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Autowave vortices are topological defects in autowave fields in nonlinear active media of various
natures and serve as centers of self-organization in the medium. In three-dimensional media, the
topological defects are lines, called vortex filaments. Evolution of three-dimensional vortices, in
certain conditions, can be described in terms of evolution of their filaments, analogously to that
of hydrodynamical vortices in LIA approximation. In the motion equation for the filament, a
coefficient called filament tension, plays a principal role, and determines qualitative long-time
behavior. While vortices with positive tension tend to shrink and so either collapse or stabilize
to a straight shape, depending on boundary conditions, vortices with negative tension show
internal instability of shape. This is an essentially three-dimensional effect, as two-dimensional
media with the same parameters do not possess any peculiar properties. In large volumes, the
instability of filaments can lead to propagating, nondecremental activity composed of curved
vortex filaments that multiply and annihilate in an apparently chaotic manner. This may be
related to a mechanism of cardiac fibrillation.

An AW medium is a 1 to 3-D continuum of
points each exhibiting a special sort of nonlinear ki-
netics, and linked together via a diffusion-type pro-
cess. These properties enable nondecaying propa-
gation of nonlinear waves, called autowaves, which
have their own inherent amplitude and form. At
appropriate initial conditions, the autowaves may
form “AW vortices” which have the form of spi-
ral waves in two dimensions or scroll waves in

1. Introduction

The purpose of this paper is to describe basic
features of the phenomenon of three-dimensional
autowave (AW) turbulence. This interesting phe-
nomenon provides an instructive example of spatio-
temporal chaos, and may have useful applications.
We believe that it deserves a peer study.
Turbulence is a term from hydrodynamics and

so using it for autowave media is, of course, a
metaphora. We use it to stress the essential prop-
erties of the phenomenon in question:

e It means complicated, apparently chaotic, spatio-
temporal behavior.

e The complexity of behavior grows with the size
of the system, with other parameters unchanged.

o It is related to vortex-like activity.

o It is essentially a three-dimensional behavior,
qualitatively different from whatever may hap-
pen in the same system in two dimensions
(hydrodynamists agree that “real” turbulence is
essentially three-dimensional, unlike “weak” 2-D
turbulence).

three dimensions. These interesting classes of non-
linear waves were first observed in the Belousov—
Zhabotinsky reaction [Zaikin & Zhabotinsky, 1970;
Winfree, 1973], where the aforementioned nonlin-
ear kinetics are autocatalytic oxidation of malonic
acid. Since then, AW vortices were observed ex-
perimentally and predicted theoretically in a wide
variety of systems of different physical natures
[Swinney & Krinsky, 1991; Holden et al., 1991;
Brindley & Gray, 1994]. A very important example
is cardiac tissue [Gray & Jalife, 1996], where the
nonlinear kinetics are the excitation (electric depo-
larisation) and recovery of cardiocytes’ membranes,
and the diffusion-like process is inter-cellular
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electric conductivity. AW media are most often de-
scribed in terms of “reaction—diffusion” equations,

du =DV?u + f(u) (1)

where u(r, t) = (u1, ug,...)T € R, 1> 2, are con-
centrations of reagents, r = (z, y) € R?, f(u) are
reaction rates and D is the matrix of diffusion co-
efficients. One of the “basic” AW models is the
FitzHugh-Nagumo system of equations (FHN). In
the form proposed by Winfree [1991] it reads

O = e Hu—u3/3 —v) + Vu

2
O = e(u+y — Pv) ®

where u(z, y, z, t) and v(z, y, 2, t) are the dynamic
variables and €, # and 7 are constant parameters
of the medium. Spiral wave solution for a bio-
physically detailed model of ventricular excitation
is shown in Fig. 1.

The whole picture rotates counterclockwise
around a region called core of the spiral. Far from
the core, normal autowaves propagated form, ap-
proximately, the shape of an Archimedean spiral;
within the core the behavior is more complicated.
The core may be defined as the region circumscribed
by the tip of the spiral. The tip may be defined
as the point where the propagation wavefront ends
meeting the “waveback”, or as an intersection point
of two isolines, as in Fig. 1. As it is seen in the fig-
ure, the behavior of the tip may be complicated —
the so-called meander. FHN model is a rough car-
icature of the ventricular model shown in this pic-
ture, which, in turn is a simplification of the reality,
as it ignores completely the nontrivial spatial struc-
ture of the tissue. Nevertheless, during the last 35
years, FHN model and its modifications were the
most powerful heuristic tool for understanding the
reentrant cardiac arrhythmias.

Fig. 1.

