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ANALYTICAL APPROACH TO REALISTIC MODELS
OF EXCITATION PROPAGATION IN HEART

Background and context

Heart failure is a major cause of death in the industrial world. Major resources in pharmaceutical and
biomedical engineering industries are dedicated to development of drugs and devices to tackle heart
problems. This entails intensive research into the mechanisms of heart failure. Experiments increasingly
provide material for more complicated and accurate mathematical models of subsystems of the heart.
The current project has been about mathematical modelling of propagation of electrical excitation in
cardiac muscle and its pathologies. Mathematical models of excitation and propagation by now have
been developed in remarkable detail. A typical structure of such a model is

0E/0t=DV’E+> Ii(Ey), 0y/ot=Y(E,y), (1)

where E is transmembrane voltage of the cardiocytes, functions I; () represent individual transmembrane
ionic currents, each conducted by a different sort of transmembrane channels, and the vector y includes
the “gating” variables of the ionic channels and the intra- and extracellular concentrations of ions in-
volved. Some models use 20 or more differential equations per cell [18]. These models are mostly studied
numerically, which has well known disadvantages. Attempts of simplication and analytical treatment of
the heart models have been made ever since their beginning. The mainstream approach so far was based
on systems of equations by van der Pol [19] for an electronic nonlinear oscillator and by Zel’dovich and
Frank-Kamenetsky (ZFK) [20] for propagating flames, which have nothing to do with cardiac excitation,
but were available when the experiment-based models of cardiac excitation were first created. This di-
rection was set by papers by FitzHugh [21] and Nagumo et al. [22]. The FitzHugh-Nagumo (FHN) class
of models has the form

OF /ot = DV?E + f(E,g),  0g/ot=¢G(E,g), 0<e<]l, (2)

where E,f € R, g,G € R*, k > 1, and f(E,g) as a function of F, in a relevant range of g = const
values, has three roots, two stable and one unstable in between. In the original formulation of [21], k = 1,
g = (v), f() is cubic, f(E,g) = F — E?/3 —v and G(E,v) = (E + 3 — qv), 3,7 = const. For us most
important is the small parameter ¢, due to which E is (the only) fast variable. The fast equation of (2),

0F /ot = DV*E + f(E), (3)

with cubic f(E) is known as Zeldovich-Frank-Kamenetsky (ZFK) equation [20, 32]. The limit ¢ — 0
allowed an attractive and promising asymptotic theory [23]. Alas, it has never been seriously applied to
any realistic cardiac excitation models.

In the pilot studies before this project, we have demonstrated that the FHN-type models (2) have
a serious and incorrigible fault: they cannot describe an idiosyncratic scenario of block of excitation
propagation observed in cardiac models, which we called “front dissipation” [33]. The front is the fast
stage of a propagating excitation wave, which in FHN-type systems is described by the fast subsystem
like (3). We have suggested in [33, 34] an alternative two-variable fast subsystem that can reproduce the
front dissipation phenomenon:

OF /ot = DV*E + F(E)h, Oh/ot = (h(E) — h)/7(E), (4)

where the form of the functions F/(F), h(E) and 7(F) is motivated by ionic cardiac excitability equations,
with the important property that F(E)h(E) = 0 and, moreover, that both F(E) and h(E) vanish
simultaneously in a certain interval of E intermediate between the resting and the excited state. We
suggesed a “toy” system with these properties, with

F(E,h) =O(E — E,,), h(E) =0(E, — E), E,, > Ej, 7(E) = 7 = const, (5)

where ©() is the Heaviside step function. It has exact analytical solution in the form of propagating
fronts, and its structure has been motivated by realistic ionic models of cardiac excitation.

The FHN paradigm has been around for over forty years and many important asymptotic results
have been obtained within it. As we have learnt that it is of limited use for cardiac excitability, the need
appeared in re-doing these results with the new paradigm. The purpose of the current project was to
start this and to investigate a few keystone problems, to lay the beginning of the new asymptotic theory
of cardiac excitability.



