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Abstract

The BeatBox simulation environment combines flexible script language user interface
with the robust computational tools, in order to setup cardiac electrophysiology in-silico
experiments without re-coding at low-level, so that cell excitation, tissue/anatomy
models, stimulation protocols may be included into a BeatBox script, and simulation
run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free
software written in C language to be run on a Unix-based platform. It provides the
whole spectrum of multi scale tissue modelling from 0-dimensional individual cell
simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up
to anatomically realistic whole heart simulations, with run time measurements including
cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc.
BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust
and flexible interfaces, thus providing an open framework for new developments in the
field. In this paper we give an overview of the BeatBox current state, together with a
description of the main computational methods and MPI parallelisation approaches.

Introduction 1

Background 2

Cardiovascular disease (CVD) is the main cause of death in Europe, accounting for 47% 3

of all deaths [1]. Cardiac arrhythmias, where the electrical activity of the heart 4

responsible for its pumping action is disturbed, are among the most serious CVDs. 5

Despite over a century of study, the circumstances from which such fatal cardiac 6

arrhythmias arise are still poorly understood. Although several advancements have been 7

made in linking genetic mutations to arrhythmogenic CVD [2–4], these do not explain 8

the resultant mechanisms by which arrhythmia and fibrillation emerge and sustain at 9

the whole heart level, for the position of the heart in torso makes in vivo measurement 10

awkward and invasive, prohibitively so for study in humans. Thus, for some genetic 11

cardiac diseases, the first presenting symptom is death with understandably limited 12

opportunity to make even superficial examinations in vivo. The most modern 13
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experimental methods do not provide sufficient temporal and spatial resolution to trace 14

down the multi-scale fine details of fibrillation development in samples of cardiac tissue, 15

not to mention the heart in vivo. 16

Combination of mathematical modelling and the latest realistic computer 17

simulations of electrical activity in the heart have much advanced our understanding of 18

heart fibrillation and sudden cardiac death [5, 6], and the impact of in-silico modelling, 19

or indeed in-silico “testing”, is expected to increase significantly as we approach the 20

ultimate goal of the whole-heart modelling. With the vast amount of quantitative 21

experimental data on cardiac myocytes action potential and the underlying 22

transmembrane ionic currents ready for inclusion into the in-silico modeling, and the 23

recent advance in high-resolution DT-MRI provision of detail anatomy models, the 24

biophysically and anatomically realistic computer simulations allow unimpeded access 25

to the whole heart with greater spatial and temporal resolutions than in a wet 26

experiment, and allow to synthesise such elusive phenomena for closer study, hence 27

improving prospects of their treatment and prevention. 28

The biophysically and anatomically realistic simulation of cardiac action potential 29

propagation through the heart is computationally expensive due to the huge number of 30

equations per cell and the vast spatial and temporal scales required. Complexity of 31

realistic cardiac simulations spans multi-physical scales to include greater detail at 32

cellular level, tissue heterogeneity, complex geometry and anisotropy of the heart. Due 33

to huge number of strongly nonlinear equations to be solved on the vast temporal and 34

spatial scales determined by the high-resolution DT-MRI anatomy models, its timely 35

running relies on use of parallel processors - High Performance Computing (HPC). 36

To address the intrinsically modular cardiac electrophysiology in silico modelling, we 37

developed modular software package BeatBox [7–9], with a built-in simulation script 38

interpreter, extendable repositories of cell and tissue/anatomy models, capable to run 39

both sequentially and in parallel on distributed (MPI) memory architecture, Fig 1. The 40

Beatbox cardiac simulation environment allows setup of complicated numerical 41

experiments without re-coding at low-level, so that cell excitation, tissue and anatomy 42

models, stimulation protocols may be included into a script, and BeatBox simulation 43

run either sequentially or in parallel without re-compilation. Importantly, the BeatBox 44

modular paradigm provides an open framework for new developments in the field, for 45

the open source BeatBox solvers, and cell and tissue/anatomy repositories are extended 46

via robust and flexible interfaces.

Fig 1. BeatBox formalism paradigm [8].

47

As HPC is a specialist field in its own right, it normally demands a high qualification 48
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of the end users if they were to modify an existing code for a different application 49

problem. The main idea of BeatBox is to make use of MPI routinely acessible to a 50

widest community of users vast majority of which are not professional software 51

developers, therefore BeatBox’s MPI implementation aims to stay opaque to the user. 52

A number of successful computational cardiology applications simulating 53

electrophysiology and/or biomechanics are available, e.g. CARP [10], CHASTE [11], 54

Continuity [12], CMISS [13], Myokit [14], CVRG Galaxy [15]; further reviews and 55

benchmark comparisons can found in [16] and [17]. Most of the available software is 56

taylored for solution of limited particular aspects of cardiac simulation. A typical set-up 57

allowed by electrophysiology simulation software is a certain number of electrical stimuli 58

applied at certain times in certain ways, and the user is allowed to vary the number and 59

parameters of these stimuli. Anything more complicated would require re-coding at low 60

level. As we show on particular examples in this paper, the capabilities of BeatBox 61

workflow scripts are much wider. Another important feature is that BeatBox finite 62

difference implementation allows straightforward incorporation of Cartesian DT-MRI 63

and/or micro-CT data into the cardiac electrophysiology simulations. Majority of the 64

popular cardiac simulation software, including [10–13], use finite element discretization. 65

Conversion of anatomical data into finite element meshes is a separate step, requiring 66

specialized tools, and can be a research task in itself [18]. 67

We believe that the main achievement of BeatBox modular and scripting approach is 68

that it allows, on one hand, to maintain user flexibility for a large variety of simulation 69

tasks, while on the other hand, to relieve the user from necessity of going into the code 70

low level neither for changing the simulation protocol, nor for parallelisation detail. As 71

the scripts contain no data specific to their use in parallel, the same scripts can run 72

equivalently in both sequential and parallel modes (with the exception of run-time 73

visualization). In the subsequent sections, we outline the mathematical problems, 74

numerical methods and programming approaches characterising BeatBox. 75

Cardiac Tissue Models 76

Computer simulation of cardiac muscle requires a mathematical model, describing the
relevant biophysical and electrophysiological processes. The bidomain model considers
intracellular and extracellular spaces in the syncytium of cardiac myocytes. Those two
domains are separated from each other by cellular membranes, the conductivity through
which is controlled by ionic channels. This situation is described by a system of partial
(PDE) and ordinary (ODE) differential equations of the form:

Cm
∂V

∂t
= −Iion(V,g) +

1

χ
∇ · σ̂i∇Φi,

∇ · (σ̂i + σ̂e)∇Φi = ∇ · σ̂e∇V − Iext
∂g

∂t
= f(g, V, ~r), (1)

where V is the transmembrane voltage, Φi is the intracellular electrostatic potential (so
Φe = Φi − V is the extracellular potential), σ̂i and σ̂e are the anisotropic conductance
tensors of the intra- and extracellular domains respectively, Cm is the specific
capacitance of the membrane and χ is the average surface to volume ratio of the cells.
The transmembrane ionic currents Iion are controlled by gating variables and ionic
concentrations, represented by the vector g. The kinetic rates are expressed in terms of
the vector-function f . The term Iext designates the external elecric current, say from
experimental or defibrillation electrodes. In the system (1), the first equation is
parabolic, the second is elliptic and the third effectively is a system of ODEs at every
point of the tissue characterised by its location ~r. If the intracellular conductances are
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proportional, i.e. σ̂e = νσ̂i for a scalar ν, then Φi, Φe and V are proportional to each
other, and the system (1) simplifies to a monodomain model:

Cm
∂V

∂t
= −Iion(V,g) +

1

χ
∇ · σ̂eff∇V − Ieff(~r, t),

∂g

∂t
= f(g, V, ~r), (2)

where σ̂eff = ν
1+ν σ̂i, Ieff = 1

χ(1+ν)Iext. System (2) belongs to the class of 77

reaction-diffusion systems, used for modelling of a large variety of natural and artificial 78

nonlinear dissipative systems [19]. 79

Computationally, the bidomain description is dramatically more challenging than the 80

monodomain, as the elliptic equation has to be solved at every time step (see e.g. [20]). 81

Practice shows that unless an external electric field is involved, the bidomain models 82

give results that differ only slightly from corresponding appropriately chosen 83

monodomain models [5, 21–24], which, together with the fact that experimental data on 84

the intra- and extracellular conductivity tensors are scarse, means that in practice the 85

monodomain simulations are used more widely. 86

The complexity of cardiac electrophysiology simulations further increases as it spans 87

multiple physical scales to include greater detail at the cellular level, such as cell 88

signalling and metabolism, and greater integration with the surrounding biological 89

systems, such as electromechanical coupling and vascular fluid dynamics [6, 25–29]. In 90

this context, it is not surprising that the timely completion of simulations relies on 91

modern high performance computing hardware. 92

Use of HPC facilities, although essential, is severely limited by specialized software 93

development skills required, so a separation of the low-level coding from the processes of 94

formulating and solving research problems is highly desirable. The BeatBox project 95

seeks to overcome these difficulties by providing a computational environment that 96

could serve as a unifying paradigm for all in silico cardiac electrophysiology research, 97

and for research in similar phenomena involving reaction-diffusion systems outside the 98

cardiology domain. 99

Design, Computational Algorithms, and 100

Implementation 101

Logical structure and user interface 102

The fundamental paradigm used by BeatBox is to represent a simulation as a ring of 103

“devices”, i.e. individual modules that perform specific computational, input/output or 104

control tasks. This ring is a metaphor of an iteration cycle; typically, one time step of 105

calculations corresponds to one turn around the ring (see Fig 2). Module of each type 106

can be used more than once in the ring, thus providing more than one device instance. 107

This ring of devices is constructed at start-up, based on the instructions given in an 108

input script. The BeatBox script parser places devices into the ring in the same order as 109

they appear in the script. The script describes the sequence of devices used in a 110

particular simulation and their parameters, using a domain-specfic scripting language 111

with a flexible syntax that includes things like a built-in interpreter of arithmetic 112

expression, recursive calls to other scripts, etc. This allows complicated numerical 113

experiments to be set-up without low-level re-coding. 114

With some simplification, BeatBox computable data are of two kinds: the main bulk 115

of the data is in a four-dimensional computational grid, of which three dimensions 116

correspond to the spatial dimensions, and the fourth dimension enumerates layers 117
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Fig 2. BeatBox “Ring of devices”. The ring of devices set up by sample.bbs

script (see Listing 2 in the Appendix).