Snapshot of the spiral wave in a model of ventricular tissue of guinea pig (details described in [Biktashev & Holden,

1996]). Red component of color coding shows the value of the transmembrane voltage, and green component that of one of the
recovery variables. Two isolines of these two variables are shown in black. The blue ball at their intersection is the spiral tip.
The white line shows its trajectory over last few rotations. The spiral rotates counterclockwise, the rotation is not stationary

but “meandering”.
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Fig. 2.

Simple scroll wave, in the FHN medium 85% s.s. large. Shown is a snapshot of the excitation wave front, defined

as the surface u = 0, colored depending on the value of the other dynamic variable, v. Fore-front (smaller v) is red and
semi-transparent, back-front (higher v) is completely transparent and invisible. Surface near the edge of the excitaion wave,
for intermediate values of v, is greenish and solid. This edge region is a visualization of the scroll filament. The solution is

virtually independent on the vertical coordinate.

2. Scroll Waves and Their Dynamics

Dynamics of 3-D AW vortices are much more com-
plicated than that in two dimensions. The front of
the excitation wave is now a surface not a line, and
so its break is now not a point, but a line, called
scroll filament. A simple scroll wave is depicted in
Fig. 2.

Topological classification of possible three-
dimensional AW patterns has been considered by
Winfree and Strogatz [1983, 1984], and numerical
experiments have revealed a rich variety of differ-
ent scroll wave behaviors (see e.g. the review by
Panfilov [1991]). An analytical approach for the
description of scroll wave dynamics was proposed
by Keener [1989]. It was an asymptotics assuming
that the characteristic spatial scale of the filament is
much greater than the characteristic scale of a spi-
ral wave, and in any cross-section orthogonal to the
filament, the scroll wave is close to the 2-D spiral
wave. The result of the singular perturbation the-
ory, valid for generic reaction—diffusion system not
only the FHN system, are equations for slow evolu-
tion of the filament and of the distribution of spiral
wave rotation phase along the filament. Subsequent
analysis of these equations [Biktashev et al., 1994]

has shown that in the main order of magnitude, the
equation of the filament motion is independent on
the phase distribution, and has the form

O R = byD2R + c3]DsR x D?R], (3)

where R = R(o, t) describes the period-averaged
position of the filament at the time moment ¢ with
parameter o chosen so that points with equal o
move orthogonally to the filament, and arbitrary
in other respects (note that the arc length s may
not obey this property). Then the arc length differ-
entiation operator D; is defined as

Dsf(o,t) = 05f(0, 1)/|0: R0, 1)] - (4)

A simple fact from differential geometry is that
the rate of change of total length of a moving curve
is equal (disregarding fringe effects) to the integral
over the curve of the scalar product of the curve
motion velocity O;R and the vector of curvature
D2R. Thus, an elementary but important prop-
erty of Eq. (3) is that the evolution of the total
length is monotonic decreasing if bs is positive, and
monotonic increasing if be is negative. Biktashev
et al. [1994] suggested the term “filament ten-
sion” for this important medium characteristic. Its



680 V. N. Biktashev

heuristical value is that it predicts qualitatively dif-
ferent behaviors for 3-D AW media with positive
and negative filament tensions. If the tension is pos-
itive, then a straight filament (simple scroll) should
be stable, and the vortex ring should shrink and col-
lapse. On the contrary, if the tension is negative,
the vortex ring should expand rather than collapse,
and straight filaments are unstable. Despite obvi-
ous limitations of the asymptotical theory, numeri-
cal experiments described in [Biktashev et al., 1994]
have shown that these predictions do catch the main
qualitative features of the 3-D vortex dynamics.

Equation (3) is analogous to Da Rios equa-
tions of motion of vortex lines in fluids [Ricca, 1991,
1992], obtained in so-called localized-induction ap-
proximation (LIA); in fact, these equations are a
partial case of (3) for by = 0. The specifics of
hydrodynamical vortices is that the LIA procedure
involves logarithmic divergence (this problem does
not exist for the AW vortices), and that their fila-
ment tension by is always exactly zero, so that this
term is sometimes used for the other parameter, cs,
which is not a medium constant but a characteristic
of the vortex magnitude.

The assumptions of the asymptotic theory re-
quire that the filaments are smooth and far from
each other and from medium boundaries. Natu-
rally, evolution of filaments with negative tension

will lead to violation of all these assumptions, as
lengthening of the curve will increase both its curva-
ture and “concentration” within the medium. Thus,
this asymptotical theory only predicts that the be-
havior of such AW media will be unusual and com-
plicated, but fails to predict the details. These de-
tails can be revealed by numeric experiments.