Key Advances and Supporting Methodology

The study proceeded in accordance with the seven tasks laid out in the original grant proposal.
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Tasks 1,2: Development of the upstroke/front model
and Development of the plateau and recovery model
Derivation of the fast subsystem (4) from the Noble (N62)
model of cardiac Purkinje cells [24] and Courtemanche et al.
(CRN) model of human atrial tissue [25] was the preliminary
work that motivated the current project [34]. The main asymp-
totic embedding suggested and investigated in this project is
formally presented as

/
OE/0t = DV’E + gna(Bxa — E)m’hj +¢ ) I(E.y),
J .
B Figure 1:  Local propagation block, dis-
Om/ot = (in(E) —m)/Tn(E), sipation and break-up of the front of a
oh/ot = (h(E)—h)/m(E), re-entrant excitation wave in CRN model.
djjot = e(i(E) —j)/Tj(E), The arrow mdzcat'es the tzme an4 place
where the propagation block is predicted by
dy/ot = €Y(E,y) (6)  the asymptotic theory; it is also where it re-

where 3" is the sum of all currents except the fast sodium @!ly happens. From [AG].

current Iy, represented by the previous term, and we are interested in the limit € \, 0. We first deduced
such embedding for the N62 model (which does not have the j gate) based on a well defined set of axioms,
formalizing the asymptotic properties of the model, and identifying parameter regions requiring special
treatment [A1, A12]. This study also has led us to suggest an “Archetypal Model” of cardiac excitation,
which is a modification of the N62 model inheriting its simplicity but not having peculiar features that
are incidental to this model and complicate its analysis, but instead has a structure more typical for
other cardiac models. The methdology developed for N62 model, was then applied to Beeler-Reuter
(BR) model of mammalian ventricular cells [26] in [A15] and CRN model in [A6, AT].

In [A10] we obtained an analytical front solution of the fast subsystem of (6), and in [A2, A6] we used
this subsystem to derive an analytical criterion of front propagation, corresponding to the analogous
(but different) criterion in FHN-type systems known as “Maxwell rule”. This criterion is in an excellent
agreement with direct numerical simulations of the full model.

The particular attention to slow subsystems was paid in [A1, A12] for N62 model, where introduction
of further small parameters has allowed a complete asymptotic solution in quadratures (explicit for a
“caricature” approximation of some functions). The method has been subsequently applied to the BR
model, where the main asymptotic (6) gives a good quantiative approximation of the full model, and
involvement of further small parameters allows further simplification to a model similar to the Archetypal
Model [A15]. The main asymptotics to the CRN model reproduces well the shape of the action potential;
further simplification using further small parameters is possible, some stages of which are significantly
hampered by non-standard features in the internal Ca handling part of the model, which are probably
unique to the CRN model [A14].
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citation waves, when the motion of

the fronts is described by one sort of Figure 2:  Asymptotics of the BR model: (a) approzimation of a
equations (front motion equations typical action potential solution, lines: full model, symbols: asymptotic.
)

ODEs in 1-D systems) and the evo- (b) approzimation of the conduction velocity restitution curves. From
lution of the medium in between the [A15].
fronts is described by the ODEs for the slow parts of the action potential. We have described the prin-

cipal formalism of such approach in [A5] and specifically for cardiac models in [A15]. Matching the two
asympotic expansions can be used to calculate the so called Restitution Curves (RCs) of cardiac models,



such as Action Potential Duration (APD) RC and Conduction Velocity (CV) RC, which describe the
change of shape of the action potential and propagation velocity of periodic wavetrains depending on
their periods. The RCs attract serious attention in cardiac dynamics as some their features correlate with
important global characteristics of cardiac tissues, such as propensity to fibrillation. We have obtained
RCs for the Archetypal (modified N62) model and the BR model using our asymptotic approach and
showed they are in good agreement with the RCs calculated for the full models [A15].

