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We explore the feasibility of using fast-slow asymptotic to eliminate the computational stiffness of the discrete-
state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability.
We focus on a Markov chain model of the fast sodium current, and investigate its asymptotic behaviour with
respect to small parameters identified in different ways.

Modern models of excitability of cardiac cells in-
clude description of ionic channels in terms of de-
terministic Markov chains. The transition rates
in these chains often vary by several orders of
magnitude, which makes numerical simulations
more difficult and necessitates development of
specialized numerical approaches. We follow the
usual wisdom that the small parameters in a
mathematical model can be turned from an im-
pediment into an advantage by development of
asymptotic description exploiting those small pa-
rameters. The usual problem with experiment-
derived (rather than postulated) models is that
small parameters in them are not defined a pri-
ori but need to be identified, and sometimes this
can be done equally plausibly in more than one
way. In this paper, we show how the standard
fast-slow asymptotic theory can be applied to the
Markov chain models of ionic channels using one
important model of this class as an example. We
explore three selected ways of identifying small
parameters in this model, and investigate the fac-
tors on which the utility of resulting asymptotics
depends.

I. INTRODUCTION

The bioelectricity is one of the driving forces of our
life. Our mind and body is a manifestation of complex
dynamics of electric impulses that carry information and
trigger reactions in different organs of our body. The
pulses of electrical excitation in heart are responsible for
starting a chain of reactions, resulting in contraction of
the cardiac muscle, causing the blood circulation. Un-
derstanding the detailed mechanisms of formation and
propagation of electrical excitation can help in treatment
and prevention of cardiac diseases.

The direct experimentation with living systems is diffi-
cult and rises many ethical issues, hence a mathematical
description provides a valuable tool to gain insight and
understanding of the internal working of the heart.

The elementary part of a cardiac excitation model are
models of the ion-specific channel in the membrane, that
close or open in response to the change in the transmem-

brane voltage. On the molecular scale, functioning of a
single channel is an inherently stochastic process, which
is adequately described as continuous time Markov chain
(or Markov processes, as they are sometimes called). For
most applications, however, the stochastic component is
not essential, and it is sufficient to describe the behaviour
of the channel in terms of the deterministic “master equa-
tion” for the probabilities of the channel to be in cer-
tain states, as functions of time. Simulation of resulting
excitation models for single cells does not create prob-
lems; but when scaled to the tissue or whole-organ level,
this becomes computationally expensive1. The computer
technology is constantly improving, and recent publica-
tions describe results that would be unthinkable a few
years before: e.g. Richards et al. 2 simulated excitation
in whole human heart with spatial resolution of 0.13 mm
in nearly real time. However, that was done on a system
with 1.6 million CPUs and a peak speed of 20 petaflops.
For the moment, such systems are far from ubiquitous.
It is therefore important to try and improve the com-
putational methods for simulation of cardiac excitation
models.

One significant factor of computational complexity
is that the Markov chain models of ionic channels of-
ten involve processes on time scales differing by several
orders of magnitude, i.e. are stiff. So a direct ap-
proach using explicit time steppers requires very small
time steps, hence high computational demands. For in-
stance, Bondarenko 3 , for a model involving a number
of Markov chain channels, used time steps as short as 2
picoseconds—this is to be compared to the duration of
the onset of an action potential of the order of 1 mil-
lisecond, and duration of the cardiac pulse of the order
of 1 second. The natural alternative is generic implicit
time steppers. However, approaches based on exploiting
specific properties of cardiac excitation model present an
attractive third possibility. In this paper, we explore one
possible way to exploit specific properties of the Markov
chain models of ionic channels. This is based on the tra-
ditional idea that a small parameter in the model can be
turned from a hindrance into an advantage, by finding
asymptotics in this parameter. For small parameters re-
sponsible for numerical stiffness, the adequate approach
is singular perturbation theory, of fast-slow asymptotics.

The problem of stiffness of the description of the ion
gates’ dynamics is not new for the Markov chain mod-
els, and was there already for the Hodkin-Huxley (HH)
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type “gate” models, starting from the Hodgkin and Hux-
ley 4 . Out of many approaches to overcome stiffness in
these models, arguably the most popular one follows the
work by Rush and Larsen 5 . In some respects, it offers
and “ideal” solution for the HH-type models, combining
accuracy and stability. This approach exploits the fact
that the equation controlling an HH-type gate is quasi-
linear, in the sense that is is linear with respect to the
gate variable, although it depends on other, “control”,
variables in a non-linear way. Typically, the control vari-
able is the transmembrane voltage, but in some chan-
nels it is concentration of Ca ions in addition or instead
of the transmembrane voltage. If the control variables
change negligibly during one time step, then “freezing”
these variables allows one to write an “exact” solution.
In the simplest formulation, the resulting computational
scheme is first-order accurate, but the coefficient in the
leading order term depends on the rate of the voltage (or
whatever the control variable is) and does not depend on
the stiffness of the equation with respect to the gate vari-
able. This approach may be be formalized as fast-slow
approach, where the control variable is slow and gate
variable is fast. In that case, the leading-order solution
for the gate variable, the “instant equilibrium”, corre-
sponds to the limit when the time step is much longer
than the characteristic time constant defined by the cur-
rent values of the transition rate. However, the Rush-
Larsen scheme in fact retains its accuracy when the time
step is much less than, or is comparable to this charac-
teristic time.

The Rush-Larsen approach has been so popular, it
inevitably spawned a number of attempts to improve
and/or extend it. For instance, Perego and Veneziani 6

proposed how to increase its accuracy from first to sec-
ond order, and Marsh, Ziaratgahi, and Spiteri 7 sug-
gested how to apply it to equations which are not quasi-
linear, by linearising them for the duration of the time
step. The Markov chain description poses a different
sort of challenge: the equations are quasi-linear with
respect to the Markov state occupancies so there is no
need in linearization, but instead of one equation for a
gate variable, there is a system of simultaneous linear
equations. The “straightforward” Rush-Larsen-type ap-
proach, when each of the equations of the system is con-
sidered in turn, by freezing all other variables together
with the control variables, has been proven effective for a
number of examples (see Ref. [1] and references therein).
A more radical approach for Markov chain generaliza-
tion of the Rush-Larsen scheme, which utilized the exact
solution for the whole linear system, thus avoiding ex-
tra errors caused by freezing some Markov states while
updating others, was described in Refs. 8 and 9.

The methods discussed above offer efficient numerical
schemes, but do not exploit the fact that the different
processes within the same Markov chain may, and of-
ten do, have vastly different speeds. Taking these into
account can, at least theoretically, offer further advan-
tages. There have been a number of inspiring examples

of this kind in literature. For instance, Hinch et al. 10

and Plank et al. 1 used the concept of “rapid equilib-
rium”, exploiting rapid transition rates between some of
the states of a Markov chain, to effectively “merge” the
closely connected states into one “combined” state, for a
number of Markov chain models. This approach can be
formalized as a leading-order asymptotic in the classical
fast-slow perturbation theory descending from the works
by Tikhonov 11 and Fenichel 12 , for a particular form in
which a small parameter ε appears in the equations: as
a factor 1/ε in front of the transition rates between two
selected Markov states.

