

Convection in a porous medium

Tim Jupp

t.e.jupp@exeter.ac.uk

Harrison Room 273

Overview

- Derive governing equations
- Nondimensionalise them
- Solve them numerically
- Investigate linear stability of conductive solution

Porous medium convection on the web?

Sample matlab output

streamfunction $\psi(x, y)$ temperature T(x, y)

Notation (Roman letters)

<u>Symbol</u>	<u>Description</u>	S.I. units
\mathcal{C}_p	specific heat capacity	$J \cdot kg^{-1} \cdot K^{-1}$
$D = \frac{\lambda}{\rho c_p}$	thermal diffusivity	$m^2 \cdot s^{-1}$
\mathbf{g}	gravitational acceleration	$m \cdot s^{-2}$
k	permeability	m^2
L	height of convection cell	m
p	fluid pressure $Pa = N$	$m^{-2} = kg \cdot m^{-1} \cdot s^{-2}$
T_{0}	reference (cold) temperature	K
T	temperature	K
t	time	\boldsymbol{S}
u	Darcy ("transport") velocity	$m \cdot s^{-1}$
x, y	horiz. / vert. coords	m

Notation

Symbol	Description	S.I. units
α	thermal expansivity	K^{-1}
λ	thermal conductivity	$W \cdot m^{-1} \cdot K^{-1}$
μ	dynamic viscosity	$Pa \cdot s$
ρ	fluid density	$kg \cdot m^{-3}$
$ ho_0$	reference (cold) fluid density	$kg \cdot m^{-3}$
ψ	streamfunction	$m^2 \cdot s^{-1}$

Dimensional governing equations

$$\mathbf{u} = \begin{pmatrix} \frac{\partial \psi}{\partial y} \\ -\frac{\partial \psi}{\partial x} \end{pmatrix} = \begin{pmatrix} \psi_y \\ -\psi_x \end{pmatrix}$$

conservation of mass

$$\mathbf{u} = -\frac{k}{\mu} (\nabla p - \rho \mathbf{g})$$

conservation of momentum

$$\frac{\partial T}{\partial t} = -\mathbf{u} \cdot \nabla T + D\nabla^2 T$$

conservation of energy

$$\rho = \rho_0 \left[1 - \alpha \left(T - T_0 \right) \right]$$

constitutive relation

Nondimensionalisation

<u>Dimensional</u> <u>variable</u> Scaling factor

<u>Dimensionless</u> <u>variable</u>

x, y

L

 $\hat{x} = x / L, \hat{y} = y / L$

Ψ

$$\frac{kg\alpha\rho_0L(\Delta T)}{\mu}$$

 $\hat{\psi} = \left(\frac{\mu}{kg\alpha\rho_0 L(\Delta T)}\right)\psi$

T

$$(\Delta T) = T_{\text{max}} - T_0$$

$$\hat{T} = T / (\Delta T)$$

t

$$\frac{L^2}{D}$$

$$\hat{t} = \left(\frac{D}{L^2}\right)t$$

Dimensionless governing equations

$$\hat{\nabla}^2 \hat{\psi} = -\hat{T}_{\hat{x}}$$

mass, momentum

$$\hat{T}_{\hat{t}} = Ra \cdot \left(-\hat{\psi}_{\hat{y}} \hat{T}_{\hat{x}} + \hat{\psi}_{\hat{x}} \hat{T}_{\hat{y}} \right) + \hat{\nabla}^2 \hat{T}$$

Where we have defined the "porous medium Rayleigh number"

$$Ra = \frac{kg\alpha\rho_0 L(\Delta T)}{D\mu}$$

For simplicity, we may from now on omit the "hats" if it is clear that we are referring to dimensionless variables!

Numerical Analysis reference

Numerical Recipes (Press et al.)

University Library or online at

http://www.nrbook.com/a/bookfpdf.php

(in particular chapter 19 on PDEs)

Tasks for next week

- read Lapwood, Horton + Rogers (you are <u>not expected</u> to understand every last detail)
- try to translate between their notation(s) and ours
- (hint 1 darcy = 10^{-12} m²)
- describe (in words and <u>not</u> in detail) what they do beyond what we have done