Task 5: Non-stationary processes: initi-
ation and dissipation of the fronts It has
been anticipated in the proposal that the new
asymptotic approach is particularly important
for marginal nonstationary events such as ter-
mination and initiation of excitation waves.
The termination of the excitation fronts via | (@ 5 © 15 2w0 5 w0 5 20 « (§ 1 2 3 xn

recently described “front dissipation” mecha- N ‘
nisms has proved to be an easier object to Figure 3:  (a) “Critical front” in the CRN model. Shown
are successive spatial profiles of the transmembrane voltage

for initial condition slightly below (left) and slightly above
(right) the initiation threshold [A11]. (b) Threshold curve
obtained by linear approrimation around the critical nucleus
in FHN model, compared to the numerical simulations [A16]

study. We have shown that the conditions of
existence of excitation fronts coincide with a
good precision with the conditions of termi-
nation of existing fronts [A6] (fig. 1). The
problem of initiation is more complicated: it
is an essentially nonlinear, non-stationary and
spatially-distributed problem. A few works on this topic done before our project were centered around
the concept of the “critical nucleus”, which is an unstable spatially-nonuniform solution of the ZFK equa-
tion, whose codimension one center-stable manifold serves as the threshold surface between the basins
of attraction of the propagating fronts and the resting state. We have demonstrated that this concept is
inapplicable to the cardiac equations and should be replaced with the concept of critical front [A9, A11].
The center-stable subspace is a linear approximation of the codimension-1 center-stable manifold and
thus provides an analytical answer to the initiation problem [A16] (fig. 3).
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breaks. The movement of fronts in (a) curvature )
FHN-type systems is typically well
described by the relationship V' = Figure 4: Two-dimensional results. (a) Asymptotic speed-curvature

Vo — DK where V is the local front relationship for fronts in the CRN model [A6]. (b) Wavebreak structure
speed, K is local front curvature and in model (4,5). Shown are also: direction of the tip velocity, direction
D is a constant of the dimensionality towards centre of rotation and the tip trajectory. (c) Dependence of tip

of diffusion coefficient [23 27 28] angular velocity on parameter in model (4,5) shows sign of non-unique
Y ) *
We have studied the behaviour of solution and hysteresis, but all branches are consistent with the non-

curved fronts in fast subsystem of FHN asymptotic which has been predicted but not seen before [A17].

(6); this leads to a parametric con-

tinuation of the 1D boundary-value problem for the front profile, in the parameter K. In CRN model,
the resulting dependence is close to linear in a wide range of curvatures, almost up to the point where
the curvature arrests propagation (fig. 4(a)).

Old asymptotic theories of wavebreak motion (e.g. [28, 29, 35]) demonstrated th key role of the
asymptotic of the stationary circular movement, particularly the limit of small turning rate and large
trajectory radius. The dependence of tip turning rate w on any parameter p in this limit is typically
w o |p—p«|™, as p — p.. As we have demonstrated in [36], there could be two different types of such
asymptotics, with n = 1 or n = 3/2. According to [30], the FHN-type systems always have n = 3/2,
whereas the case n = 1 has never been reliably identified before in any excitable medium. In [A17], we have
simulated movement of a front break in the model (4,5). Since this model does not include the processes
of recovery, we have used a novel technology of calculation of the quotient system by the Euclidean
group of symmetry proposed earlier in [37], in other words in the frame of reference comoving with the



wavebreak point (spiral wave tip). To assess the impact of the co-moving boundaries of the computational
domain, apart from the usual comparison of results in different domains, we have calculated “response
functions”, i.e. eigenfunctions of the adjoint linear operator dual to the symmetry shift modes, using
the “causodynamics” method [A4, A8]. We have found that the “large-core” asymptotics in this model
does in fact show the non-classical dependence with n = 1. However the behaviour of the tip is more
complicated than that, as we have discovered there are multiple solutions and hysteresis.