In the present paper, we seek to analyse this sort of
asymptotics in more detail, following the full formalism,
rather than immediately getting to the answer by follow-
ing the rather obvious, but still only intuitive “rapid equi-
librium” argument. The motivation for a more detailed
analysis includes possibilities of generalization of the
asymptotic approach to the fast/slow separation cases
other than pairs of fast reciprocal transition rates, and
getting higher-order terms in asymptotics. Moreover, an
important theoretical question is whether stiff Markov
chain formulations of ionic channels can always be well
described by the standard singular perturbation theory.
The intrigue here comes from the fact that the Hodgkin-
Huxley description of some cardiac channels, specifically
the fast sodium current channel, may be only partly de-
scribed by the Tikhonov asymptotics, in regards of the
the activation, ‘m’-gate; whereas the attempts to treat
the inactivation, ‘h’-gate as fast or slow compared to the
transmembrane voltage are ineffective, and at the very
least fail to describe some essential qualitative features,
such as the maximum of the action potential which is
lower than the reversal potential for the sodium ions and
which is different in a single cell in a propagating wave
in tissue, to name the simplest example13–16. Hence the
answer for the Markov chain model of the same channel
is far from obvious a priori and requires investigation.

To address the theoretical question posed above, we
have chosen the Markov chain model of the fast sodium
current developed by Clancy and Rudy 17 . This is not
the stiffest model of existing models of the kind, but it is
one of the most popular ones. As our study was method-
ological rather than practical, it was important for our
choice that the transition rates, and related characteris-
tic times, in this model are varied in wide ranges which
makes identification of small parameters a nontrivial is-
sue. In other words, our aim was not to identify ex-
amples when the standard asymptotics can successfully
treat the problem of stiffness (such examples do exist, see
above), but rather analyse cases when the standard ap-
proach fails, as a necessary step towards developing more
adequate, non-standard approaches. An extra motive for
the choice of the fast Na current in this context was that
the Hogdkin-Huxley description of this current is known
to require non-Tikhonov asymptotics, as discussed above.

The structure of the paper is as follows. Section II
introduces the notation and main principles of the sin-
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gular perturbation approach we are using. Section III
discusses amendments required of this approach with ac-
count of the specifics of Markov chain models. Section IV
presents a formalization of the process of identification
of small parameters in experiment-based models, which
we call parametric embedding. Section V introduces the
Markov chain model of the fast sodium current which
we use to apply the singular perturbations. Section VI
presents the main results, coming out of a few differ-
ent parametric embeddings of this model. This is con-
cluded by discussion in Section VII. We also present an
Appendix containing technical material which is required
for reproducing the main results but not for their under-
standing.

II. GENERAL THEORY FOR DIMENSIONALITY
REDUCTION

The singular perturbation theory is well known in a
variety of different formulations. We mostly follow the
terminology and notation used e.g. in Refs. 18–22, ad-
justing where necessary for our present purposes.

We consider an autonomous system of ordinary differ-
ential equations

du

dt
= f(u) + εh(u) (1)

where u, f ,h ∈ Rn, and ε is a small positive parameter.
We assume existence of a stable m-dimensional manifold
{U} of equilibria of the unperturbed system, ε = 0, i.e.
f(U) = 0, where 0 stands for the null vector, with coor-
dinates a ∈ Rm, 1 ≤ m < n, and looking for solutions of
the perturbed system, ε > 0, in the form

u = U(a) + εv(t) (2)

where the perturbation of the solution b ∈ Rn is orthog-
onal to the manifold, in the sense that

v(t) =
∑
`

b`V`(a), (3)

where the vectors Vi(a) are right eigenvectors of a Jaco-

bian matrix F̂ (U) = ∂f/∂u|u=U,

F̂Vi = ΛiVi, (4)

and the summation index ` runs through the stable eigen-
values, Re (Λ`) < 0, ` = m + 1, . . . , n, skipping the zero
eigenvalues, Λk, k = 1 . . . ,m, corresponding to the direc-
tions tangent to the manifold. Table II summarises the
meaning of these and other index conventions as used
throughout the text, subject to a small amendment in
the next section.

The right eigenvectors corresponding to zero eigenval-
ues Λk = 0 are tangent to the invariant manifold and can
be found as

Vk =
∂U

∂ak
. (5)

We substitute (2) and (3) into (1), expand the nonlin-
ear functions into their Taylor series and separate the
components using left eigenvectors WT

i as projectors.
The detailed derivation is presented in the Appendix A.
The final result reads as the following system of ODEs

1

ε

dak
dt

=WT
k h(U) + εFk(a,b) +O(ε2), (6a)

db`
dt

=Λ`b` + WT
` h(U) +O(ε), (6b)

where in the right-hand side of the first equation we have
kept the leading order term, WT

k h(U), and the first-order
correction Fi, which works out as

Fi(a,b) =WT
i Ĥ(U)v + WT

i

∑
j1,j2

∂2f

∂uj1∂uj2
vj1vj2

+
1

ε

∑
k

∂WT
i

∂ak

dak
dt

v, (7)

where

Ĥ(U) =
∂h

∂u

∣∣∣∣
u=U

. (8)

Equations (6a) and (6b) are coupled through higher-
order terms, and to complete the reduction, we need to
eliminate b. For the solution of the manifold coordinates
a up to O(εN ) it is sufficient to find the correction term
b up to O(εN−1). The leading order term for the cor-
rection b in terms of a can be found by solving (6b)
using the integrating factor method. The solution also
requires Taylor expansion of the integrating factor and
of the non-homogeneous term. This leads to

b` = −WT
` h(U)

Λ`
+O(ε), (9)

which is to be substituted into the first-order term into
(6a), which then becomes a closed equation for a.

TABLE I. Ranges of indices used in the text, unless explicitly
stated otherwise.
index values corresponds to
i, j, j1, j2 ι, . . . , n

a all eigenvalues of Jacobian (J.)
k, p ι, . . . ,m a zero eigenvalues of J.

0 b autonomous time direction
q, q′ 1, . . . , n b all eigenvalues of Markov chain (M.C.)
r, r′ 1, . . . ,m b zero eigenvalues of M.C. λr = 0
` m+ 1, . . . , n non-zero eigenvalues of J. or M.C.

a Here ι = 1 for Section II and ι = 0 from the next section on.
b This is used starting from Section III.
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III. DIMENSIONALITY REDUCTION FOR
TIME-INHOMOGENEOUS MARKOV CHAINS

The master equation for Markov chain models of ionic
channels can be written in the form

dx

dt
= Â(t)x. (10)

Entries in the vector of dynamical variables x ∈ Rn
represent the probabilities, that an ion channel resides
in a particular state. Entries of the transition matrix
Â ∈ Rn×n describe the conditional probabilities of a
channel in one given state to transit to another state per
unit of time, i.e. transition rates. In reality, the matrix
Â depends on other dynamic variables of the model, e.g.
the transmembrane voltage, which in turn are affected by
the dynamics of the Markov chain; however this is not es-
sential for the formalism we describe here and we assume
that Â is an explicit function of time, just for simplicity of
notation. The sum of the entries in the vector of dynam-
ical variables is equal to 1, i.e. it is a stochastic vector.
This implies that the sum of the entries in each column
of the transition matrix Â has to be equal to 0. This is
achieved as the entries on the diagonal of the transition
matrix are a sum of the entries out of the diagonal for
each column of the matrix. This property together with
the fact that the non-diagonal elements are non-negative
constitutes the definition of Â as a left-stochastic matrix.