allocated for the components of the reaction-diffusion system, (1) or (2), as well as for 118

the output data produced by some of the devices (e.g. those computing the values of 119

the diffusion term), or as a scratch memory area for devices that require this. When 120

working with a complicated geometry, only a subset of the regular cuboid spatial 2D or 121

3D grid corresponding to the tissue points is involved. Every device typically works 122

with only some layers of the grid. Apart from the computational grid, there are global 123

variables, values of which may be used by some devices, and modified by others. From 124

the MPI viewpoint, the main difference between the two types of data is that the 125

computational grid is divided between threads, i.e. each thread has its own portion of 126

the data, whereas the global variables are shared, i.e. each thread has the same set of 127

global variables. The values of the global variables are identical in all threads; this is 128

ensured either as they are produced as a result of identical computations in each thread, 129

or, if a global variable is computed in one thread, its value is broadcast to other threads. 130

An important feature is that any device instance in the ring is associated with a global 131

variable that serves as the flag indicating whether this device instance should be 132

executed at this particular time step iteration in the computation. 133

All MPI parallelization is done within individual devices, so conceptually, the device 134

ring functions synchronously in all threads, with actual synchronising MPI Barrier or 135

MPI Sendrecv calls done only when required by the computation flow. Some devices 136

operate on a sub-grid of the 4D data grid (restricted “space”), so that the set of active 137

threads may change from device to device, and from one instance of a device to the 138

other; if a device requires exchange of data between threads, then each device instance 139

creates its own MPI communicator. 140

The MPI implementation of the script parsing does not present any significant 141

difficulties. The script file is read by all threads, and the threads allocate relevant 142

subgrids of the four-dimensional computational grid, corresponding to their subdomains 143

(see Section “Complex geometries and domain partitioning” for detail), to every device 144

they create. Some care is required for diagnostic output, e.g. normally BeatBox echoes 145

the parsed version of the script to the log file. For normal output, this function is 146

delegated to one thread; for error messages, the thread that detected the error will 147

report it, which in case of massive parallelism may result in a very large log file if the 148

error occurs in many threads. 149

Two simple examples of BeatBox scripts are provided in the Appendix. One of them 150

is “minimalist”, corresponding to a simulation protocol, that can be done by many 151

other cardiac simulation softare. The second script is slightly more complicated, in 152

order to illustrate the BeatBox specific features on an example of a simulation of the 153

feedback-controlled resonant drift algorithm as described in [30], with Fig 2 illustrating 154
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the corresponding ring of the devices. This script involves the emulation of an electrode 155

registering electrical activity of the cardiac muscle at a point, and of an external device 156

which switches on a time-delay line when a signal from the registering electrode satisfies 157

a certain condition, and issues a low-voltage defibrillating shock upon the expiration of 158

the time delay. We stress here that implementation of this protocol in the majority of 159

other cardiac simulation software would require modifications of the code at a low level. 160

We believe that the main features of BeatBox are the flexibility of its user interface, 161

and the fact that any new computational features can always be added as a new device. 162

At the same time, it is clear that its utility at present depends on specific computational 163

capabilities. In the next sections, we describe the BeatBox components most likely to be 164

required in a typical cardiac dynamics simulations, in their current state. In the main 165

text of the paper we focus on principal utility features of BeatBox; for a more detailed 166

description of the syntax and semantics of BeatBox scripts, the reader is referred to the 167

Appendix, whereas a fully comprehensive description is, of course, to be found in the 168

user manual [31] which is distributed with the software and is not part of this 169

communication. 170

Splitting the problem into parts 171

Computation of intermediate expressions 172

“Divide and conquer” is a popular and successful strategy for evolution-type problems.
The idea is to split the right-hand sides of complex evolution equations to simpler
components, implement solvers corresponding to each of these components, and then
coordinate the work of the solvers, so together they solve the whole problem. The
modular structure of a BeatBox job makes this approach particularly easy to implement.
One way of doing so is by computing different parts of the right-hand side by different
devices, and then allow the time-stepping device to use the results of these computations.
We illustrate this by using a simple example, with reference to the script sample.bbs
presented in the Listing 2 in the Appendix and illustrated in Fig 2. Ignoring the effect
of an external electric field for now, the mathematical problem solved by this script is:

∂u

∂t
=

1

ε

(
u− u2/3− v

)
+∇D̂∇u,

∂v

∂t
= ε (u+ β − γv) . (3)

The script implements a forward Euler timestep (see Section “Explicit solvers” below) 173

for system (3), using two devices: 174

diff v0=[u] v1=[i] Dpar=D Dtrans=D/4 hx=hx; 175

euler v0=[u] v1=[v] ht=ht ode=fhncub 176

par={eps=eps bet=@[b] gam=gam Iu=@[i]}; 177

According to the definitions of string macros in the script, Listing 2, the macro [u]

in this fragment expands to 0, that is the very first layer of the grid allocated to the u
field, [v] expands 1, standing for the second layer of the grid, allocated to the v field,
and [i] expands to 2, which is the third layer of the grid, for the value of the diffusion
term in (3), ∇ · D̂∇u = χ−1∇ · σ̂eff∇u. So, the diff device computes an auxiliary
variable

(Iu)n = ∇ · D̂∇un

where un stands for the u field at the current time step n, and stores it into layer [v]=2 178

of the grid. 179
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The euler device, with the parameter ode=fhncub, performs a forward Euler step
for the cubic FitzHugh-Nagumo ODE system,

∂u

∂t
=

1

ε

(
u− u2/3− v

)
+ Iu,

∂v

∂t
= ε (u+ β − γv) + Iv, (4)

in which parameters ε and γ are given by the values of the global variables eps and gam

defined previously in the script (in the included parameter file <fhn.par>), the value of
parameter β is taken from layer [b] which expands to 3 (parameter β is spatially
dependent in this simulation, and layer 3 was pre-filled with values by the same k func

device that computed the initial conditions), the value of parameter Iu is taken from
layer [i] which contains the values of the anisotropic diffusion term (Iu)n, computed
for this time step by the preceding diff device, and the value of parameter Iv = 0 by
default. Overall, with un(x, y) and vn(x, y) designating the fields u and v at the n-th
time step, the pair of devices computes

un+1 = un + k

[
1

ε

(
un −

1

3
u2n − vn

)
+∇ · D̂∇un

]
,

vn+1 = vn + kε (un + β(x, y)− γvn) ,

where k is the time step, represented by the global variable ht in the BeatBox script. 180

Operator splitting 181

Operator splitting is another popular “divide and conquer” strategy [5, 32,33]. Slightly 182

simplifying, one can say that in this approach, the right-hand sides still are split into 183

simpler parts, but now an evolution sub-step is done for each such part in turn, as if 184

this part was the whole right-hand side. For example, computation of kinetics and 185

diffusion in the right-hand side of (3) can be split into the kinetics part and diffusion 186

part, and then one device performs the diffusion substep, and another device performs 187

the kinetics substep. So, the BeatBox script fragment from Section “Computation of 188

intermediate expressions” can be modified as 189

diffstep v0=[u] v1=[i] Dpar=D Dtrans=D/4 hx=hx ht=ht; 190

euler v0=[u] v1=[v] ht=ht ode=fhncub 191

par={eps=eps bet=@[b] gam=gam}; 192

where the device diffstep computes the diffusion term, and does a forward Euler step
with it, as if this was the only term in the equation. Combined with the fact that now
in the euler device the parameter Iu is not specified so it defaults to zero, the given
fragment of the script implements the following computation scheme:

un+1/2 = un + k
[
∇ · D̂∇un

]
,

un+1 = un+1/2 + k

[
1

ε

(
un+1/2 −

1

3
u2n+1/2 − vn

)]
,

vn+1 = vn + kε
(
un+1/2 + β(x, y)− γvn

)
.

Once again, this is just a simple example illustrating how the BeatBox paradigm 193

naturally fits the idea of operator splitting. This of course applies first of all to the 194

simplest (Lie) splitting; more sophisticated, higher-order operator splitting schemes 195

could be implemented at the BeatBox script level, or on the device, i.e. a C-source code 196

level. 197

From the MPI viewpoint, both methods of splitting problems into parts do not 198

present any issues, since they are implemented on the level of interaction of devices 199

involved, and any parallelization work is done within the devices. 200
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Kinetics solvers 201

Explicit solvers 202

Both the monodomain “reaction-diffusion” models of the form (2) or the more
complicated bidomain models (1) have equations with time derivatives. Solving those
equations in BeatBox is done as if they were ordinary differential equations,

dV

dt
= − 1

Cm
(Iion(V,g)− Ieff(~r, t))

dg

dt
= f(g, V, ~r), (5)

(depending on ~r as a parameter) either with the value of the diffusion term, computed 203

by the corresponding diffusion device, appearing in the voltage equation, or within the 204

operator-splitting paradigm, i.e. performing time sub-steps as if the model was 205

restricted to the ODEs representing the reaction terms, leaving the space-dependent 206

part of the model to be computed at alternative sub-steps. 207

The simplest and arguably most popular in practice solver for ODEs is the
first-order explicit (time-forward) scheme known as the forward Euler scheme, which
for a system of ODEs (5) means:

Vn+1 = Vn −
k

Cm
(Iion(Vn,gn)− Ieff(~r, tn))

gn+1 = gn + kf(gn, Vn, ~r), (6)

where tn is the n-th value in the time grid, k = tn+1 − tn is the time step, and 208

Vn = V (~r, tn), gn = g(~r, tn). This scheme is implemented in BeatBox in the euler 209

device. 210

The Euler scheme’s well known disadvantages are its low accuracy due to only 211

first-order approximation of the ODE, and, as any explicit scheme, only conditional 212

stability (see e.g. [34]). The first disadvantage does not usually play a crucial role in 213

cardiac dynamics studies as the proven accuracy of cardiac kinetics models themselves is 214

not particularly high. There is, however, rk4 device in BeatBox, implementing 215

