely,  when only  residuals  are  plotted  versus  significant 
height of wave, the relationship high wave height equal high values of sea level, due 
to  residuals,  is  not  so  clear,  at  first  glance.  On  the  other  hand,  there  is  a  clear 
relationship  between  variability  of  residuals  and  seasons  (fig.  4),  that  determines 
seasonal variability of sea level.



Figure 11. Scatterplot of significant wave heights and sea levels at Ancona

3.2.1  Point process estimation of extreme values of waves

The  data  analyzed  in  this  section  are  measurements  described  in  the  above 
subsection. As the analysis performed on the water level, at first, the daily maxima of 
the  significant  wave height  are  computed,  independently of  the average incoming 
direction. The resulting time series of length 6 years is used as basis for the statistical 
inference. It is to be noted, however, that the time series is characterized by absence 
of observations in several portions of the record, in certain cases for many consecutive 
days. Moreover, several  spikes (that is, erroneously large values) were present and 
have been removed from the time series.

A plot of the daily maxima of the significant wave height in the considered timespan 
is given in Fig. 12.



Figure 12: Time series of the daily maxima of the significant spectral wave height at 
Ancona RON site during the years 1999-2004.

As  in  the  previous  section,  we  resort  to  point  process  modeling,  since  the 
numerical  procedure  of  GEV for  the  annual  maxima even fails  to  converge  (not 
shown) due to data scarcity: only 6 yearly maxima are available, which would yield 
unreliable estimates anyway. 

We first adopt the stationary model: a constant threshold  u=2.5 is first selected, 
above  which  there  are  94  exceedances  (Fig. 13 top,  left  and  center  panels).  The 
correlation is not very low (Fig. 13 top, right panel). The inference of a stationary 
point process model with the above threshold is reported in Tab. 6 (top row). The 
diagnostic plots (Fig 14, top row) indicate that the fit is reasonably good, though not 
accurate at the upper tail of the distribution (see the quantile plot). Choosing lower 
values  for  the  threshold  yields  increasingly  more  correlation  in  the  sequences  of 
exceedances and should be avoided.



Figure 13: Top, left panel: a constant threshold u = 2.5 (compare with Tab. 6, top 
row) is applied to the sequence of the daily maxima extracted from the time series in 
Fig. 12. The sequence of threshold exceedances and their autocorrelations are plotted 
in the center and right panel, respectively. Bottom: same as top for the time-dependent 
threshold in (3), with parameters as in (10).



Figure 14: Top, bottom: diagnostic plots of the stationary point process inferences in 
Tab. 6 top and bottom, respectively.

u n. exc.
2.5 94 4.0 0.016 0.51 0.1 -0.03 0.1
2.2 142 4.0 0.15 0.47 0.08 -0.1 0.07

Table 6:    Maximum likelihood estimates (,,)  of  the GEV parameters inferred by 
stationary point process modeling from the sequence of daily maxima of the time 
series in Fig. 12. The associated standard errors  have been computed by the observed 
information matrix. The threshold value u used to select the extreme values used for 
the inference and the number of exceedances above the threshold are reported in the 
first and second column from left, respectively. Diagnostic plot for the inference in 



the top row are given in Fig. 14. 

The time-dependent threshold as in (3) is then applied, with 

(a,b,d)=(2.4,0.7,-90), (10)

yielding  74  exceedances.  The  threshold  is  plotted  together  with  the  data  in 
Fig. 13 bottom,  left  panel.  The  distribution  of  the  exceedances  looks  quite 
independent  on  time  (Fig. 13 bottom,  center  panel).  Moreover,  the  selected 
exceedances  are  uncorrelated  (Fig. 13 bottom,  right  panel).  Three  different  point 
process models are inferred on the above exceedances: a stationary model, a model 
with time-dependent µ but constant σ, and a model with time-dependent µ and σ. The 
obtained inferences are reported in Tab. 7, Tab. 8, and Tab. 9, respectively. As in Sec. 
5 an exponential link function has been used for the parameter  σ. However, in this 
case the point estimates of ξ are not very different from those obtained with a constant 
threshold  and  a  stationary  point  process  model.  Diagnostic  plots  for  the  three 
inferences of Tab. 7, Tab. 8, and Tab. 9 are given in Fig. 15. These confirm that the 
stationary fit is not adequate, whereas there is no sensible difference in the two fits 
with time-periodic µ and constant or time-periodic σ, both in the diagnostic plots and 
in the value of the maximixed likelihood.



Figure  15:  From top  to  bottom:  diagnostic  plots  for  the  point  process  inferences 
reported in Tab. 7, Tab. 8, and Tab. 9, respectively.



Figure  16:  Seasonally-varying  10-year  return  level  of  the  wave height  at  Ancona 
(black) plus σ -confidence interval (green). In red, the sequence of daily maxima of 
the hourly time series in Fig. 13 is plotted, together with the time-dependent threshold 
(3) (blue), whose coefficients are given in (10).

Lastly, seasonally dependent 10-year return levels of the waves are computed by 
the same simulation-based procedure as in Sec. 5. The results, presented in Fig. 16, 
show that larger return levels are expected in wintertime with respect to the other 
seasons.



4.1 0.15 0 0 0 0

-0.72 0.13 0 0 0 0

-0.24 0.07

 

Table 7:   Maximum likelihood estimates of the parameter vector (6) of a stationary 
point process model, inferred from the sequence of daily maxima of the time series in 
Fig. 12. The time-dependent threshold u(t) as in (3) used to select the extreme values 
is reported in (10). The maximized log-likelihood is 71.5. 

3.7 0.1 0.01 0.09 0.7 0.1

-0.8 0.19 0 0 0 0

-0.09 0.11

Table 8:   Same as Tab. 3 for a point process model with  µ depending on time as 
in (4) and constant σ. The maximized log-likelihood is 87.6. 