To use the theory described in Section II we have to
take into account one simplifying fact and two compli-
cations. The simplifying fact is that the system (10) is
linear. The complications are, firstly, that the theory de-
scribed in the previous section applies to an autonomous
system, but the Markov chain in (10) has an explicit time

dependence of the transition matrix Â(t). Secondly, the
theory requires a small parameter, however the Markov
chain models contain transition rates determined exper-
imentally, and identifiction of any small parameters in
such a case is a separate task, sometimes nontrivial.

The first complication is dealt with using autonomisa-
tion, which means that we introduce an additional dy-
namical variable σ to represent time (henceforth referred
to as “autonomous time”). Then the vector of dynamical
variables is

u =

[
σ
x

]
and the dynamic equation is

d

dt

[
σ
x

]
=

[
1

Â(σ)x

]
. (11)

Note that system (11) is no longer linear unless the func-

tion Â(σ) is a constant.
To address the second complication, we introduce the

small parameters artificially in an empirical procedure we
call parametric embedding, which is discussed in detail in
the next section. For now it is important that as a result,

we can split the transition rates matrix Â into a fast part
Âf and a slow part Âs, and the difference between them
is identified by the small parameter ε appearing as

Â =
1

ε
Âf + Âs. (12)

We restrict consideration to the embeddings in which Âf
and Âs are left-stochastic matrices. We assume that the
fast matrix Âf (σ) is diagonalizable, and introduce the
eigenvalues λq(σ) and the right eigenvectors κq(σ):

Âf (σ)κq(σ) =λq(σ)κq(σ) (13)

(and drop from now on the dependence on σ, for brevity).

We assume that for all σ, matrix M̂1 has a full set of
eigenvectors, the first m ≥ 1 of the eigenvalues are zero,
and the remaining are all real (and of course negative)23.
Correspondingly, we introduce also the left eigenvectors
ρq,

ÂTf ρq = λqρq, ρq
Tκq′ = δq,q′ .

Differentiation of the last identity with respect to σ yields
a relationship that will be useful:

dρi
T

dσ
κj = −ρiT

dκj
dσ

. (14)

We transform the system (11) into fast time τ = t/ε
to get a system

dσ

dτ
=ε, (15)

dx

dτ
=Âf (σ)x + εÂs(σ)x,

This can be considered in the format of (1) with

u =

[
σ
x

]
, f =

[
0

Âf (σ)x

]
, h =

[
1

Âs(σ)x

]
. (16)

The dimensionality of the autonomized system (15) is n+
1; we keep the upper value of the corresponding indices
as n but reserve the value 0 for the time variable σ; this
is where parameter ι, designating the minimal value of
the eigenvalues’ indices in Table II, becomes 0.

The manifold of equilibria in this case is in fact a linear
subspace of Rn+1 which is the hull of the one-dimensional
subspace corresponding to the time coordinate σ and the
kernel of the fast matrix Âf :

U(σ,a) =

[
a0

Ux(a)

]
(17)

where a0 = σ, a =
[
a1, . . . am

]
T and

Ux(a) =
∑
r

arκr. (18)
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To construct the reduced system, we need to find the
Jacobian of function f and solve the eigenvalue problem.
The Jacobian is easily found as

F̂ (U) =

[
0 0T

dÂf

dσ Ux Âf

]
. (19)

Let us denote the components of the eigenvectors as

Vi =

[
µi
Vx
i

]
. (20)

Substituting (19) and (20) into ΛiVi = F̂Vi, we get

Λiµi = 0, (21a)

ΛiV
x
i =

dÂf
dσ

Uxµi + ÂfV
x
i . (21b)

Let us consider separately the cases µi = 0 and µi 6= 0.
For µi = 0, equation (21b) becomes

ÂfV
x
q =ΛqV

x
q , (22)

which is the definition of an eigenvalue problem for ma-
trix Âf , so we can take Vx

q = κq and λq = Λq, for
q = 1, . . . , n, out of which the first m are zero eigenvalues.
For r = 1, . . . ,m, we have Λr = 0, and differentiation of
(13) with respect to σ gives

dÂf
dσ

κr = −Âf
dκr
dσ

. (23)

We find one more eigenpair for the case µ0 6= 0. Let us
normalise the corresponding eigenvector so that µ0 = 1.
Then to satisfy equation (21a) we must have Λ0 = 0, and
(21b) becomes

ÂfV
x
0 = −dÂf

dσ
Ux. (24)

If we substitute (18) into (24) and use (23), we get

ÂfV
x
0 = Âf

∑
r

ar
dκr
dσ

(25)

so we can choose

κ0 =
∑
r

ar
dκr
dσ

(26)

(this is choice is of course non-unique because the zero
eigenvalue has multiplicity m+ 1).

The left eigenvectors are treated similarly. To sum-
marise the results, the eigenvalues Λi and eigenvectors
Vi, Wi of the Jacobian in the time-extended system are
related to those λq, κq, ρq of the transition rate matrix
via the following relationships:

V0 =

[
1∑

r ar
dκr

dσ

]
, Vq =

[
0
κq

]
, (27)

W0 =

[
1
0

]
, Wq =

[
−ρqT

∑
r ar

dκr

dσ
ρq

]
,

Λ0 = 0, Λq = λq.

With these the time-component of the “leading-order
term” works out as WT

0 h(U) = 1, as should be expected.
For the Markov chain subspace, we use (14), (16), (18)
and (27) to get

WT
q h(U) =

[
dρq

T

dσ Ux, ρq
T

][ 1

Âs(σ)x

]
= −ρqT

∑
r

ar

(
dκr
dσ
− Âs(σ)κr

)
,

and then (9) gives the formula for the components of the
transversal correction,

b` =
ρ`
T

λ`

∑
r

ar

(
dκr
dσ
− Âs(σ)κr

)
+O(ε), (28)

and the transversal correction itself as

vx =
∑
`

b`κ` =
∑
`,r

[
ar
λ`

ρ`
T

(
dκr
dσ
− Âs(σ)κr

)]
κ`.

(29)

Finally, the first-order accurate reduced system of ODEs
is given by (6a), leading to

1

ε

da0
dt

= 1 +O(ε2), (30a)

1

ε

dar
dt

=

(
dρr

T

dσ
+ ρr

T Âs(σ)

)∑
r′

ar′κr′ (30b)

+ ε

(
ρr
T Âs(σ) +

dρr
T

dσ

)
×
∑
`,r′

[
ar′

λ`
ρ`
T

(
dκr′

dσ
− Âs(σ)κr′

)]
κ` +O(ε2).