Runge-Kutta fourth-order scheme for cases when accuracy is essential, and other 216

standard explicit solvers may be easily implemented in a similar way. The stability 217

consideration is more significant as it severely limits the maximal allowable time step k 218

in stiff models, hence making simulations costly. 219

Exponential solvers 220

The standard solution to the stability problem is, of course, using implicit or
semi-implicit schemes. The latter possibility is much more popular as fully implicit
approaches for nonlinear equations are numerically challenging. Among the
semi-implicit approaches available in cardiac dynamics, the exponential scheme for ionic
gates, known as the Rush-Larsen technique [35], is very popular. The idea is based
on the observation that in the models of ionic excitability, since the seminal work by
Hodgkin and Huxley [36], an important role is played by equations of the form:

dy

dt
= α(V )(1− y)− β(V )y, (7)

where the dynamic variable y, called the gating variable, possibly in conjunction with
other gating variables, determines the permittivity of certain ionic currents. A
convenient (even if not biophysically precise) interpretation is that a channel is open if
all of the gates controlling that channel are open, and the variable y is the probability
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for that gate to be open. Hence α and β are transition probabilities per unit of time, of
a closed gate to open, or for an open gate to close, respectively. In equation (7) the
transition probabilities depend on the current value of the transmembrane voltage V , as
in the Hodgkin-Huxley model; in more modern models gating variables of some channels
may depend on other dynamical variables, say the concentration of calcium ions. The
importance of the gating variables is that equations of the type (7) are often the stiffest
in the whole cardiac excitation model. The Rush-Larsen scheme in its simplest form can
be obtained by assuming that V does not change much during a time step, t ∈ [tn, tn+1],
and replacing V (t) with the constant value Vn = V (tn) turns (7) into a linear equation
with constant coefficients, the solution of which can be written in a closed form, which
gives:

yn+1 = A(Vn) +B(Vn)yn (8)

where

A(V ) = exp (−(α(V ) + β(V ))k) ,

B(V ) =
α(V )

α(V ) + β(V )
[1−A(V )] . (9)

As far as equation (7) is concerned, this scheme is unconditionally stable, and gives an 221

exact answer if V (t) = const, i.e. its first-order accuracy depends exclusively on the 222

speed of change of the transmembrane voltage V . This scheme is implemented in the 223

BeatBox device rushlarsen. Naturally, this device requires a more detailed description 224

of the excitable model than euler: the gating variables y and their transition rates A, 225

B need to be explicitly identified for rushlarsen whereas euler only requires a 226

definition of the functions computing the right-hand sides of the dynamic equations, i.e. 227

Iion and g. The standard Rush-Larsen scheme can be modified to improve its accuracy; 228

e.g [37] proposed a predictor-corrector version which provides a second order accuracy. 229

Implementation of this method would require a description of the cellular model in the 230

same ionic format as used by rushlarsen device; however it is not yet implemented in 231

the current version of BeatBox. 232

Some modern cardiac excitation models use a Markov chain description of the ionic
channels. This description is based on the assumption that an ionic channel can be in a
finite number of discrete states, and transitions between the states can happen with
certain probability per unit of time, which may depend on control variables, such as
transmembrane voltage V or calcium ion concentration c. The time evolution of the
vector u of the probabilities of the channel to be in each particular state is described by
the system of linear ODEs, known in particular as Kolmogorov (forward) equations, or
the master equation

du

dt
= M(V, c)u, (10)

where M is the matrix of transition rates. The extension of the Rush-Larsen idea to
this system was done in [38]. Assuming again that the control variables do not change
much within a time step and replacing them with a constant, V (t) = Vn and c(t) = cn
for t ∈ [tn, tn+1], the system (10) is a system of homogeneous linear equations with
constant coefficients and its exact solutions can be explicitly written. Assuming that M
is diagonalizable, the resulting computational scheme can be written as:

un+1 = T(Vn, cn)un, (11)

where

T(V, c) = ekM(V,c) = S(V, c) eΛ(V,c)k S(V, c)−1 (12)
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and S and Λ are respectively the matrix of eigenvectors and the diagonal matrix of 233

eigenvalues of M. This matrix Rush-Larsen scheme is also implemented in the 234

device rushlarsen mentioned earlier. 235

Finding eigenvalues and eigenvectors for the diagonalisation and computing 236

exponentials are relatively time consuming operations. For that reason the rushlarsen 237

device does a tabulation. That is, for the case when the coefficients A, B depend on V 238

and matrices T depend only on one control variable, e.g. V (are “univariate”), their 239

values are precomputed for a sufficiently fine grid of the control variable at the start 240

time [39]. 241

If matrix M depends on multiple control variables, e.g. both V and c (are 242

“multivariate”), it can sometimes be presented as a sum of univariate matrices. Then 243

rushlarsen uses Lie operator splitting and integrates each of the subsystems associated 244

with each of the univariate matrices using the tabulated “matrix Rush-Larsen” 245

separately. For some kinetics models, M can be presented as a sum of one or more 246

univariate matrices and a remainder, which is multivariate but uniformly small. In that 247

case the subsystem associated with the small remainder is done using the forward Euler 248

method. Finally, if any such decomposition is not possible, “matrix Rush-Larsen” step 249

still can be done, just without tabulation, but by doing the diagonalization “on the fly”, 250

i.e. at the run time rather than start time. Although such computation is relatively 251

costly, the benefit of larger time step may still outweigh the expense. The possibility of 252

tabulating multivariate function theoretically exists but is not considered in BeatBox 253

due to resource implications. 254

The diagonalization is done using appropriate routines from GSL [40]; the relevant 255

subset of GSL is included in the BeatBox distribution for portability and the users 256

convenience. 257

Other methods of extending Rush-Larsen idea to Markov chains have been proposed; 258

e.g. the “uniformization method” [41] based on computing partial Taylor series of the 259

matrix exponential for the suitably preconditioned matrix M. This method does not 260

require finding eigenvectors, but the amount of computations depends on the required 261

accuracy. 262

From the MPI viewpoint, all kinetic solvers work on individual grid points, so 263

parallelization does not present any issues. 264

Cell models 265

The current version of BeatBox is provided with a library of cell models. The definitions 266

of the models come in two different formats, called rhs and ionic in BeatBox language, 267

for the two different classes of kinetic solvers described above. 268

The rhs format is used by the generic solvers such as Euler and Runge-Kutta. In 269

this format, the corresponding C module defines a function that computes the vector of 270

the time-derivatives of the dynamic variables, for a given vector of the current values of 271

those variables. 272

A practical amendment to this idealized scheme came from the necessity to 273

incorporate models which are not easily presentable as systems of ordinary differential 274

equations. This includes the models where the description of intracellular calcium 275

buffers is in terms of finite rather than differential equations, and also the models with 276

the description of calcium-induced calcium release in terms of a delay with respect to 277

the voltage upstroke inflexion point, as in the Luo-Rudy family of models. The 278

descriptions of such models used in cardiac modelling practice is often in the form of a 279

function that performs the time-stepping, rather than defines the right-hand sides of the 280

ODE system. Hence, the rhs format allows the model defining function to also directly 281

modify the state vector, and correspondingly have the time step as one of the 282

parameters. Currently, BeatBox has rhs definitions of the “conceptual” excitable 283
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models, such as FitzHugh-Nagumo [42–44], Barkley [45], and complex Ginzburg-Landau 284

equation [46], and specifically cardiac models, such as Fenton-Karma [47], Luo-Rudy 285

“LRd” [48], Courtemanche et al. 1998 [49], ten Tuschher et al. 2004 [50] and ten 286

Tuschher-Panfilov 2006 [51]. 287

The ionic format is suitable for solvers explicitly exploiting the specific structure of 288

cardiac and neural excitation models, currently implemented in rushlarsen. This 289

solver handles both the classical Rush-Larsen scheme, and its matrix modification 290

described above. The difference from the rhs format is that the vector of dynamic 291

variables is split into a part that corresponds to gating variables, Markov chain 292

variables, and “other”, i.e. non-gating variables. Correspondingly, a module definining 293

an ionic model is expected to export separate functions computing the transition rates 294

for the gating and Markov variables, and ODE right-hand sides for non-gating variables. 295

The current version of BeatBox has ionic definitions of the following models: 296

Beeler-Reuter [52], Courtemanche et al. 1998 [49], ten Tuschher-Panfilov 2006 [51] and 297

Hodgkin-Huxley [36]. 298

Both rhs and ionic libraries of cell models can be extended by adding new models 299

in the appropriate format. Instructions for that, with examples, are provided in the 300

BeatBox documentation [31]. This includes an example of a semi-automatic conversion 301

of a model from the CELLML format into a BeatBox rhs module. Making such 302

conversion completely automatic is entirely feasible and is one of the planned directions 303

of BeatBox development. Conversion to ionic format is more complicated as it requires 304

syntactic distinction of gate and Markov chain variables and their transition rates from 305

other variables, currently not available in the CELLML standard. 306

Monodomain diffusion and boundary conditions 307

We focus here on the device diff which is the main device implementing the diffusion 308

term in the monodomain diffusion, which mathematically can be described as: 309

Lu =

3∑
j,k=1

∂

∂xj

(
Djk(~r)

∂u

∂xj

)
(13)

with the naturally associated non-flux boundary conditions, 310

3∑
j,k=1

nkDjk(~r)
∂u

∂xj
= 0 (14)

where ~n = (nk) is the normal to the boundary Γ of the domain D, i.e. excitable tissue. 311

Currently this is implemented for the transversely isotropic case, i.e. when the diffusion 312

tensor D̂ = (Cmχ)
−1
σ̂eff = (Djk) has only two different eigenvalues: the bigger, simple 313

eigenvalue D‖ corresponding to the direction along the tissue fibers, and the smaller, 314

double eigenvalue D⊥, corresponding to the directions across the fibres, as this is the 315

most popular case in modelling anisotropic cardiac tissue (the modification for the 316

general orthotropic case is straightforward though). In this case, 317

Djk = D⊥δjk +
(
D‖ −D⊥

)
fjfk, (15)

where ~f = (fk) is the unit vector of the fiber direction. The simple finite-difference
approximation of (13,14) in diff device is along the lines described, e.g. in [53]. In
detail, we have

(Lu)p =
∑

q∈{0,±1}3
Wp

q up+q, (16)
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where p ∈ Z3 is the 3D index of a grid node with position vector ~rp, up = u(~rp) is the
value of the field u at the grid node p, (Lu)p is the value of the diffusion operator

approximation at that point, q ∈ {0,±1}3 is the grid node index increment, and the
weights Wp

q are defined by the following expressions:

Wp
q = W

p

q + W̃p
q , (17)

W
p

q =
ψp+q

h2


Dp
jj , q = ±qj ,

1
2D

p
jk, q = ±(qj + qk), j 6= k,

− 1
2D

p
jk, q = ±(qj − qk), j 6= k,

0, q = ±q1 ± q2 ± q3,

, (18)

318

W̃p
q =

ψp+qψp−q

4h2

±
3∑
j=1

(
D

p+qj

jk −Dp−qj

jk

)
, q = ±qk,

0, otherwise,

(19)