3.6 0.14 -0.04 0.19 0.8 0.21

-0.86 0.21 -0.05 0.15 0.09 0.17

-0.11 0.12

Table 9:   Same as Tab. 4 for a point process model with both µ and σ depending on 
time. The maximized log-likelihood is 87.8. 

6. Conclusions

In this report, we have shown that the tide at Ancona is essentially a mixed 
tide with a strong diurnal constituent. The annual constituent is very important even 



because tidal maxima occurring during the winter season when the meteorological 
conditions force strong winds that affect the water level.
Other than frequencies  associated with astronomical  forces,  there are other effects 
both  at  lower  and  higher  frequencies.  Seiches  are  well  visible  after  filtering  the 
astronomical frequencies; it is worth noting that the spectral density of seiches is a 
hundredth  of  diurnal  K1  frequency.  Even  seiches  are  due  to  meteorological 
conditions,  normally Scirocco winds that  excite  the normal  modes of the Adriatic 
basin. The relationship between meteorological systems affecting sea level is visible 
in the variability of sea level and in particular of the residual. In fact, seasonality of 
surge  variability  is  well  evident.  Such  variability  has  to  be  accounted  for  when 
defining the coastline.  Thus, a coastline should be defined during summer months 
(July or August) in fair weather conditions.
Moreover,  also  the  extreme  analysis  shows the  importance  of  season  in  defining 
return time, that are lower in winter than in summer.
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Appendix A

In this appendix the amplitudes with the associated error and the signal noise ratio 

(snr) of the tidal constituents are shown. 

tide freq          amp          amp_err                 snr
*SA 0.0001141 0.0645 0.018 12
*SSA 0.0002282 0.0285 0.019 2.3
*MSM 0.0013098 0.0033 0.012 0.078
*MM 0.0015122 0.0147 0.015 0.98
*MSF 0.0028219 0.0082 0.012 0.44
*MF 0.0030501 0.0112 0.017 0.44
*ALP1 0.0343966 0.0004 0.002 0.04
*2Q1 0.0357064 0.0005 0.002 0.065
*SIG1 0.0359087 0.0017 0.003 0.46
*Q1 0.0372185 0.0065 0.003 4.5
*RHO1 0.0374209 0.0018 0.002 0.57
*O1 0.0387307 0.0409 0.003 1.80E+02
*TAU1 0.0389588 0.0011 0.002 0.21
*BET1 0.0400404 0.0011 0.002 0.22
*NO1 0.0402686 0.0036 0.002 3.2
*CHI1 0.040471 0.001 0.002 0.21
*PI1 0.0414385 0.0049 0.003 3
*P1 0.0415526 0.0422 0.003 1.70E+02
*S1 0.0416667 0.0061 0.005 1.8
*K1 0.0417807 0.1299 0.003 2.00E+03
*PSI1 0.0418948 0.0018 0.003 0.52
*PHI1 0.0420089 0.0034 0.003 1.4
*THE1 0.0430905 0.0008 0.002 0.15
*J1 0.0432929 0.0092 0.003 9.4
*SO1 0.0446027 0.004 0.003 1.7
*OO1 0.0448308 0.0063 0.002 7.8
*UPS1 0.046343 0.0043 0.002 3.5
*OQ2 0.0759749 0.0005 0.001 0.7
*EPS2 0.0761773 0.0004 0.001 0.68
*2N2 0.0774871 0.0013 0.001 6.3
*MU2 0.0776895 0.0017 0.001 11
*N2 0.0789992 0.0121 0.001 4.40E+02
*NU2 0.0792016 0.0023 0 22
*GAM2 0.080309 0.0001 0 0.13
*H1 0.0803973 0.0006 0.001 1
*M2 0.0805114 0.0663 0.001 1.50E+04
*H2 0.0806255 0.0006 0.001 1.4



*MKS2 0.0807396 0.0004 0 0.98
*LDA2 0.0818212 0.0006 0 1.5
*L2 0.0820236 0.0027 0.001 15
*T2 0.0832193 0.0015 0.001 8.3
*S2 0.0833333 0.0355 0.001 3.90E+03
*R2 0.0834474 0.0004 0 0.77
*K2 0.0835615 0.0104 0 6.50E+02
*MSN2 0.0848455 0.0003 0 0.49
*ETA2 0.0850736 0.0009 0 3.2
*MO3 0.1192421 0.0002 0 0.56
*M3 0.1207671 0.0024 0 37
*SO3 0.122064 0.0007 0 3.6
*MK3 0.1222921 0.0003 0 0.72
*SK3 0.1251141 0.0012 0 10
*MN4 0.1595106 0.0002 0 0.39
*M4 0.1610228 0.0001 0 0.29
*SN4 0.1623326 0.0002 0 0.27
*MS4 0.1638447 0.0002 0 0.41
*MK4 0.1640729 0.0004 0 1.7
*S4 0.1666667 0.0004 0 1.5
*SK4 0.1668948 0.0002 0 0.46
*2MK5 0.2028035 0.0002 0 0.75
*2SK5 0.2084474 0.0002 0 0.75
*2MN6 0.2400221 0.0002 0 0.3
*M6 0.2415342 0.0005 0 1.8
*2MS6 0.2443561 0.0006 0 2
*2MK6 0.2445843 0.0002 0 0.56
*2SM6 0.2471781 0.0004 0 1.2
*MSK6 0.2474062 0.0003 0 1.2
*3MK7 0.2833149 0.0002 0 0.59
*M8 0.3220456 0.0001 0 0.058
*2PO1 0.0443745 0.0031 0.003 0.99
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