This result can be written in the matrix form as

1

ε

da

dt
=
(
M̂0(σ) + εM̂1(σ)

)
a +O(ε2), (31)

where

M̂0 =
[
P̂ ′ + P̂ Âs

]
K̂, (32)

M̂1 =
[
P̂ ′ + P̂ Âs

]
L̂
[
K̂ ′ − ÂsK̂

]
, (33)

K̂(σ) =
[
κ1| . . . |κm

]
=

κ
1
1 . . . κ1m
...

. . .
...

κn1 . . . κmn

 ∈ Rn×m,

P̂ (σ) =

ρ1
T

...
ρm

T

 =

 ρ
1
1 . . . ρn1
...

. . .
...

ρ1m . . . ρnm

 ∈ Rm×n,

L̂(σ) =
∑
`

κ` (λ`)
−1

ρ`
T ∈ Rn×n. (34)

and dash ′ stands for differentiation with respect to σ.



6

IV. PARAMETRIC EMBEDDING

To address the second complication, we introduce the
small parameters artificially in a procedure known as
parametric embedding, previously introduced in Refs. 19,
21, and 24. This procedure is a formalization of the re-
placement of a small constant with a small parameter.

Definition 1 We will call a system

u̇ = F (u; ε), u ∈ Rd,

depending on parameter ε, a one-parametric embedding
of a system

u̇ = f(u), u ∈ Rd,

if f(u) ≡ F (u, 1) for all u ∈ dom (f). If the limit ε → 0
is concerned then we call it an asymptotic embedding.

The typical use of this procedure has the form of a
replacement of a small constant with a small parameter.
If a system contains a dimensionless constant a which
is “much smaller than 1”, then replacement of a with
εa constitutes a 1-parametric embedding; and then the
limit ε → 0 can be considered. In practice, constant a
would more often be replaced with parameter ε rather
than multiplied by it, but mathematically speaking, in
the context of ε → 0 and a = const 6= 0, these two ways
are formally equivalent. This explains the paradoxical use
of a zero limit for a parameter whose true value is one.

In some applications, the “small parameters” appear
naturally and are readily identified. However, this is not
always the case, and in complex systems identification
of adequate small parameters may be a task in itself,
which is where the formalization of this procedure can
be helpful. In the context of the definition above, it is
important to understand that there are infinitely many
ways a given system can be parametrically embedded, as
there are infinitely many ways to draw a curve F (u; ε)
in the functional space given the only constraint that it
passes through a given point, F (u; 1) = f(u). In terms
of asymptotics, which of the embeddings is “better” de-
pends on the qualitative features of the original systems
that need to be represented, or classes of solutions that
need to be approximated.

If a numerical solution of the system can be found eas-
ily, then there is a simple practical recipe: to look at
the solutions of the embedding at different, progressively
decreasing values of the artificial small parameter ε, and
see when the features of interest will start to converge. If
the convergent behaviour is satisfactorily similar to the
original system with ε = 1, the embedding is adequate
for these features.

To summarize, we claim that identification of small
parameters in a given mathematical model with exper-
imentally measured functions and constants will, from
the formal mathematical viewpoint, always be arbitrary,
even though in the simplest cases the choice may be so

natural that that this ambiguity is not even realized by
the modeller, and that “validity” of such identification
can be defined only empirically: if the asymptotics de-
scribe the required class of solutions sufficiently well. The
exceptions may be when the asymptotic series are in fact
convergent, the approximation errors can be estimated a
priori, but this is rare.

In the subsequent text, slightly abusing the above def-
inition for the sake of brevity, we refer as “embedding”
to particular instances of one-parametric embedding of a
given system for a selected value of the parameter ε. The
overall structure of the embeddings is always like in (12),

and the difference is in the choice of the matrices Âf and

Âs.

V. DEFINITION OF THE MARKOV CHAIN MODEL OF
THE FAST SODIUM CURRENT (INA)

We apply the asymptotic theory described above to a
Markov chain model of the fast sodium current devel-
oped by Clancy and Rudy 17 (we consider the wild-type
version). The relevant part of the model has the form

dVm
dt

= −gNa [Vm − ENa(X)]O −
∑
`

I`(X), (35a)

dx

dt
= Â(Vm)x, (35b)

dX

dt
= . . . (35c)

where Vm is the transmembrane voltage, gNa is the maxi-
mal conductance of the fast Na current, ENa is the rever-
sal potential of the Na ions due to the transmembrane
difference in the concentration of these ions, O is one
of the components of the vector x representing the frac-
tion of open channels, corresponding to the open state
of the fast Na current channels, I` represent all other
transmembrane currents, and the vector X comprises all
other dynamic variables of the model, such as other ionic
channels, concentrations etc.

Fig. 1(a) shows the diagram of the Markov chain. We
find it more convenient to rename the dynamic variables,
i.e. the names of the states of the Markov chain, as re-
ported in Ref. [8]: these are single-letter names, as op-
posed to the original names in Ref. [17] which use up to
three symbols. The only state in the model that cor-
responds to the the channel being open is O, and this
name coincides with the nomenclature used by Clancy
and Rudy. So, for this Markov chain we have n = 9 and
the state vector

x = [O,P,Q,R, S, T, U, V,W ]T .

According to the diagram of fig. 1(a), the transition rate
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FIG. 1. (a) Diagram of INa channel and (b) speed of transition
rates in the range of physiological cell membrane voltages.

Here S ·R =
⇀

SR +
⇀

RS etc are reciprocal transition rates,
defining the speed with which the two given states tend to
equilibrate with each other.

matrix has the structure

Â =



∗
⇀

PO 0 0 0 0
⇀

UO 0 0
⇀

OP ∗
⇀

QP 0 0 0
⇀

UP 0 0

0
⇀

PQ ∗
⇀

RQ 0
⇀

TQ 0 0 0

0 0
⇀

QR ∗
⇀

SR 0 0 0 0

0 0 0
⇀

RS ∗
⇀

TS 0 0 0

0 0
⇀

QT 0
⇀

ST ∗
⇀

UT 0 0
⇀

OU
⇀

PU 0 0 0
⇀

TU ∗
⇀

V U 0

0 0 0 0 0 0
⇀

UV ∗
⇀

WV

0 0 0 0 0 0 0
⇀

VW ∗



.

(36)

Here and elsewhere in transition rates matrices, in the in-
terests of saving space, we do not show diagonal elements
and replace them with ∗: they are uniquely defined by
the condition that the sum of elements in each row should
vanish. So e.g. the top left diagonal element in the above

matrix is −
⇀

PO −
⇀

UO, and the bottom right element is

−
⇀

VW .
All the transition rates in Â are functions of the trans-

membrane voltage Vm. Their exact definitions can be
found in the original publication17 (see also Refs. 8 and
25) and we do not present them here; however fig. 1(b)
gives a graphical illustration of the magnitudes of these
rates in the physiological range of Vm. In that figure, we

use the sum of the transition rates between two states
as the measure of the speed of their connection, i.e.

i · j ,
⇀
ij +

⇀
ji . Indeed, it is this quantity that determines

the speed with which the dynamic equilibrium between
the two states is reached if occupancies of all other states
are fixed.