Wp
(0,0,0) = −

∑
q 6=(0,0,0)

Wp
q , (20)

where j, k ∈ (1, 2, 3), ψp is the grid indicator function of the domain D, that is, ψp = 1 319

if ~rp ∈ D and ψp = 0 otherwise, Dp
jk = Djk (~rp), q1 = (1, 0, 0), q2 = (0, 1, 0), 320

q3 = (0, 0, 1), and h is the space discretization step. 321

The above discretization is probably the simplest possible approach; there are
alternatives available, see for example [54], however these require extra information
about D beyond the grid function ψp. We assess the approximation properties of the
simple scheme described above by solving the following initial-boundary value problem
for the diffusion equation:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (x, y) ∈ D, t ∈ [0, T ]; (21)

u = J0

(
γ
√

(x− x0)2 + (y − y0)2
)
, (x, y) ∈ D, t = 0; (22)

∂u

∂~n
= 0, (x, y) ∈ Γ, t ∈ R+; (23)

D =
{

(x, y)|(x− x0)2 + (y − y0)2 ≤ 1
}
, (24)

Γ = ∂D =
{

(x, y)|(x− x0)2 + (y − y0)2 = 1
}
. (25)

Here J0(·) is Bessel function of the first order of index 0, and γ ≈ 3.8317 . . . is the first 322

positive root of its derivative, J′0(γ) = 0. This problem has an exact solution: 323

u = J0

(
γ
√

(x− x0)2 + (y − y0)2
)
e−γ

2t. (26)

Fig 3 illustrates the numerical convergence of the solution of the problem (21)–(25) by
BeatBox using diff device to the exact solution provided by (26), for T = 0.2. The
timestepping is by using a forward Euler scheme with a time step of k = h2/80. The
error, i.e. the difference ε(~r, t) = u](~r, t)− u(~r, t) between the exact solution u(~r, t) and
its approximation obtained numerically, u](~r, t), is characterized by two norms,

‖ε‖L∞ = max
t∈[0,T ]

max
~r∈D
|ε(~r, t)| , (27)
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‖ε‖L2 =

 1

Tµ(D)

T∫
0

∫
D

|ε(~r, t)|2 d2~r dt

1/2

. (28)

where µ(D) stands for the area of D, and all the integrals are calculated by the 324

trapezoidal rule. Each h is represented by four points on each graph, corresponding to 325

four simulations, with different position of the centre of the circle (x0, y0) with respect 326

to the grid (~rp), namely, ((x0, y0)− ~rp) /h = (0, 0), (0.2, 0.2), (0.2, 0.6) and (0.6, 0.6); 327

this is to eliminate any possible effects related to special arrangement of the problem 328

with respect to the grid. We can see that the convergence is worse than h2, but better 329

than h1. The L2 norm of the error converges faster than L∞ norm, which is an 330

indication that the main source of error is localized — this is, of course, to be expected, 331

as the boundary conditions, in a sense, approximate the curvilinear boundary Γ with 332

pieces of straight lines parallel to the x and y axes, thus typically making an error O (h). 333

We stress that in cases where the realistic tissue geometry is available as a set of points 334

with the same resolution as the computational grid, the knowledge of any curvilinear 335

boundary is in any case unavailable, so any loss of accuracy associated with it, or, 336

equivalently, any notional gain of accuracy that would be associated with using a 337

curvilinear boundary instead, would be purely theoretical. 338
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Fig 3. Numerical convergence of the solution of the problem (21)–(25).
Slope lines are with slopes 1, 2 and best fits with slopes 1.564 for L∞, and 1.719 for L2.

From the MPI viewpoint, the work of the diff device and other similar devices 339

requires special care, since computation of the Laplacian of a dynamical field at a point 340

requires knowledge of the field in neighbouring points, and some of the neighbouring 341

points may be allocated to different threads. Hence, some message passing (exchange of 342

interfacial buffers) is required for its work. This issue is discussed in detail 343

in Section “Complex geometries and domain partitioning”. 344

Bidomain diffusion 345

Computations using the bidomain tissue description (1) differ primarily by the presence
of the equation:

∇ · (σ̂i + σ̂e)∇Φi = ∇ · σ̂e∇V − Iext, (29)

which is elliptic with respect to both Φi and V . We have implemented a solver for 346

elliptic equations in the elliptic device. This uses Full Multigrid iterations with 347

vertex-centered restriction/prolongation operators with bi/tri-linear interpolation, and a 348

(multicoloured) Gauss-Seidel or a Jacobi smoother. 349

The linear system to which the solver applies naturally occurs through discretization 350

of the diffusion operator in the same way as described in the previous subsection. For 351

solving the bidomain model (1) using operator splitting, the elliptic device can be 352
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used to solve the elliptic equation with respect to Φi [55], leaving the parabolic diffusion 353

equation for timestepping V using the diff device and timestepping V and g according 354

to the reaction kinetics via an ODE solver, such as euler device. 355

The MPI aspect of the elliptic device is similar to that of diff device, in that the 356

Gauss-Seidel iterations involve neighbouring grid points which may be allocated to 357

different threads, and this is considered in detail in Section “Complex geometries and 358

domain partitioning”. The specifics of the elliptic device is that it implements an 359

iterative algorithm, and buffer exchange is required at every iteration. 360

We illustrate this computation scheme on an example of a bidomain problem with
an exact solution. We consider a bidomain system (1) with a one-component “cell
model”, dim g = 0, corresponding to the Zeldovich-Frank-Kamenetsky [56] also known
as Nagumo equation [57] and Schlögl model [58]:

∂V

∂t
= V (V − α)(1− V ) +

(
Di
‖∂

2
x +Di

⊥∂
2
y

)
Φi, (30)[

(De
‖ +Di

‖)∂
2
x + (De

⊥ +Di
⊥)∂2y

]
Φi =

(
De
‖∂

2
x +De

⊥∂
2
y

)
V. (31)

If posed on the whole plane, (x, y) ∈ R2, this system has a family of exact solutions in
the form of plane waves,

V ∗ =
{

1 + exp
[
(x cos θ + y sin θ − s− ct) /

√
2D∗

]}−1
, (32)

Φ∗i = KV ∗, (33)

where the angle of the wave propagation, θ, and its initial phase, s, are arbitrary 361

constants, and the other parameters of the solution are defined by c =
√

2D∗
(
1
2 − α

)
, 362

D∗ = Di
∗D

e
∗/(D

i
∗ +De

∗), K = De
∗/(D

i
∗ +De

∗), D
i
∗ = Di

‖ cos2 θ +Di
⊥ sin2 θ, 363

De
∗ = De

‖ cos2 θ +De
⊥ sin2 θ. 364

For testing BeatBox as a bidomain solver, we consider the problem for the
system (30,31) in a square domain of size L, D = [0, L]2, for a time interval t ∈ [0, T ],
with the initial and (non-homogeneous Dirichlet) boundary conditions set in terms
of (32,33) as

V (x, y, 0) = V ∗, Φi(x, y, 0) = Φ∗i , (x, y) ∈ D; (34)

V (x, y, t) = V ∗, Φi(x, y, t) = Φ∗i , (x, y) ∈ Γ, t ∈ (0, T ), (35)

Γ = ∂D = {0, L} × [0, L] ∪ [0, L]× {0, L}. (36)

To implement solution of the problem (30)–(36) in a BeatBox script, we split it into
substeps:

diff(1) : S1 = ∇ · D̂e∇V,

elliptic : ∇ ·
(
D̂e + D̂i

)
∇Φi = S1,

diff(2) : S2 = ∇ · D̂i∇Φi,

euler : Vt = V (V − α)(1− V ) + S2.

The resulting fragment of BeatBox script looks like this: 365

def str domain x0=xil x1=xir y0=yil y1=yir; 366

// source term in the elliptic equation 367

diff [domain] v0=[u] v1=[s] 368

Dpar=Dex Dtrans=Dey hx=hx; 369

// solving the elliptic equation 370
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elliptic [domain] v0=[s] v1=[p] 371

Dpar=Dex+Dix Dtrans=Dey+Diy hx=hx 372

tolerance=tol delta=0.5 upper_level=3 373

vcycles=20 preiter=1 postiter=2 maxiter=1e6; 374

// source term in the parabolic equation 375

diff [domain] v0=[p] v1=[s] 376

Dpar=Dix Dtrans=Diy hx=hx; 377

// timestep of the parabolic equation 378

euler [domain] v0=[u] v1=[u] 379

ode=zfk ht=ht par={alpha=alpha Iu=@[s]}; 380

In this fragment, the first diff device computes the right-hand side of the elliptic 381

equation (31), S1 = ∇ · D̂e∇V , and deposits the auxiliary variable S1 into the layer [s]; 382

then elliptic device solves the elliptic equation (31) for Φi, using the provided 383

fine-tuning algorithm parameters, and puts the result into the layer [p]. The second 384

diff device computes S2 = ∇ · D̂i∇Φi and puts the result S2 into the layer [s] (which 385

is therefore “recycled”), and the euler device does the time step of the cell model. The 386

interior of the domain D is mapped to the subgrid [domain] with the grid x-coordinate 387

from xil to xir and y-coordinate from yil to yir. The non-homogeneous, 388

non-stationary Dirichlet boundary conditions (35) were implemented by a k func 389

device, computing the boundary values for V and Φi for the grid nodes surrounding this 390

subgrid [domain], i.e. those with grid coordinates xil-1,xir+1,yil-1,yir+1 (this part 391

of the script is not shown). 392

The accuracy of the computational scheme is illustrated in Fig 4. We take L = 10, 393

T = 40, α = 0.13, Di
‖ = 2, Di

⊥ = 0.2, De
‖ = 8, De

⊥ = 2 and s = −5. The time step 394

k = 3h2/
(

16De
‖

)
is varied together with the space step h with the coefficient 395

3/
(

16De
‖

)
chosen from the considerations of numerical stability [53], resulting in 396

quadratic convergence of the algorithm, as should be expected.
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Fig 4. Numerical convergence of the solution of the problem (30)–(36).
Slope lines: slope 2 (black) and best fits with slopes 2.009 for L∞, and 1.9889 for L2.