3. Dynamics of Vortex Filaments
with Negative Tension

We simulated PDE system (2) in cubic domains
with impermeable boundaries, for sufficiently long-
time intervals. We have chosen medium parameters
e =10.3, 6 =0.75 and v = 0.5. 2-D spirals at these
parameter values are stationary (not meandering),
and 3-D scrolls have negative but relatively small
filament tension. In different experiments, we kept
the parameters fixed and varied only the size of the
medium. We used explicit Euler (first-order for-
ward time) differencing, with the simplest 7-point
approximation of the 3-D Laplacian operator. Time
step (t.s.) was fixed to be 0.03 time units (t.u.),
i.e. math units of time in Eq. (2), and space step
(s.s.) was fixed to be 0.5 space units (s.u.).

If the size of the medium is just large enough
to contain the scroll wave but too small to let the

Fig. 3.

Double scroll wave, in the medium of 863 s.s. large. Notations are the same as in Fig. 2. The two filaments exhibit

irregular dynamics but always remain only two, i.e. do not split, annihilate or join.
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Fig. 4.

Multiple scroll waves, in the medium of 100% s.s. large. Notations are the same as in Fig. 2. (a) Four filaments can

be seen. (b) 2460 t.s. (73.8 t.u. or about two periods) later, six filaments can be seen.

filament instability to evolve, then the simple scroll
wave persists, purely independent on one of the spa-
tial variables. Figure 2 shows such a scroll wave
in the medium 853 s.s. large. Its straight form is
stabilized by its short length and also by interac-

tion with boundary, the farther one in the figure.
Due to this interaction, the rotation is not rigid
but modulated by a rather slow motion, as it is
seen in Fig. 5 below, the drift along the bound-
ary. As this solution does not depend on the
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Fig. 5. (a—c): Magnitude spectra of time series recorded in
the numerics illustrated by Figs. 2-4, respectively. Time se-
ries were 8192 values of [ u(z, y, z, t)dzdydz over a half of
the medium, recorded in every 10 t.s. = 0.3 t.u. The hor-
izontal scale in all three graphs is 1024 harmonics, which
corresponds to 4.17 t.u.”!. Spectrum (a) shows nearly peri-
odic dynamics; higher harmonics are slightly split due to the
slow motion of the scroll along the boundary. Spectra (b, c)
are qualitatively the same and show irregular dynamics, with
the main peak corresponding to the rotation frequency. The
main frequency in (b, ¢) is different from that of (a); this re-
veals strong interaction of vortices with each other and hence
inapplicability of the asymptotic theory.

vertical coordinate, it is the well-known purely 2-D
phenomenon, described by Ermakova and Pertsov
[1986].

Increasing the size of the medium just by one
space step in each direction, up to 86> s.s., makes
the simple scroll wave unstable. Its intermediate
evolution involves curving the filament, touching
the boundaries and the annihilation of a piece of
it, leading to its doubling, which eventually leads
to the pattern shown in Fig. 3.

It is a double scroll, in each orthogonal cross-
section looking as a pair of likewise rotating spi-
rals, or a two-armed spiral. This rotation is by no
means stationary, and is clearly different in differ-
ent cross-sections. The evolution looks like a com-
petition between inherent instability of the shape
of each filament, and their stabilization by mutual
attraction. This attraction is, apparently, of the
same nature as that observed in 2-D experiments by
Ermakova et al. [1989]. Its dynamics are apparently
chaotic rather than biperiodic (see Fig. 5 below).
However, after this double-scroll configuration has
been reached, the dynamics lead only to curving
of the two filaments, but not multiplications or
annihilations.

Further increase in medium size makes any
persistent structures unstable very soon, and the
dynamics become highly complicated and visually
disordered. Figure 4 shows two snapshots of wave-
fronts in a medium 1003 s.s. large, made at different
time moments. One of the snapshots shows four
vortex filaments, the other shows six; in general,
their number “oscillates” between two and seven.
The careful visual analysis of the “movie” of pic-
tures like Fig. 4 shows relatively long-living (actu-
ally, just a few rotations) structures like pairs of
twisted helicoidal filaments; one of them can be seen
in Fig. 4(a). This is, however, just a visual obser-
vation, and has not been tested by any objective
method.