VI. EMBEDDINGS OF THE INA MODEL

Fig. 1(b) allows one to see what transition rates may

be considered “fast” and thus included into Âf . For in-
stance, connections PO, QP , TU are relatively fast in
the whole range of voltages, connection VW is always
slow, whereas connection OU is fast at high Vm but not
so high at low Vm, and connection V U is somewhat in-
termediate between the group of clearly fast connection
and the group of clearly slow connections. In accordance
with the above discussed formal definition and informal
semantics of the concept of embedding, we intend to treat
the question of which connections can or should be con-
sidered fast as strictly empirical, so Fig. 1(b) does not
provide the ultimate answer to this question, but merely
the possible directions of search. For simplicity, we al-
ways construct Âf by including into it reciprocal pairs
of transition rates, and completing the diagonal elements
to ensure Âf is left-stochastic. As a result, any nonzero

non-diagonal element of Â is always included into Âf
and/or into Âs, which guarantees that Âf and Âs are
left-stochastic. We assess the quality of an embedding
by how well it approximates the transients of the Markov
states in a typical solution, a standard action potential;
and of course of all the states the most important is the
open state O.

We have tried a number of different combinations of
reciprocal transition rates for Âf . Not all such combi-
nations pass the embedding test, i.e. give reasonable ap-
proximation of the original solution in the limit ε → 0.
In particular, the would-be “straightforward” solution to
consider as “fast” all the transition rates that appear so
in fig. 1(b), does not work25. Figure 2 shows results of
simulation of some of the more successful of those com-
binations. The INa model was extracted from the au-
thors code17. The simulation of the model were driven by
recorded values of Vm(t) during a standard action poten-
tial from a single-cell simulation. That means, we have
performed a simulation of the original full model (35)
once, and the resulting function Vm(t) was then used for
computations of the embedded version of only the sub-
system (35b), in which Vm(t) was considered given and
fixed; in other words, performed “virtual voltage clamp”
experiments. The time step in the simulation of INa was
∆t = 1 µs. The original model is shown with red lines,
the transition rates embeddings are shown for a value of
ε = 0.1.

As can be deduced from the figure, although the tran-
sition rates included in the embeddings have roughly the
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FIG. 2. Time evolution of state occupancy of INa with transition rates embeddings. The vertical axis shows the occupancy of
the states from O–W in alphabetical order as specified in top left corner. The red lines show the original model (ε = 1), other
lines show the embeddings as specified in the legend of panel W , e.g. the green lines show the embeddings of transition rates

between states OP , i.e. both
⇀

OP and
⇀

PO for ε = 0.1, the grey line shows the embedding of the reciprocal transition rates
between ST , TU and RQ, etc.

same orders of magnitude, their expected effect on the
accuracy of approximation of the O transient by asymp-
totic methods is rather different: the OP embedding is
relatively poor, the RQ is somewhat better, whereas em-
beddings involving transitions between S, T and U , any
pair or all three, promises very good accuracy: the cor-
responding graphs are indistinguishable in the plot res-
olution. Note that this assessment heavily depends on
the special role of the O state, and would be completely
different if we were more interested in another Markov
state. For instance, for the S(t) transient, the OP em-
bedding promises good accuracy, and STU embedding is
very poor. Obviously, it matters how close are the em-
bedded rates to the state in question.

A. OP-embedding

In this section we develop an example of a particular
embedding of the transition rates between the states O

and P , i.e. rates
⇀

OP and
⇀

PO. As seen from the above dis-
cussion, the empirical evidence suggests that the asymp-
totics of this embedding is not likely to give a good ap-
proximation, so the purpose of this exercise is mainly
didactic, to demonstrate in detail the application of the
general theory, including the first-order correction, on a
simple example.

In this embedding, the transition matrix Â is split ac-
cording to (12) into the matrix of the slow transition
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rates

Âs =



∗ 0 0 0 0 0
⇀

UO 0 0

0 ∗
⇀

QP 0 0 0
⇀

UP 0 0

0
⇀

PQ ∗
⇀

RQ 0
⇀

TQ 0 0 0

0 0
⇀

QR ∗
⇀

SR 0 0 0 0

0 0 0
⇀

RS ∗
⇀

TS 0 0 0

0 0
⇀

QT 0
⇀

ST ∗
⇀

UT 0 0
⇀

OU
⇀

PU 0 0 0
⇀

TU ∗
⇀

V U 0

0 0 0 0 0 0
⇀

UV ∗
⇀

WV

0 0 0 0 0 0 0
⇀

VW ∗


(37)

and the matrix of the fast transition rates

Âf =



∗
⇀

PO 0 0 0 0 0 0 0
⇀

OP ∗ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (38)

For the dimensionality reduction we need to calculate
the eigenvalues and eigenvectors of the fast matrix Âf .
This will result to a number of zero eigenvalues corre-
sponding to the zero part of the matrix. There will be
also at least one zero eigenvalue λ1 = 0 corresponding to
the Markov chain since

1T Â = 0. (39)

In fact, we have λr = 0 for r = 1, . . . ,m, where m = 8,

and just one non-zero eigenvalue λ9 = −(
⇀

PO+
⇀

OP ). The
corresponding right eigenvectors are

κ1 = (
⇀

PO +
⇀

OP )−1
(

⇀

PO e1 +
⇀

OP e2

)
,

κi = ei+1, i = 2, . . . , 8, (40)

κ9 = −e1 + e2,

where ei is the standard notation for the column-vector
which has i-th component equal to one and all other com-
ponents equal to zero, and the left eigenvectors are

ρ1 = e1 + e2, (41)

ρi = ei+1, i = 2, . . . , 8,

ρ9 = (
⇀

PO +
⇀

OP )−1
(
−

⇀

OP e1 +
⇀

PO e2

)
.

We note that the left eigenvector 1 asserted by the
identity (39) is a linear combination of these, namely

1 =
∑8
i=1 ρi. The choice of normalization for κ1 and

ρ1 is motivated by the ease of interpretation of the slow
variable a1, which will transpire shortly below.

Now we are ready to substitute the specifics of the
selected embedding into the equation (30b) describing
the reduced model. The left eigenvectors are constant
for all r, so their derivatives are zero, and {`} = {9}.
Then upon substituting (28) into (30b) we get

1

ε

dar
dt

=ρr
T Âs(σ)

∑
r′

ar′κr′ (42)

+ ε
[
ρr
T Âs(σ)κ9b9

]
+O(ε2).