397

Complex geometries and domain partitioning 398

Format of BeatBox geometry files 399

Complex geometries for BeatBox simulations are defined by files in BeatBox’s “.bbg” 400

format. A .bbg file is an ASCII text file, each line in which describes a point in a 401

regular mesh. Each line contains comma-separated values, in the following format: 402

x , y , z , status , fibre x , fibre y , fibre z

Here x, y, z are integer Cartesian coordinates of the point, status is a flag, a 403

nonzero-value of which shows that this point is in the tissue, whereas a zero status 404

designates a point in the void, and fibre x, fibre y, fibre z are x-, y- and 405
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z-components of the fibre orientation vector at that point. To reduce the size of .bbg 406

files, only tissue points, i.e. points with nonzero status need to be specified. BeatBox 407

will ignore the fibre orientation vectors of void points in any case. 408

Anatomically realistic geometries 409

To use DT-MRI anatomical data in BeatBox simulations, such data should be converted 410

into the .bbg format. The current version of BeatBox makes use only of the primary 411

eigenvector of the diffusion tensor, which is why only one direction vector is used in the 412

format. Once DT-MRI data on tissue points locations together with the corresponding 413

fiber orientations are compiled into a .bbg anatomy file, it can be called from a 414

BeatBox simulation script, see e.g. the statement 415

state geometry=ffr.bbg anisotropy=1 vmax=4;

in sample.bbs script in Listing 2 in the Appendix. 416

Domain partitioning 417

Sharing work between processes in the MPI version of BeatBox is done by splitting the 418

computational grid into subdomains, such that computation in each subdomain is 419

done by a process. The method of domain decomposition is illustrated in Fig 5, for a 420

2D domain. Each of the x, y and z dimensions of the grid is separated by a certain 421

number of equal subintervals (approximately equal, when the grid size is not divisible by 422

the number of subintervals). The number of subintervals in different dimensions do not 423

have to be the same. In the example shown in Fig 5, the x and y dimensions are split to 424

have 3 subintervals each; the z dimension is not split. The grid nodes, in which 425

computations are done, are represented in Fig 5 by solid circles (“bullets”). 426

The continuity of computations across subdomains necessary for devices involving 427

the diffusion operator is achieved by using message passing with exchange buffers. 428

The depth of the exchange buffer in each direction is one grid point. This imposes a 429

limitation on the stencils that can be used by diffusion-like devices, such as a 9-point 430

stencil for 2D and up to a 27-point stencil for 3D. In Fig 5, the hollow circles represent 431

the fictitious grid nodes which are images of corresponding nodes from neighbouring 432

subdomains, and the dashed lines designate the whole buffers, including the nodes to be 433

sent and nodes to be received. The buffer exchange should be effected twice (forwards 434

and backwards) for each dimension, i.e. four exchanges in 2D simulations and six 435

exchanges in 3D simulations. If the buffer exchanges are done in the correct order, then 436

this will ensure correct exchange of node values in the diagonal directions as well 437

(magic corners, see [9] for details). 438

In bidomain computations, the buffer exchanges can be done either before each 439

iteration or more seldom; in the latter case the result is different from the sequential 440

run, but inasmuch as both MPI and sequential results are close to the actual solution, 441

the difference between the two should be negligible. Similar consideration applies to the 442

use of the Gauss-Seidel smoother, which of course will also give different results if 443

applied in each subdomain separately. 444

When working with complex (non-cuboidal) domains, the BeatBox approach is to 445

inscribe the domain into the smallest cuboid, and then proceed as before, with the 446

difference that computations are only done at those grid nodes that belong to that 447

domain, and the one outside domain remain idle. This is also illustrated schematically 448

in Fig 5, where the boundary of the irregular domain is drawn by a closed bold solid 449

black line. This creates a challenge to the performance: with high-degree parallelization 450

and complicated geometry of the irregular domain, the load imbalance between 451

processes can become significant; in particular, a large number of partitions will contain 452
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Fig 5. Schematic of the domain partitioning in MPI implementation of
BeatBox. Solid circles represent nodes on which actual computations are done, empty
circles are the “halo” points, the rectangles denote the exchange buffers and the solid
black line represents the boundary of an irregular computational domain (excitable
tissue).

no points of the domain (in Fig 5, there is one such partition, in the bottom left corner). 453

This problem is well known and there are efficient tools for solving them for structured 454

as well as unstructured grids, see e.g. [59, 60]. In the current version of BeatBox, 455

however, only the crudest optimization method is used: the partitions that are 456

completely idle are not allocated to processes, which considerably limits the expected 457

slow-down because of the uneven load (roughly speaking, at worst twice on average). 458

Input/output and visualization 459

Finally, we briefly mention some input/output options currently available in BeatBox. 460

Each of these options is implemented in the corresponding device. This includes: 461

• Full precision binary input and output of a specified subset grid, by the devices 462

load and dump respectively. In the MPI mode, these devices operate in parallel, 463

using MPI File read all and MPI File write all calls respectively. All threads 464

get collective access to the file using MPI File set view calls at the start-up time, 465

taking into account (computing the intersection of) both the 4D subset of the grid 466

data allocated to the device, and the subdomain allocated for the particular 467

thread. 468

• Discretized “fixed-point” (1 byte per value) output of three selected layers of a 469

subset of the grid, by the device ppmout. MPI implementation of ppmout device is 470

very similar to that of the dump device: use of MPI File write all calls for 471

writing after arranging collective access via MPI File set view calls at the 472

start-up time. The main difference is that ppmout device outputs only one byte 473

per value instead of eight for dump. Therefore ppmout precision is typically not 474

sufficient for the ppmout output data to be used as control points or initial 475
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conditions for subsequent BeatBox runs, though sufficient enough for most 476

visualization purposes. 477

• Plain text outputs of a defined subset of the grid by the device record, and a list 478

of expressions involving global variables, by the device k print. The MPI aspects 479

of the record and k print devices are very different. The record device is 480

similar to the dump and ppmout devices: it uses MPI File set view and 481

MPI File write all for parallel output of a certain 4D subset of the grid in a 482

fixed-lengh ASCII format, so the position of each text record in the output file 483

can be precisely calculated. The k print device outputs a specified list of values 484

which may be expressions depending on global variables, which by definition are 485

equally known to all threads. Hence the output is done only by one dedicated 486

thread. All the MPI work needed here is selection of the communicating thread. 487

Some computational devices also have i/o options. For instance, device k func, 488

which performs computations by formulas specified in the BeatBox script, can also read 489

data from of a plain text file; such data are interpreted as a tabulated univariate 490

vector-function and is often used to create initial conditions by the phase-distribution 491

method [61]. This read in from a file is done via sequential calls, which in the MPI 492

mode may create some delay, but since this is done only once at the start-up time, we 493

do not consider this a significant issue. 494

Another example is device singz, which finds phase singularities in z-cross-sections 495

of the grid. These are defined as intersections of isolines of two fields allocated to 496

selected layers of the grid. Coordinates of the intersection points within grid cells are 497

defined using linear interpolation of the pieces of the isolines. In addition to assigning 498

the coordinates of the singularity points to global variables, it can also output those to 499

a plain text file and/or visualize. The MPI implementation of the singz device is 500

slightly more complicated than in other devices. The singularity points can be found in 501

any threads, and their number is not known a priori. Hence the coordinates of these 502

points are passed, by MPI Send to one dedicated “coordinating” thread, which collates 503

reports from all participating threads obtained via MPI Recv, and then assigns statistics 504

of the found singularity points (their number, and means and standard deviations of 505

their coordinates) and outputs, if requested, their coordinates to a file using sequential 506

access. Naturally, the participating threads have to submit an empty report even if no 507

singular points are found, as otherwise the coordinating thread has no means of 508

knowing what messages to expect. This potentially creates an unnecessary delay 509

compared to the sequential version; however in practice this is not noticeable since this 510

device is usually called only during a small fraction of computation steps. Many devices 511

have an optional debug parameter for printing plain text messages about details of their 512

work. The MPI versions of these options depend on whether the device operates with 513

grid data or global variables, and is based on the same principles as described above. 514

Regarding run-time visualization, the sequential version of BeatBox has a number of 515

devices for 0D, 1D, and 2D visualization via X11 protocol if available (devices k draw, 516

k plot, k paint). 3D output typically requires much more tuning in order to be 517

effective. Theoretically, one possibility is to do the tuning in the interactive mode while 518

the computations are stopped, as it is done e.g. in EZSCROLL, see [62]; this, however, 519

would go against one of the principles of BeatBox, that all details of the run are 520

specified in the input script, so that any simulation is reproducible. Instead, currently 521

the 3D visualization is done by post-processing of the output data, most often for the 522

data produced by ppmout. 523
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Results 524

Parallel scaling performance 525

Fig 6 illustrates the computation time taken by the MPI version of BeatBox on 526

ARCHER (UK national supercomputing facility, http://www.archer.ac.uk/) as a 527

function of the number of processes, for three series of test jobs, presenting different 528

challenges from the parallelization viewpoint. In all series, the jobs simulated the 529

monodomain model (2) with Courtemanche et al. 1998 model of human atrial cells [49], 530

with dim g = 23, and anisotropic diffusion (19-point stencil), but with different 531

geometries. Fig 6(a) is for a cubic grid of 300× 300× 300 points. Fig 6(b) is for the 532

rabbit ventricles geometry, described in [63], which is inscribed in a cuboid grid 533

119× 109× 131, containing 470324 tissue points, which is about 27.7% of the total 534

number of points in the grid. Fig 6(c) is for the human atrial geometry [64], inscribed 535

into a cuboid grid 237× 271× 300, containing 1602787 tissue points, about 8.3% of the 536

total. The human atrium geometry tests were using the crude optimization of 537

partitioning, i.e. the subdomains that do not contain tissue points are not allocated to 538

processes; the rabbit ventricle jobs are done without such optimization. In all job series, 539

the simulation was with an initial condition of a scroll wave with a filament along the 540

y-axis, using the procedure described e.g. in [65]. Simulation series for all three 541

geometries were run with and without output via ppmout device, which outputs up to 542

three selected layers of the grid, discretized to the 0..255 scale (3D extension of the ppm 543

format of Netpbm, [66]), using parallel output (see Section “Input/output and 544

visualization” for detail). The corresponding curves in the graphs are marked as 545

“without ppm” and “with ppm” respectively. Such outputs were done once in every 200 546

timesteps for the full box and human atrium geometries, and once in every 1000 547

timesteps for the rabbit atrium geometry. The full box and human atrium jobs also did 548

plain text, sequential output via k print device (see Section “Input/output and 549

visualization” for detail) of the activity at a single point once in every 20 time steps. To 550

test the expenses associated with sophisticated control, the full box and human atrium 551

jobs implemented feedback-controlled stimulation, similar to that implemented in the 552

sample.bbs script described in the Appendix. To exclude the effects of the time taken 553

by the start-up operations, we computed the time per step by running jobs identical in 554

all respect except the number of time steps, and then considering the difference. 555