Scalar time series were recorded for all the three
cases illustrated above; the Fourier spectra of the
series are shown in Fig. 5. There is a clear dis-
tinction in spectra of the nearly periodic activity
in the 852 medium and apparently chaotic one in
bigger media. It is interesting, however, that spec-
tra of 86 and 100% media look similar, despite the
evolution of the filaments being drastically differ-
ent. This shows that the scalar time series are not
an adequate tool for the analysis of this complex
spatio-temporal activity. Attempts to estimate cor-
relation dimension of the attractors in 862 and 1003



media with the method of Rosenstein et al. [1993]
showed no saturation in embedding dimensions of
up to 9.

Low-dimensional chaotic attractors may be
possible in smaller media. However, as the exam-
ple in Fig. 2 shows, such an attractor would not be
the only one in the system, and so studying it will
require the choice of appropriate initial conditions,
which we failed to find so far. Perhaps, double scroll
would be a helpful heuristics here.

4. Discussion

Results presented in this paper put forward more
questions than give answers. FitzHugh—Nagumo
system is only one example of AW media where
scroll filaments may have negative tension, and in
this model we have considered only one set of pa-
rameter values, and, perhaps, other media with this
property can demonstrate different behavior. We
believe, that however little we have learned about
this phenomenon, it demonstrates significant inter-
est for general nonlinear science and, possibly, for
applications, and further extensive research of this
phenomenon is required.

The apparently chaotic behavior shown in
Fig. 3 looks similar to the well-known chaos in
Kuramoto—Sivashinsky equation. This is not a co-
incidence. If ¢3 = 0 in Eq. (3), then the initially
planar curve will remain planar. And if we sup-
ply this equation with fourth-order spatial deriva-
tive for regularization and rewrite it for function,
say, Y(X, t), it will lead to Kuramoto—Sivashinsky
equation, which is quite natural, since the origin of
the latter, the short-wave instability of the shape
of propagating front, is similar to that of (3). Note
however, that the analogy is not exact since Eq. (3)
is for the period-averaged position of the filament,
while the actual evolution for the filament is more
complicated even in this simplest case c3 = 0.

In the more general case, c3 # 0, the behavior
is more complicated still and is essentially three-
dimensional. In hydrodynamics, the 3-D turbulence
is a significantly more complicated phenomenon
than the 2-D one. For AW media, as we have men-
tioned above, some types of instabilities are possible
in 2-D. It would be interesting to compare proper-
ties of these different instabilities and chaos gener-
ated by them, to see if the 3-D AW turbulence is
also much more complicated than the 2-D one. An
indirect evidence for that is in the fact that the 3-D
turbulence may arise in media which reveal no spe-
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cial properties in two dimensions (i.e. spiral wave
rotate rigidly).

Another interesting analogy with hydrody-
namic turbulence is the presence of coherent struc-
tures. It has been mentioned that in large media
and developed AW turbulence, there are repeating
motives in the vortices dynamics, like pairs of heli-
cal vortices. The existence of coherent structures,
including those composed of vortices, is well-known
in hydrodynamics [Monin, 1994].

The most interesting possible realization of the
3-D AW turbulence described here is the ventricu-
lar fibrillation, a severe life-threatening pathology
which occurs as a terminal stage of various cardiac
diseases. Despite the long history of the question,
phenomenon of fibrillation is not fully understood as
yet (which is also true for the hydrodynamic turbu-
lence). The most popular view of the fibrillation is
that it involves permanent creation, evolution, mul-
tiplication and annihilation of multiple excitation
wavelets and micro-reentries, which is the electro-
physiological term for the AW vortices. However,
the detailed mechanisms of these elementary pro-
cesses remain unclear. Attempts to explain these
in terms of spiral wave evolution in excitable me-
dia have been made since the work of Moe et al.,
[1964], where the immediate cause of the unordered
behavior was random scattering of cellular proper-
ties, and [Krinsky, 1968], where the key process was
interaction of excitation waves with sharp stepwise
tissue inhomogeneities. A more recent discovery
possibly relevant to this phenomenon is a 2-D insta-
bility of spiral waves, seen in a variant of the FHN
model [Panfilov & Holden, 1990, 1991], in a model
of myocardium [Winfree, 1989; Courtemanche &
Winfree, 1991] and in a model of Pt-catalyzed oxi-
dation of CO [Bar et al., 1994], where intensive me-
ander of the spiral leads to breakup of the radiated
wavefronts and thus to generation of new spirals.
The 3-D AW turbulence described here suggests an-
other mechanism of fibrillation, different from those
described so far in two main points, that it is not
stipulated by medium inhomogeneities, and it is es-
sentially three-dimensional. Negative filament ten-
sions have been observed so far in excitable media
with relatively low excitability, and this correlates
with the increased likeliness of fibrillation in “fa-
tigued” tissue.
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