Task 7: Applications Application of the
discovery of the front dissipation and methods
of its detection is exemplified by [A3] where
we have demonstrated that this phenomenon
can be an essential underlying mechanism of
self-termination of fibrillation in CRN. An ap-
plication of the theoretical studies to experi-
ments that occurred within the lifetime of this
project is illustrated in fig. 5. Experiments
with cell cultures of neonathal cardiomyocytes
made in the laboratory of N. Sarvazyan, now
with George Washington University, are ded- Figure 5: A hypothetical mechanims of arrhythmogeneity
icated to a long standing problem: why is- of infarction. Upper row: genemti'on of a spiral wave via
chemia can produce re-entrant arrhythmias. break—up of a wave from an “ec‘topzc ngxus” in a dynically
The experimental set-up aims to reproduce in recovering ischemic zone. Fxperiment with neonatal rat car-

. he d ) diti thin the bord diocyte culture. Lower row: gemeration of a spiral wave by a
vitro the dynamic conditions within the border similar scenario and its escape into the bulk of non-ischemic

of a recovering ischemic zone. Mathematical .00 Simulations of a BR model. From [A13].
modelling using BR model reproduces in silico

and explains key events, related to marginal non-stationary processes of generation and blocks of exci-
tation waves, such as initiation of ectopic waves, their break-up due to tissue heterogeneity, pinning and
drift of resulting spiral waves and their escape from the ischemic border zone into the bulk of the tissue.
This provides an entirely plausible, experimentally confirmed and theoretically explained scenario of the
genesis of so called reperfusion arrhythmias [A13, 31].

So, all the objectives set out in the original plan have been achieved.

Project Plan Review

As expected, minor deviations from the plan depended on the results obtained. For instance, the discovery
of multiple solutions for excitation front wavebreaks with different turning rates has been completely
unexpected and attracted considerable effort at the final stage of the project at the expense of other tasks;
this direction of research will be continued, as it might be of fundamental importance for understanding
the movement of excitation wave breaks in realistic ionic cardiac models, which is completely beyond
the classical theory based on the FHN-type asymptotics. Another minor deviation was the decision to
analyse the BR model, as an intermediate step between the early models (N62) and the modern models
(CRN), motivated also by the prospective application [A13].

Research Impact and Benefits to Society

The results of the project lay the foundation of further research into a new area, the realistic asymptotic
analysis of ionic models of cardiac excitation. Such analysis leads to a better understanding of excitation
phenomena that are of crucial importance for biomedical applications, particularly those involving gen-
eration, termination and break-up of excitation waves. Furthermore, correct asymptotic analysis can be
exploited in improving the numerical simulation technologies, which could not have been done with the
classical FHN-type asymptotics due to their inadequacy for cardiac models. Together, these advances
will lead to a better understanding of the mechanisms of cardiac arrhythmias and help development of
new means of their prevention and treatment. Thus the biomedical industry, medicine, cardiac patients
and the general public are the ultimate beneficiaries.

Extra benefits can emerge via cross-fertilization with other fields, as non-standard asymptotic meth-
ods developed for cardiac models are an example for development non-standard approaches for other
complex nonlinear systems with small parameters, which in principle spans across the whole of applied
mathematics, with all the variety of possible applications.