ARCHER has 24 cores per node, and the numbers of processes in the test jobs are 556

power-of-two multiples of 24. The “ideal” lines are drawn based on the result of the 557

“without-ppm” job on 24 processors. 558

We observe that the effect of feedback control and plain text outputs on the parallel 559

performance is relatively small, and the main slow-down at high parallelization happens 560

due to uneven load of the processes. The parallel scaling is, as expected, best for the 561

full box: without ppmout it is close to ideal for up to 1536 processes, while the curves 562

for the complicated geometries deviate from ideal noticeably. Human atrium geometry 563

is proportionally “much thinner” than the rabbit ventricle geometry, and the deviation 564

from ideal is more pronounced in Fig 6(c) than in Fig 6(b). However, the detrimental 565

effect of the uneven load is limited: notice that the “without ppm” curve in Fig 6(c) is 566

almost parallel to the ideal in the interval of 192–1536 cores, and the slow down is only 567

slightly more than by a factor of two. Another significant factor is the bulk output. In 568

the human atrium geometry, such outputs were 10 times more frequent, and their effects 569

is more pronounced overall and starts increasing at smaller parallelizations. Notice that 570

the relative effect of the bulk output is much less in the full box: an obvious explanation 571

is that the ppmout format always outputs the full enclosing grid while computations are 572

only done in the tissue nodes, hence the output/computation ratio is about 12 times 573

bigger for human atrium than in the full box. 574
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Fig 6. Log-log plots: the wall clock time per one time step in the
simulation job, vs the number of cores. (a) Full box; (b) Rabbit ventricle
geometry, (c) Human atrium geometry. In all plots, “with ppm” stands for performance
including file output via ppmout device, “without ppm” stands for pure computations,
and “ideal” is the perfect-scaling extrapolation of the performance achieved on the
smallest number of cores.

Fig 6(a) shows that on a standard test of full 3D box computation BeatBox parallel 575

performance is in accordance with expectations and satisfactory. The maximal efficient 576

parallelization is of course problem-dependent, as illustrated by Fig 6(b) and 6(c). 577

Fig 6(b) presents results of simulations of a small rabbit heart with less then 106 grid 578

tissue points, so at a larger number of cores, the inter-process communication expences 579

take over the computation scaling. Fig 6(c) represents results of realistic simulations of 580

a complex and “thin” human atrium, with less than 2× 106 grid tissue points. This 581

illustrates the fact that parallel performance scaling depends on the ratio of 582

inter-process communication costs to computations costs within one process, and for the 583

cardiac modelling applications, this depends on the tissue geometry. We have verified 584

that this ratio, and resulting perfromance, also depend on the excitation kinetic model: 585

scaling is better if the kinetic model is computationally more complicated (these results 586

are not shown). Also, for the simulations with complex and “thin” geometries, a 587

significant improvement may be achieved by optimizing bulk outputs. 588

For the avoidance of doubt, we stress again that the performance results presented 589

in Fig 6 are per time step of simulation, and exclude the time spent on any start-up 590
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operations, such as parsing the BeatBox script, reading the geometry file if used, 591

domain partitioning if in MPI mode, tabulating the complicated functions if using ionic 592

models, etc. This is done deliberately as these one-off operations typically take only few 593

seconds at most altogether, and for realistic simulations are negligible. 594

Examples of use in recent and current research 595

BeatBox or its predecessors has been used to produce simulation results presented in 596

dozens of publications, e.g. [61, 65,67–73]. In this section, we mention a handful of 597

recent and representative studies, illustrating the key features of this software. 598

Fig 7 illustrates a complicated simulation set-up, which we believe would not be 599

possible in other software currently available without re-coding at low-level requiring 600

assistance from the developers. This figure is an example from [72] which modelled 601

arrhythmogenic mechanisms of the boundary layer between ischaemic and recovered 602

cardiac tissue, moving due to reperfusion. The model assumed that a certain 603

“excitability” parameter (decrease in permeability of the inward potassium rectifier 604

current iK1
) varied in space and time due to two factors: firstly, space-only random 605

distribution due to properties of individual cells; secondly, deterministic smooth 606

transition between low excitability of the ischaemic tissue and high excitability of the 607

recovered tissue, changing in time due to reperfusion. On top of that, the isotropic 608

diffusion coefficient also varied along a similar transition between low diffusivity of the 609

ischaemic tissue and high diffusivity of the recovered tissue, of a profile different from, 610

but moving synchronously with, the profile of the excitability parameter. Fig 7 shows 611

isosurfaces of the transmembrane voltage field, V = −35 mV, painted according to the 612

value of calcium current gating variable f , as shown by the colourbar. In the snapshot 613

shown, the upper half of the box is a recovered, well connected, well excitable medium, 614

which supports a macroscopic scroll wave. The layer below it consists of ischaemic 615

boundary cells that are less connected, so some of the cells (those where iK1
suppressed 616

to a level below a certain threshold) are in the self-oscillatory regime leading to a 617

micro-scale turbulent excitation pattern. The lowest layer consists of ischaemic cells 618

with suppressed excitability so they are not electrically active. As the parametric 619

profiles slowly move downwards, the solution represents the process of recovery from 620

ischaemia, which produces a reperfusion arrhythmia as a result. All these 621

spatio-temporal variations in parameters have been set up not by writing special C code 622

for it, but at the BeatBox script level using k func device. Further detail can be found 623

in [72]. 624

Figs 8, 9, 10 illustrate simulations in non-cuboid domains. Fig 8 shows a surface 625

view of a simulation in an artificially defined domain, used to quantitatively test 626

predictions of an asymptotic theory about the drift of a scroll wave in a thin layer due 627

to sharp variations of thickness. This simulation uses two-component FitzHugh-Nagumo 628

kinetics. Shown is the surface view at a selected moment of time, colour coding 629

represents states of the activator variable (red colour component) and inhibitor variable 630

(green colour component) on dark-blue background, as shown by the “colourbox” to the 631

right of the main picture; the white line shows the trajectory of the tip of the spiral 632

wave seen at the upper surface of the domain for a period of time preceding the 633

presented view. In this series of simulations, precise initial positioning of the scroll wave 634

was required, which was achieved with the help of the “phase distribution” method 635

implemented in BeatBox’s k func device. 636

Fig 9 illustrates simulations in an anatomically realistic model of human atrium, on 637

a regular cuboidal MRI-type grid (although the actual grid origin was different, 638

see [64]). Fig 9(a) illustrates the anatomy-induced drift [65]. Shown are a number of 639

trajectories of tips of spiral waves appearing on the surface of the atrium nearest to the 640

viewer; the yellow background indicates prominent anatomical features (the pectinate 641
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≤

f
≤

1

Fig 7. Scroll wave generation from ischaemic border zone. Generation of a
scroll wave out of microscopic re-entries in excitable medium with random, space- and
time-dependent distribution of parameters, modelling movement of ischaemic border
zone during reperfusion [72]; Beeler-Reuter [52] kinetics.

muscles and the terminal crest). To make the visualization clearer, the trajectories are 642

represented by lines connecting tip positions separated by exactly one period of rotation 643

(“stroboscopic view”); shown are several trajectories starting at different initial 644

positions and made within equal time intervals. Different trajectories are shown by 645

different colours and enumerated. The beginning of each trajectory is shown by a red 646

point, and the end of the trajectory is shown by a black point. 647

Fig 9(b) illustrates further the BeatBox’s capability for complicated simulation 648

protocols. This panel displays results of simulations in the same model as those shown 649

in Fig 9(a), but now the initial position for the scroll wave is chosen far from any sharp 650

features so that the anatomy-induced drift is not pronounced, and instead, the scroll 651

wave is subject to low-voltage pulses of external electric field, Ieff = Ieff(t). The delivery 652

of the pulses is controlled by a feedback protocol similar to that illustrated by the 653

−1 ≤ u ≤ 0

−
1

≤
v

≤
1
.5

Fig 8. Drift along a thickness step. Drift of scroll wave along a thickness
step [70], FitzHugh-Nagumo kinetics.
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(a) (b)

Fig 9. Drift in a realistic human atrium geometry. Drift of scroll wave in a
realistic human atrium geometry [64], Courtemanche et al. [49] kinetics. (a) Trajectories
of spontaneous drift, caused purely by the anatomy features [65]; (b) Trajectories of
resonant drift, caused by feedback-controlled electrical stimulation [73].

sample script Listing 2, namely: 654

• There is a “registration electrode”, at a point on the surface of the atrium that is 655

the most distant from the viewer, position of which is indicated by the grey arrow. 656

• The signal from the registration electrode is monitored for the moment of arrival 657

of an excitation wave, defined as the moment when the transmembrane voltage 658

crosses a certain threshold value upwards. 659

• From the moment of the front arrival to the registration electrode, a certain 660

waiting interval (delay) is observed. 661

• On expiration of the delay interval, a pulse of Ieff(t) of a certain duration and 662

certain amplitude is applied. 663

In Fig 9(b) we see three different trajectories starting at the same point: they differ in 664

the value of the delay interval between registration of the front arrival and delivery of 665

the electric pulse. This stimulation protocol is aimed at achieving low-voltage 666

defibrillation; the presented simulation illustrates the possibility of moving the location 667

of a re-entrant arrhythmia by electrical stimuli of a magnitude much smaller than 668

required for the classical single-shock defibrillation, in anatomically realistic setting, in 669

different directions by adjusting the details of the feedback loop. This protocol is 670

implemented fully at the BeatBox script level, and we believe this would not be possible 671

in any other software without re-coding at low level. 672

Both panels of Fig 9 show tip trajectories starting at purposefully selected points; a 673

specific challenge in this case was that for this particular study, it was important to 674

have initial conditions that have only one phase singularity within the tissue, while the 675

opposite one (necessary for topological reason) was about the big opening corresponding 676

to the atrio-ventricular border. Again, the initial positioning of the scroll waves was 677

done using the “phase-distribution” method, implemented with the help of the k func 678

device at the BeatBox script level. Also, both series of simulations used “stroboscopic” 679

output, when the output data files were created in synchrony with a front of simulated 680

excitation wave registered at a certain point of the medium; this also was implemented 681

entirely at the BeatBox script level. 682
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Fig 10. Scroll waves of excitation in a DT-MRI based model of human
foetal heart. A snapshot of excitation pattern with scroll wave filaments [74] in
human foetal heart anatomy [75], FitzHugh-Nagumo kinetics. The surface of the heart
is shown semitransparent, colour-coded depending on the values of the u and v variable
as shown in the colourbox on the right. The yellow lines are the scroll filaments inside
the heart.