The differential equation for ar for r = 3, 4, 5, 7, 8 come
out identical to the equations for the states R,S, T, V,W
from (36). This is because the first-order term vanishes

as ρr
T Âs(σ)κ9 = 0 for these r. Hence we retain the same

names for the corresponding components of the reduced
model, as they had in the original model, and the vector
of dynamic variables in the reduced system has the form

a = [Ñ , Q̃, R, S, T, Ũ , V,W ]T , (43)

where Ñ , a1, Q̃ , a2 and Ũ , a6.

The components r = 1, 2, 6 in (42), that is differen-

tial equations for a1 = Ñ , a2 = Q̃ and a6 = Ũ , will
have nonzero first-order terms. According to ρ1 as given
by (41), the new variable Ñ is just a sum of the old
states occupancies O and P ; this is where the chosen
normalization for ρ1 comes helpful. The names of the
slow variables Q̃ and Ũ are motivated by the fact that
according to (41) they map exactly to Q and U respec-
tively, and the difference from the old variables is only
in the first-order corrections in the reduced differential
equations they obey.

Equation (18) then defines the relationship between
the original and the reduced variables in the leading or-
der, which in our case is

Ux =
[
βPOÑ , βOP Ñ , Q̃, R, S, T, Ũ , V, W

]
, (44)

where we define the fractions of the transition rates as

βij =

⇀
ij

⇀

PO +
⇀

OP
. (45)

We have only one stable eigenvalue in the present case,
so equation (3) reduces to

vx = b9κ9, (46)

and equation (28), with account of κr′
′ = 0, r′ 6= 1, gives

b9 =
ρ9

T

λ9

(
a1κ1

′ − Âs(σ)Ux
)
. (47)
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Then the leading-order transition matrix, according to
(32,34) is

M̂0 = (48)

∗
⇀

QP 0 0 0 (
⇀

UO +
⇀

UP ) 0 0
⇀

ÑQ ∗
⇀

RQ 0
⇀

TQ 0 0 0

0
⇀

QR ∗
⇀

SR 0 0 0 0

0 0
⇀

RS ∗
⇀

TS 0 0 0

0
⇀

QT 0
⇀

ST ∗
⇀

UT 0 0
⇀

ÑU 0 0 0
⇀

TU ∗
⇀

V U 0

0 0 0 0 0
⇀

UV ∗
⇀

WV

0 0 0 0 0 0
⇀

VW ∗


,

where the new transition rates are defined as

⇀

ÑQ =βOP
⇀

PQ, (49)
⇀

ÑU =βPO
⇀

OU + βOP
⇀

PU,

and the first-order correction to the transition matrix
defined by (33,34) works out as

M̂1 =

[
βOPβPO(βPQ + βPU − βOU )− dβPO/dσ

⇀

PO +
⇀

OP

]
× (

⇀

PQ+
⇀

PU −
⇀

OU) e1e1
T

− (
⇀

PQ+
⇀

PU −
⇀

OU)βPOβQP e1e2
T

− (
⇀

PQ+
⇀

PU −
⇀

OU)(βPOβUP − βOPβUO) e1e6
T

+

[
dβPO/dσ
⇀

PO +
⇀

OP
− βOPβPO(βPQ + βPU − βOU )

]
×

⇀

PQ e2e1
T

+
⇀

PQβPOβQP e2e2
T

+
⇀

PQ(βPOβUP − βOPβUO) e2e6
T

+

[
dβPO/dσ
⇀

PO +
⇀

OP
− βOPβPO(βPQ + βPU − βOU )

]
× (

⇀

PU −
⇀

OU) e6e1
T

+ (
⇀

PU −
⇀

OU)βPOβQP e6e2
T

+ (
⇀

PU −
⇀

OU)(βPOβUP − βOPβUO) e6e6
T .

The Markov chain of the INa channel is linked to the rest
of the cell excitability model via the state O which is
the probability of the channel being open, so we need to
compute O in terms of the new dynamic variables. This
is obtained from

x = Ux + εvx,

where Ux is given by (44) and vx is given by (46), with
(47) giving b9. This leads to

O =

⇀

PO
⇀

PO +
⇀

OP
Ñ − εb9, (50)

where

b9 =

(
⇀

PO +
⇀

OP

)−1
dβPO

dσ
Ñ (51)

− βOP βPO(βPQ + βPU − βOU )Ñ

+ βPO βQP Q̃+ (βPO βUP − βOP βUO)Ũ .

Matrix M̂1 and coordinate b9 depend on time deriva-
tives of the transition rates, which in fact depend on the
transmembrane voltage, hence the time derivative are to
be calculated by the chain rule, e.g.

d

dσ

(
⇀

OP

)
=

d

dVm

(
⇀

OP

)
dVm
dt

,

d

dσ

(
⇀

PO

)
=

d

dVm

(
⇀

PO

)
dVm
dt

.

Figure 3 shows the simulation results in the OP -
embeddings and corresponding OP -reduction. The re-
sults should be compared against the original model
shown by red lines. The simulations were done using ex-
tracted Markov chain model of INa driven by recordings
of membrane voltage from whole cell simulations saved
every 0.01 ms and interpolated as necessary. The state O
in reduced model was computed using (50,51). For com-
parison of the reduced model with the embedding, the
occupancy of state Ñ in the embedded model was found
as Ñ = O + P .

The simulations with leading order approximation
(blue lines) show relatively large deviation from the orig-
inal model. The first-order accurate asymptotic model
computed for ε = 0.5 (magenta lines) provides better
approximation than only the leading order term, how-
ever the state O in this approximation goes below zero,
which does not make sense physically, as it represents a
probability, so should be in the interval [0, 1]: note that
the generic asymptotic theory does not take into account
these specifics.

The panel (d) shows the error norms computed using
the following formula

∥∥∥Ñ − Ñref

∥∥∥ =

[∫ tmax

0

(Ñ(t)− Ñref(t))
2 dt

]1/2
(52)

where Ñref is the reference solution obtained for a very
small time step, and comparison is done for the interval of
tmax = 2 ms of time-evolution. The error norms increase
monotonically with ε and show the convergence for the
leading-order and first-order approximations as expected,
which confirms the correctness of the formulas.
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FIG. 3. (a-c) Evolution of state occupancy in OP -embedded (E.) and OP -reduced (R.) model, and (d) error analysis of OP -

reduced model. State O occupancy (a), state P occupancy (b), and state Ñ occupancy (c). The key in (c) applied to plots
(a-c): the original model is denoted by red lines, the OP -embedded model ε = 0.5 is shown with green lines, the reduced model
without correction term (ε = 0) is shown with blue lines, the OP -reduced model with correction term for ε = 0.5 is shown with
magenta lines, and the OP -reduced model with correction term for ε = 1.0 is shown with orange lines. Panel (D) shows the
order of approximation in ε for the leading-order reduced model (red crosses), first-order reduced model (yellow squares). The

norms were computed as a difference between the simulations of Ñ at time step ∆t = 0.01 ms and simulations of Ñref = O+P
computed with a time step of ∆t = 5 · 10−5 ms in the original model using the same value of ε. The cyan and grey straight
lines are best fits by the corresponding powers of ε. The data are shown on double logarithmic scale.