Explanation of Expenditure

The most significant variations against the original plan, affecting expenditure, were:
e Staffing. The work permit for Dr Simitev was delayed by factors beyond our control. To avoid an
unnecessary delay in the start of the project, Ms Suckley (PI’s finishing Ph.D. student) was appointed
for a short term as a post-graduate RA. In Sept. 2006 Dr Simitev accepted an offer for a permanent
academic job and the position became vacant. Dr Vasiev was recruited for the rest of the project; however
he was unable to start immediately. To avoid an undesirable break, Mr Idris (PI's second-year Ph.D.
student) has been appointed for a short term, as a part-time PGRA. In the end, this allowed to attract
extra intellectual resources within the same budget.
e RA salary. The 2005 Pay Modernization required an increase in the RA’s salary, the resulting shortfall
in the project’s budget to be covered by the University. To avoid any (potentially very damaging for the
project) controversies, the appointment of the second post-doctoral RA, Dr Vasiev, was at exactly the
same spine level as his predecessor. For the same reason, the cost of the interim appointment of Mr Idris
(ca £1k) was counted separately from the main salary budget, as otherwise the required contribution
from the University would have been unclear and disputable.
e Duration. Dr Vasiev started in the mid-October 2006 with the remaining term of 9 months. However
EPSRC advised that the overall duration of the project should be in whole months, so his appointment
was extended to the end of August. This was under the same conditions and strictly within the budget.
e Equipment. Soon after the start of the project, the University has installed a new high-performance
computing cluster; this has been followed by a purchase of a powerful cluster by the Department of
Mathematical Sciences. This has changed our need in computational resources. We delayed the purchase
of the workstation closer to the end of the project and got a better value for money. Instead, early in
the project we invested in two good Linux boxes for the PI and for the RA, built from parts at low cost
thanks to the assistance of the departmental computer officer.

Other variations were less significant and were dictated by current needs.

Further Research or Dissemination Activities

Publications This 3-year project resulted in 17 research papers: 9 appeared in peer-reviewed journals,
1 in peer-reviewed and 1 in not peer-reviewed conference proceedings, 2 accepted in peer-reviewed journals
and 4 further papers are in preparation. This list includes Physical Review Letters (2 papers) and
Biophysical Journal (2 papers), the top journals respectively in the nonlinear science community and in
the physiology community (its part receptive to mathematical modelling results).

Presentations The results have been presented at (excluding internal Liverpool University events):
2004: CARDIOSTIM, Nice; Physiological Society Focused Meeting “Biocomputation and Modelling in
Physiology”, Oxford;

2005: Northern Cardiovascular Research Group Meeting, Liverpool; BAMC, Liverpool; Functional
Imaging and Modeling of the Heart, Barcelona; European Conference on Mathematical and Theoretical
Biology, Dresden; European Cardiac Functional Modelling, Manchester;

2006: Biophysical Society Annual Meeting, Salt Lake City; Kavli Institute of Theoretical Physics
miniprogram “Cardiac Dynamics”, Santa Barbara; “Computers in Cardiology”, Valencia; Furopean
Cardiac Functional Modelling, Gandia, Spain;

2007: regional seminar “Complex Nonlinear Processes in Chemistry and Biology”, Fritz Haber Insti-
tute, Berlin; Applied Mathematics seminar, Leicester; “BIOSIM: Engineering Virtual Cardiac Tissues”,
Manchester; BAMC, Bristol; International workshop on non-linear dynamics in excitable media, Ghent;
European Heart Modelling workshop, Oxford; Applied Mathematics seminars, Glasgow, Newcastle.

Some of the further research directions Participation in the KITP miniprogram (partly supported
by a separate EPSRC grant) was a significant evidence of esteem as the theoretician participants were
resident through the whole duration of the program and were carefully selected. This has led to a number
of perspective collaborations where the results of this project will be applicable, including such nontrival
experimentally observed regimes as meandering spirals with discordant alternans (E. Entcheva, Stony
Brook) and drifting foci (R. Abraham, John Hopkins Hospital), both observed in different cardiocyte
cultures. Collaboration with N. Sarvazyan is to be continued, e.g. to investigate three-dimensional
implications of the findings so far. Another perspective research direction is mathematical modelling of
hypothetical mechanisms of the “sick sinus syndrome” (H. Zhang , modelling, M. Boyett, experiment,
Manchester), a grant application is currently in preparation.
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