Fig 10 from [74] shows a volume view of a scroll wave in a human foetal heart 683

geometry, obtained by DT-MRI [75]. Shown is the surface of the heart, semi-transparent 684

and colour-coded depending on the values of the dynamic variables u and v of the 685

FitzHugh-Nagumo kinetics (3) chosen here for illustrative purposes. The red component 686

represents the u value, the blue component represents the v value, and the resulted 687

colour-coding is summarised in the “colourbox” to the right of the main picture. The 688

yellow lines traversing the ventricular wall are the scroll filaments, defined as 689

intersection of a u = const surface with a v = const surface. 690

The visualization in all cases was done by post-processing of the simulation data. 691

For Fig 7, we used Iris Explorer [76]. Both panels of Fig 9 were generated with 692

ParaView [77]. Figs 8 and 10 were produced by an in-house visualizer, based on the 693

graphical part of Barkley and Dowle’s EZSCROLL [62,78], which is in turn based on 694

the Marching Cubes algorithm [79,80]. 695

Conclusion 696

The leading idea underlying BeatBox development is robustness, portability, flexibility 697

and user-friendliness in the first place, connected with efficiency as an important but 698

secondary consideration. In the present form, BeatBox can be exploited in sequential 699

and parallel (MPI) modes, with run-time and/or post-processing visualization, on any 700

unix-like platform from laptops to supercomputing facilities. The modular structure of 701

BeatBox effectively decouples the user interface, which at present is a scripting language 702

used to construct the ring of devices, from the implementation of the computationally 703

intensive stages in individual devices. The current computational capabilities can be 704

and will be further expanded in accordance with the needs of wider usership without 705
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changing the backbone ideology. 706

As far as MPI features are concerned, the straightforward approach to parallelization 707

via domain decomposition, yields acceptable results. As the maximal efficient 708

parallelization is problem-dependent, small to medium scale anatomically realistic 709

simulations become inefficient for number of threads beyond about 1000. As 710

higher-resolution DT-MRI anatomical data become available and/or more detailed 711

kinetic models are used, the adequate parallelization should be expected to increase. 712

However, BeatBox already offers an important possibility of MPI utilisation of in-vivo 713

MRI human heart anatomical data for real time simulations on multi-core desktop 714

workstations for e.g. individualised ablation strategies, thus further broadening the MPI 715

end users community. 716

Apart from the size of the problem, another important limiting factor is the uneven 717

load of the parallel threads for “thin” complex geometries of the computational 718

domains, and output, which determines possible direction of further development. The 719

uneven load can be addressed by a more careful fine-tuning of domain decomposition to 720

specifics of particular domain geometry, which to some extent may be achieved without 721

violating the main principles of the domain decomposition, by allowing uneven 722

partitioning along the coordinate axes. 723

The slow down in cases of extensive output is a problem which is not specific for 724

BeatBox; however, some improvement in some cases may be achieved by making any 725

input-output operations exclusive to one or more designated threads specializing on this 726

and relieved from computational load as such. 727

As the current BeatBox solvers use finite difference, regular grid ideology, 728

incorporation of DT-MRI regular cartesian grid anatomy models into BeatBox 729

simulations is straightforward, as illustrated by Figs 9 and 10, without a meshalizer step 730

required for finite element/finite volume solvers. However, architecturally there is no 731

fundamental problems in extending BeatBox functionality to the finite element 732

approximation as long as regular mesh of finite elements is used that can be mapped to 733

a rectangular array. Extension to irregular meshes would require more substantive 734

changes, however the main idea of the ring of devices may be useful there as well. The 735

same concerns the “discrete multidomain” model of in [81,82], which describes cardiac 736

tissue on the microscopic level. Although one could attempt to embed this description 737

into a regular grid, the most efficient implementation would require very different data 738

structures. 739

Other relatively straightforward developments consistent with BeatBox paradigm to 740

be implemented in the foreseeable future, include: 741

• Generalization of diff and elliptic devices for the orthotropic case. 742

• Partitioning of the grid to domains described by different models. This can be 743

used e.g. to model whole heart or its parts consisting of different tissues, 744

surrounding bath or torso etc. 745

• Fully automatic conversion of CELLML cellular models into the rhs format. 746

• If and when the syntax of CELLML is enriched so as to explicitly identify gating 747

and Markov-chain variables and their dynamics, fully automatic conversion of 748

those into the ionic format. 749

• Run-time 3D graphics (currently there is only 2D run-time graphics, and 3D 750

visualization is done by post-processing). 751
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Availability 752

BeatBox is free software available to download from the BeatBox home page [83]. The 753

source code is distributed under version 3 (or later) of the GNU general public licence. 754

The current version of BeatBox software is also available in the S1 Code file. BeatBox is 755

designed to be used in Unix-like operating systems, in non-interactive mode (started 756

directly from the command line or by a shell script), with or without run-time graphics. 757

The parallel version requires MPICH or OpenMPI, but the sequential version can be 758

compiled and run without those. For the run-time graphics, X11 is required, including 759

its GL extension for some devices, but the computational part can be compiled and run 760

without those. Installation is done through the standard configure—make—make 761

install command sequence, assuming that the environment includes bash, make and a 762

C compiler. Modifications to BeatBox, such as adding new modules, would require the 763

autoconf toolset. There are no other dependencies. Detailed installation instructions in 764

HTML format are provided in the documentation supplied with the distribution [31,83], 765

also in S1 Code. The Matrix Rush-Larsen part of the rushlarsen device uses an 766

eigenvalue solver from GSL library, but all relevant bits from GSL and its dependency 767

CBLAS are included within the BeatBox distribution, so the user need not worry about 768

installing those separately, nor about the version compatibility. 769

Supporting Information 770

S1 Code. BeatBox software. Zip-file containing distribution of the BeatBox, 771

version beatbox-public-v1.7.982, including source code, configuration and makefiles, 772

documentation, sample scripts etc. 773
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Appendix: Examples of BeatBox scripts

Script 1: ez.bbs

Listing 1 provides a “minimalist” example of a BeatBox script. It approximately
emulates the functionality of Barkley’s EZSPIRAL [84] (except tip finding and recording,
saving the final state, and starting from a previously saved state). Namely, it performs
a simulation of the Barkley model [45] on a 2D grid consisting of 100× 100 internal
points; one extra row of points in each direction is added to implement the boundary
conditions. The initial conditions are specified using “instant cross-field” protocol:

u =

{
1, y > y∗,

0, otherwise,
v =

{
0.4, x > x∗,

0, otherwise,

where (x∗, y∗) is the centre of the box. Every 10 time steps, it plots the solution in an
OpenGL window (using the colour-coding similar to that of Fig 8), and outputs the
dynamic variables into a text file.

The main features of the syntax may be seen from the script itself which is intended
to be self-explanatory, but nevertheless:

• Comments in the script can be in C style, within /*...*/ or in C++ style,
between // and the end of line.

• The script is a sequence of sentences, each concluding with a semicolon, ‘;’.

• Sentences starting with the keyword def declare global variables.

• The sentence starting with the keyword state allocates the computational grid.

• The script finishes with a sentence “end;”.

• Other sentences describe instances of devices comprising the ring. The first
keyword in each sentence is the device type; other words describe the parameters
determining the specifics of the work of this particular instance of the device.

The particular sentences in the script have the following functions:
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/* Box of 100x100 internal points, 3 layers */

state xmax=102 ymax=102 vmax=3;

/* Schedule control flags */

def real begin; // true only at the beginning

def real out; // true when graphic and text outputs are due

def real end; // true when all done

/* The schedule: this k_func computes only global variables, at each t */

k_func nowhere=1 pgm={begin=eq(t,0);out=eq(mod(t,10),0);end=ge(t,1000)};

/* Init. cond.: this k_func computes only local field values, at t=0 only */

k_func when=begin pgm={u0=gt(y,50); u1=0.4*lt(x,50)};

/* Graphic output of u and v fields distribution */

k_paintgl when=out width=300 height=300 nabs=100 nord=100

pgm={red=u(abs,ord,0,0); grn=u(abs,ord,0,1)/0.8; blu=0};

/* Text output of a point record */

record when=out x0=10 x1=10 y0=20 y1=20 file="history.dat";

/* Terminate when all work done */

stop when=end;

/* Diffusion substep for layer 0, layer 2 reserved for Laplacian */

diffstep v0=0 v1=2 ht=0.02 hx=0.4 D=1;

/* Reaction substep for layers 0:1; Barkley’s variation of FitzHugh-Nagumo kinetics */

euler v0=0 v1=1 ht=0.02 ode=fhnbkl par={a=0.8 b=0.01 eps=0.02};

end;

Listing 1. BeatBox script ez.bbs. A simple BeatBox script

• state sentence, preceding any devices, defines and allocates the computational
grid. In this case the space domain is a 2D box: the z-dimension is not specified so
defaults to zmax=1. The parameter vmax=3 means there will be three layers in the
grid, numbered 0,1 and 2. As we shall see, layer 0 is reserved for the u field, layer
1 for the v field, and layer 2 is used for computing and storing the diffusion term.

• k func, the first device in the script, computes, depending on the current value of
the loop counter t, the “flag” global variables that control which of the other
devices will or will not work at the current time step iteration. As this device
changes values of global variables, it is not allowed to change local field values,
hence nowhere=1 parameter. This instance of k func works at the beginning of
every time iteration, and as a result, variable begin will take the value of 1 at the
very first iteration and 0 otherwise; variable out will take value 1 only when the
loop counter t is divisible by 10, i.e. at every 10-th iteration, and variable end will
become one as soon as the counter t exceeds 1000.

• The second device in the script is another instance of k func device. Now it
computes not the global variables, but the values of the field variables at every
point of the space grid, according to the given formula. According to the
when=begin parameter, this device works only once, at the very first time step,
and its function is to produce initial conditions for the simulation.

• k paintgl is a graphic output device. It creates an X11 window of 300× 300
pixels, and at every tenth timestep (according to the parameter when=out), paints
using OpenGL a 100× 100 raster, each element of which will be coloured
according to the given formulas: the relative luminosity of the red component is
equal to the value in layer 0 (corresponding to the u field), for the green
component it is equal to the value in layer 1 (corresonding to the v field) divided
by 0.8, and the blue component always is zero. Note that this colour-coding is
similar to the the colour-coding used in Fig 8.