B. STU-embedding and reduction of S, T and U into M

In this section we develop another approximation of
the original system, which considers the transitions be-
tween states S, T and U as fast, which in asymptotics
leads to their merger into a new state M̃ . This choice is
supported by the empirical embedding procedure as de-
scribed in Section IV, details can be found in Ref. [25].

Now the matrix of fast transition rates is

Âf =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 ∗
⇀

TS 0 0 0

0 0 0 0
⇀

ST ∗
⇀

UT 0 0

0 0 0 0 0
⇀

TU ∗ 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(53)
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and the remaining, slow rates constitute the matrix

Âs =



∗
⇀

PO 0 0 0 0
⇀

UO 0 0
⇀

OP ∗
⇀

QP 0 0 0
⇀

UP 0 0

0
⇀

PQ ∗
⇀

RQ 0
⇀

TQ 0 0 0

0 0
⇀

QR ∗
⇀

SR 0 0 0 0

0 0 0
⇀

RS ∗ 0 0 0 0

0 0
⇀

QT 0 0 ∗ 0 0 0
⇀

OU
⇀

PU 0 0 0 0 ∗
⇀

V U 0

0 0 0 0 0 0
⇀

UV ∗
⇀

WV

0 0 0 0 0 0 0
⇀

VW ∗


(54)

The right eigenvectors corresponding to zero eigenvalue
of this system can be chosen as

κi = ei, i = 1, . . . , 4, (55)

κ5 = (
⇀

UT
⇀

TS +
⇀

UT
⇀

ST +
⇀

TU
⇀

ST )−1

×
(

⇀

UT
⇀

TS e5 +
⇀

UT
⇀

ST e6 +
⇀

TU
⇀

ST e7

)
,

κi = ei+2, i = 6, 7.

The corresponding left eigenvectors are

ρi =κi, i = 1, 2, 3, 4, 6, 7,

ρ5 =e5 + e6 + e7. (56)

With account of these, we can keep the names of the
original dynamic variables for all states except S, T , U ,
so the vector of states of the reduced system is

a = [O,P,Q,R, M̃, V,W ]T . (57)

These are all the ingredients needed for the derivation
of the leading-order approximation. We have ρi

′ = 0 for
all i = 1, . . . , 7 so (32) gives the leading-order transition
rate matrix for the reduced model as

M̂0 =



∗
⇀

PO 0 0
⇀

MO 0 0
⇀

OP ∗
⇀

QP 0
⇀

MP 0 0

0
⇀

PQ ∗
⇀

RQ
⇀

MQ 0 0

0 0
⇀

QR ∗
⇀

MR 0 0
⇀

OM
⇀

PM
⇀

QM
⇀

RM ∗
⇀

VM 0

0 0 0 0
⇀

MV ∗
⇀

WV

0 0 0 0 0
⇀

VW ∗


, (58)

with the new transition rates defined as

⇀

MO =
⇀

UO γSTTU ,
⇀

OM =
⇀

OU, (59)
⇀

MP =
⇀

UP γSTTU ,
⇀

PM =
⇀

PU,
⇀

MQ =
⇀

TQγUTST ,
⇀

QM =
⇀

QT,
⇀

MR =
⇀

SRγUTTS ,
⇀

RM =
⇀

RS,
⇀

MV =
⇀

UV γSTTU ,
⇀

VM =
⇀

V U.

These expression use the notation γijkl as an abbreviation
for

γijkl =

⇀
ij
⇀

kl
⇀

UT
⇀

TS +
⇀

UT
⇀

ST +
⇀

ST
⇀

TU
. (60)

The original coordinates are recovered from the re-
duced one by

S =γUTTSM̃, (61a)

T =γUTST M̃, (61b)

U =γSTTUM̃. (61c)

As can be seen in fig. 4 below, the quality of the approx-
imation obtained with these asymptotics, is very good.
This was of course to be expected based on the results of
the empirical embedding study, as discussed above.

C. Embedding and reduction of R and Q states of
STU-reduction into L

In this section, we investigate how one can build on
the success of the STU embedding and achieve further
reduction. As we have already considered the OP reduc-
tion above, we now consider RQ reduction. That is, we
consider the transition rates between R and Q as fast,
which will lead to the merger of these two states into a
new state L̃. So in the context of the present section,
the “original model” is defined by the matrix (58), which

will now be called M̂ , while the fast matrix in the new
embedding is

M̂f =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 ∗
⇀

RQ 0 0 0

0 0
⇀

QR ∗ 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, (62)
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and the slow matrix is

M̂s =



∗
⇀

PO 0 0
⇀

MO 0 0
⇀

OP ∗
⇀

QP 0
⇀

MP 0 0

0
⇀

PQ ∗ 0
⇀

MQ 0 0

0 0 0 ∗
⇀

MR 0 0
⇀

OM
⇀

PM
⇀

QM
⇀

RM ∗
⇀

VM 0

0 0 0 0
⇀

MV ∗
⇀

WV

0 0 0 0 0
⇀

VW ∗


(63)

Acting as before, we find the right eigenvectors of M̂f

corresponding to zero eigenvalue as

κi = ei, i = 1, 2,

κ3 = (
⇀

QR+
⇀

RQ)−1
(

⇀

QR e3 +
⇀

RQ e4

)
,

κi = ei+1, i = 4, 5, 6,

the corresponding left eigenvectors as

ρi =κi, i = 1, 2, 4, 5, 6,

ρ3 =e3 + e4,

and we set the names of the components of the reduced
vector as

a = [O,P, L̃, M̃ , V,W ]T .

The resulting leading-order reduced matrix works out
as

M̂0 =



∗
⇀

PO 0
⇀

MO 0 0
⇀

OP ∗
⇀

LP
⇀

MP 0 0

0
⇀

PL ∗
⇀

ML 0 0
⇀

OM
⇀

PM
⇀

LM ∗
⇀

VM 0

0 0 0
⇀

MV ∗
⇀

WV

0 0 0 0
⇀

VW ∗


(64)

with the new transition rates defined by

⇀

LP =
⇀

QPδQR,
⇀

PL =
⇀

PQ (65)
⇀

LM =
⇀

QMδQR +
⇀

RMδRQ,
⇀

ML =
⇀

MQ+
⇀

MR,

where

δij =

⇀
ij

⇀

QR+
⇀

RQ
. (66)

It is easily seen that the resulting reduced model (65)
will be the same if, instead, we do the QR reduction first
and STU reduction second, or do them simultaneously,
i.e. include all of S · T , T · U and Q ·R in Âf in the first
place.

Fig. 4 presents the results of the QR-STU , together
with the previously considered OP and STU reductions.
In these simulations, the INa channel model was not
driven by the recorded Vm(t) as before, but rather was
part of the full cell model (35). The full original model
and the three reduced version were run in the same pro-
tocol, which included stimulation with a period of one
second, starting from t = 1 ms (this was done in order to
be able to show the time in panel (a) in the logarithmic
scale). One can see that the reduced models are indis-
tinguishable from the full model except for the upstroke
of the action potential. The upstroke of the fifth action
potential is shown in detail in panels (b) and (c), for
the probability of the INa channel being open, and the
resulting value of this current. We see that the results
generally agree with what could be expected from the em-
pirical embedding studies illustrated in fig. 2. Namely,
the OP embedding gives a rather poor approximation,
the QR-STU embedding is slightly better, while STU is
very good.