• record device opens for writing a text file history.dat, and at every tenths
timestep (according to when=out), will print into the file the values of the grid
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nodes within the cuboid subdomain defined by the parameters x0 . . . v1, which
makes exactly two values: layer 0 (u-field) and layer 1 (v-field) values at the point
of the grid with integer coordinates (10, 20).

• stop is the device whose function is to interrupt the computations and terminate
the program. Naturally this device must be present in the ring unless it is
intended that the program run is to be interrupted by the operator. In the
presented example, the device works simply when the global variable end takes a
nonzero value, which happens after 1000 time steps.

• diffstep is the first of the devices which does “the actual computations” in the
sense that it changes the the field variables in the layers of the computational grid
according to the differential equations. As could be guessed from its name, it
computes the sub-step due to the diffusion term. Specifically, it computes a value
of the diffusion term, for the u-field stored in layer 0 of the computational grid,
using the given values of the diffusion coefficient D and space discretization step
hx, places the computed Laplacian into layer 2 reserved for this purpose, and then
performs a forward Euler step for the u-field for the given value of the time step
ht.

• euler is a computational device which performs the forward Euler step for the
dynamic fields stored in layers 0 and 1 of the computational grid, with account of
the given kinetic model.

Script 2: sample.bbs

Listing 2 presents the complete listing of a more non-trivial example of a BeatBox
script, sample.bbs. This is the example represented by the “device ring” in Fig 2.
Some new syntax features observed in the script include:

• Expression <fhn.par> means inclusion of an ASCII text file with name fhn.par,
as part of the script, similar to #include <fhn.par> in C. On this occasion, the
file fhn.par contains definitions of the global variables, which are intended to be
model parameters shared between many related scripts.

• The declarations of the global variables in the def sentences may specify optional
initial values, which are allowed to be defined by arithmetic expressions with
previously defined or pre-defined variables.

• Declarations of global variables may appear not only in the very beginning, but
throghout the script. The only restriction is that a variable has to be declared
before it is used.

• Global variables of type str are string macros. Expansion of a string macro
declared as “def str foo bar;” is done using syntax [foo] which will produce
bar in place of expansion.

• Overall, the values of the model/simulation parameters are often specified by
arithmetic or string expressions rather than literal values; moreover, string macro
substitutions are used in the body of a device definition. For instance, since the
string macro u is defined as 0, expression u[u] expands to u0, and since string
macro 0 is predefined to the sciript name, sample, the expression file=[0].rec

expands to file=sample.rec.

• Some of the devices in the script have parameter name. This allows to distinguish
between different instances of the same device in the diagnostic messages in the
simulation’s standard output and the log file.
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<fhn.par> // model pars are read in from file fhn.par

def str u 0; // u field in 1st layer

def str v 1; // v field in 2nd layer

def str i 2; // diffusion term in 3rd layer

def str b 3; // spatially dependent parameter in 4th layer

def real grad [1]; // its gradient is 1st command-line parameter

// Integer and real stimulation parameters

def int xr 100; def int yr 100; def int zr 100; // reg electrode position, in space steps

def int dr 5; // reg elecrode size, in space steps

def real Amp 3.0; // pulse amplitude

def real Dur 0.1; // pulse duration

def real Del 6.0; // pulse delay

def real Tstart 100.0; // when to switch on the feedback

state geometry=ffr.bbg anisotropy=1 // the file contains tissue geometry and fibres

vmax=4; // 2 dyn vars + diffusive current + parameter

def real T;def real begin;def real out;def real end; // real vars control work of some devices

k_func name=timing nowhere=1 pgm={ // this function operates only global variables

T = t*ht; // t is integer time counter; T is real time

begin = eq(t,0); // 1.0 at the very beginning, otherwise 0.0

out = eq(mod(t,100),0); // 1.0 every 100 timesteps, otherwise 0.0

end = ge(T,100.0)}; // 1.0 after 100 ms, otherwise 0.0

// This function operates at every space point but only at the first time step

k_func name=IC when=begin pgm={

u[u]=ifle0(x-25,1.7,-1.7); u[v]=ifle0(y-25,0.7,-0.7) // Cross-field initial conditions

u[b]=bet+grad*(z-0.5*zmax)}; // vertical gradient of parameter

// The feedback

def real signal;def real front; def real Tfront;

reduce operation=max result=signal v0=[u] v1=[u] // signal=max of voltage field within given volume

x0=xr xr1=xr+dr-1 y0=yr yr1=yr+dr-1 z0=zr zr1=zr+dr-1; // the values are arithmeitc expressions

k_poincare nowhere=1 sign=1 // remember T when signal crossed value umid upward

pgm={ front=signal-umid; Tfront=T };

k_func name=feedback nowhere=1 // force lasts Dur ms starting Del ms after crossing

pgm={ force=ht*Amp*ge(T,Tstart)*ge(T,Tfront+Del)*le(T,Tfront+Del+Dur) };

// The computation

diff v0=[u] v1=[i] Dpar=D Dtrans=D/4 hx=hx; // anisotropic diffusion

k_func name=stim when=force pgm={u[i]=u[i]+force}; // this applies everywhere, only when force is nonzero

euler v0=[u] v1=[v] ht=ht ode=fhncub // cubic FitzHugh-Nagumo kinetics

par={eps=eps bet=@[b] gam=gam Iu=@[i]}; // varied beta and current as calculated before

// Output

ppmout when=out file="[0]/%04d.ppm" mode="w" // every 100 timesteps:

r=[u] r0=umin r1=umax // value-discretized

g=[v] g0=vmin g1=vmax // output for subsequent

b=[i] b0=0 b1=255; // visualization

k_print when=always file=stdout list={T; force; signal}; // to monitor work of the feedback

record when=end file=[0].rec when=end v0=0 v1=1; // ascii dump of all field values in the end of run

stop when=end;

end;

Listing 2. BeatBox script sample.bbs. A more complicated BeatBox script.
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The particular devices used in the script, in order of occurrence, have the following
functions:

• state sentence defines a complex geometry, read from the file ffr.bbg. Further,
the diffusion will be anisotropic (anisotropy=1), with the fiber directions read
from the same file, ffr.bbg.

• The first instance of k func, with the name timing computes the “flag” global
variables that control which of the other devices will or will not work at the
current time iteration. Besides, it also computes the global variable T, which is to
contain the model time t, as opposed to integer t which is the loop counter.

• The second instance of k func, with the name IC computes the initial conditions.
This time it computes not only u and v field allocated in layers [u] and [v], but
also the values of layer [b], i.e. layer 3. The latter will contain not a dynamic
variable, but values of the model kinetics parameter b, which in this simulation
has a spatial gradient in the z direction.

• reduce is a device that computes the value of the global variable signal based on
the current state of one or more of the fields represented in the layers of the
computational grid; in this case it uses just the layer [u]. Here the reduce device
emulates the work of a registration electrode, which measures the maximal value
(parameter operation=max) of the “transmembrane voltage” in a particular small
volume in the space grid, of the size dr×dr×dr, cornered at (xr,yr,zr). This
measurement will be used as a feedback signal to control the electrical excitation
in a putative low-voltage defibrillation protocol.

• k poincare is a device that implements the idea of a Poincare cross-section from
the dynamical systems theory. It operates only global variables, hence does not
have any domain associated with it, thus nowhere=1. Here the k poincare device
checks whether at the current iteration the signal, represented by variable signal

measured by the previous reduce device, has crossed a given threshold value umid

in the required direction, defined by sign=1, which means upwards. If that has
happened, then a certain flag (the global variable front) is “raised” (gets the
values of 1), and the time, represented by T, when this happened is remembered in
another global variable, Tfront.

• The next instance of device k func, with the name feedback, works with global
variables: it computes, using the given formula, the value of the variable force

that defines the defibrillating electric field, depending on the time that has passed
since the event registered by the k poincare device at time Tfront, so that T is
between Tfront+Del and Tfront+Del+Dur, where the variable Del is the delay of
the stimulus compared to the front registration moment, and Dur is its duration.

• diff is a computational device, which computes the diffusion term, i.e. the value
of the Laplacian of the field represented by layer [u] of the computational grid,
and records the result into layer [i] of the grid. Since the geometry defined by the
state sentence is anisotropic, this diff device requires two diffusion coefficients,
Dtrans and Dpar for conductivity across and along the fibers respectively.

• The next instance of k func device with the name stim is “local”, i.e. it works on
the computational grid: computes the action of the defibrillating electrical field
(computed by the previous “feedback” instance of k func device) onto the
excitable cells. The action is simply adding the previously computed force to the
layer [i], which already contains the value of the diffusion term.
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• euler here performs the time step for the dynamic fields in layers [u]..[v]
represented in the computational grid, with the account of the given kinetic model
fhncub, which is classical FitzHugh-Nagumo with cubic nonlinearity (4). The new
features here are the definitions of the “extra current parameter” Iu and of the
parameter bet using symbol @. The meaning of this symbol is that the values of
the parameter bet are taken from the layer [b], that is layer 3, and the values of
the parameter Iu are taken from the layer [i] defined as 2. This is a typical
simplified mono-domain description of the action of the external electrical current,
which in this simulation is assumed to be purely time-dependent, i.e. applied
uniformly throughout the tissue.

• ppmout output device works once in 100 steps (according to the computation of
the out variable by the timing instance of k func) and produces an output to a
file in ppm format, where each byte represents a value of one element of the grid,
from up to three selected layers of the grid, discretized to the 0..255 scale. This
ppm image format could be converted to other popular and less space-consuming
formats either by postprocessing or on-the-fly (not done in the current
sample.bbs script). The name of the ppm output file contains the % symbol, the
effect of which is that it is the format of a C sprintf call, the first field argument
of which is the ordinal number of the device’s instant call. That is, this device will
produce files with names sample/0000.ppm, sample/0001.ppm,
sample/0002.ppm etc.

• k print is a more straightforward output device: each time it is called (here, at
the every time step), it adds to the output file a plain-text record of the values of
the global variables involved in the feedback control of the defibrillating stimuli. It
is similar to the record device in the ez.bbs above, except it prints global
variables rather than grid node values.

• record is the last output device in this script. Its use in this script is different
from that in ez.bbs, in that it prints the values of the field layers 0 and 1 in all
internal points of the grid. This device works only at the last time step of the
simulation, so that the output file can be used as an initial condition if
continuation of the present simulation is required.

• stop is the last device in this script and its syntax and semantics is the same as in
ez.bbs.
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