VII. DISCUSSION

Fig. 5 summarises the Markov chain models occurring
as a result of the three asymptotics we have considered:
this is to be compared with the original scheme shown
in fig. 1.

Asymptotic reduction based on time scale separation
can pursue at least two different goals: reducing the num-
ber of dynamic equations, and reducing stiffness of those
equations. The reductions considered in this paper are
not particularly impressive in terms of reducing the num-
ber of equations: we have reduced by maximum of three
out of nine, which is even less significant in comparison
with the number of other dynamic equations in a typical
model of an excitable cell, beyond the Markov chain of
the INa channel. However, in practical applications the
main goal is the other one: reducing the stiffness. To
achieve a simple practical estimate of this characteristic,
we measured the stiffness of the model by the maximum
time step size ∆t which provides a stable solution using
the forward Euler solver for the isolated INa model driven
by a recorded action potential. The original full model
allows the time step of about ∆t ≈ 0.04 ms for stable
computations; an increase above that leads to numeri-
cal instability. In comparison to that, all three models
considered allow ∆t ≈ 0.044 ms, i.e. a rather modest im-
provement. The limited progress in this is due to the
fact that in all three examples considered, we have in-
cluded in the embedding only some of the fastest tran-
sition rates. And even in these cases, we have seen that
asymptotic removal of some of the fast processes affects
the accuracy of computations. Even though these effects
are seen only during the upstrokes of the action potential,
these upstrokes are of principal significance as they de-
termine the conduction velocity in spatially-distributed
simulation, and therefore also the more delicate and more
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important phenomena such as conduction block, wave-
breaks etc. Hence further increase of the number of the
reduced degrees of freedom does not seem to be an an-
swer. Further research is of course needed to establish
that with certainty, but, as already noted above, e.g. the
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FIG. 6. Largest absolute values of the eigenvalues of the
transition matrices for the original Markov chain and the two
selected reduced models.

“straightforward” approach embedding all the transition
rates that appear “fast” in fig. 1 does not yield a satis-
factory approximation25.

From a more theoretical viewpoint, stiffness can some-
times be characterized by the eigenvalues of the system;
in particular, the upper limit of the integration step is
mainly affected by the eigenvalue with the largest abso-
lute value. In fig. 6 we plot those absolute values for the
original model and the reduced models, as functions of
the transmembrane voltage. We see that whereas OP
reduction somewhat reduces stiffness at the lower end of
the Vm scale, it has virtually no effect at the upper end.
On the contrary, QR-STU reduction noticeably reduces
stiffness at the upper end, without changing it at the
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lower end.
So, as far as the question posed in the introduction

is concerned, the results obtained here seem to suggest
that Tikhonov asymptotic structure, which implies fixed
distribution of the roles of “fast” and “slow” variables, or,
in this particular class of applications, rather “fast” and
“slow” transition rates, may not be quite adequate for
the this particular model of the fast sodium current, and
some non-Tikhonov parametric embedding may be more
fruitful, say when transition rates are considered fast in
one range of Vm and slow in the complementary range,
possibly with the asymmetry between the reciprocal rates
taken into account.

An alternative approach, which has proved to be more
practical than the one considered here, has been de-
scribed in our previous works8,9, dubbed “exponential
solvers”. However, that approach is purely numerical and
does not explicitly take into account the fast-slow struc-
ture of the model, hence an asymptotic approach seems
to have an a priori advantage, which ought to have been
explored. We hope that the present study fills this gap
to a certain extent.

An attractive possibility to improve the accuracy of
the asymptotics and hence to open the way to further
decrease the number of equations and reduce the stiff-
ness, seems to be using higher-order asymptotics. We
have explored this only in one of the three examples, but
it already shows that (i) the algebraic complexity of the
resulting formulas increases considerably, (ii) more sig-
nificantly, some improvement in accuracy is devalued by
the fact that the resulting model, unlike the leading-order
asymptotics, no longer behaves as a “proper” Markov
chain: the vector of dynamic variables is not guaran-
teed to remain stochastic, in particular, it can easily lead
to negative values of the state occupancies. This hap-
pens because we have used the asymptotic theory which
was designed for generic systems and is not tailored for
the specific requirements of Markov chains. Hence an-
other possible way for improvement may be in develop-
ing higher-order asymptotics strictly within the class of
Markov chains.
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Appendix A: Derivation of Reduced System

We use the Taylor expansion for the functions f(u) and
h(u), such that, after substitution of the sought solution
(2), we get the expression on the right hand side of (1)

as

f(U) + ε
∑
j

∂f

∂uj
vj + ε2

∑
j1,j2

∂2f

∂uj1∂uj2
vj1vj2 (A1)

+εh(U) + ε2
∑
j1

∂h

∂uj1
vj1 +O(ε3).

The first term f(U) = 0 by assumption, and in the second
term we note that the derivatives constitute the Jacobian
matrix and expand the v according to (3). Then the
previous expression (A1) rewrites as

εF̂ (U)
∑
`

b`V` + ε2
∑
j1,j2

∂2f

∂uj1∂uj2
vj1vj2+ (A2)

εh(U) + ε2
∑
j1

∂h

∂uj1
vj1 +O(ε3).

We substitute the sought solution also to the left hand
side of (1). We use the knowledge of eigenvectors corre-
sponding to zero eigenvalues from (5) and expand the
perturbed term (3). Then using a chain rule for the
derivative of U(a) and V`(a) we get∑

k

∂U

∂ak

dak
dt

+ ε
dv

dt
=
∑
k

Vk
dak
dt

+ (A3)

ε
∑
`

(
db`
dt

V` + b`
dV`

dak

dak
dt

)
.

Combining the right-hand side given by (A1) and the
left-hand side given by (A3), we rewrite (1) as

∑
k

Vk
dak
dt

+ ε
∑
`

(
db`
dt

V` + b`
dV`

dak

dak
dt

)
(A4)

= εF̂
∑
`

b`V` + ε2
∑
j1,j2

∂2f

∂uj1∂uj2
vj1vj2

+ εh(U) + ε2
∑
j1

∂h

∂uj1
vj1 +O(ε3).

Multiplying the equation by the adjoint eigenvectors WT
i

gives

1

ε

dai
dt

+
dbi
dt

=Λibi + WT
i h(U) (A5)

+ εWT
i

∑
j

∂h

∂uj
vj +

∑
j1,j2

∂2f

∂uj1∂uj2
vj1vj2

−1

ε

∑
`,k

b`
∂V`

∂ak

dak
dt

+O(ε2).

Considering separately the zero and the stable eigenval-
ues then yields equations (6a) and (6b) respectively.
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full transition rate matrix Â can be guaranteed under the as-

sumption of detailed balance26, and Âf = limε→0
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