prift of a Reverberator in an Active Medium
due to the Interaction with Boundaries

V.N. Biktashev
Research Computer Center, Pushchino, Moscow Region, USSR

The behaviour of a reverberator in a bounded medium of interacting
nonlinear oscillators is considered. The expressions obtained for the
reverberator drift velocity and the shift of its frequency may be inter-
preted in terms of "field-particle".

1. INTRODUCTION
3 Guto —
One of the specific features of eigenwave conducting media (e.g. the W
heart tissue of the Belousov-Zhabotinsky reaction medium) is the ability
of such media to contain eligenwave sources. For two-dimensional media,
rotating spiral wave sources called also vortices or reverberators, are
typical.
The existence of a reverberator may not be associated with medium in-
homogeneities, but cculd be provided only by initial conditions /2,6,11,
12/. Such a source behaves as an outstanding, long-living obiect, thrust-
ing its inherent rhycthm upon environment, and possessing some stability
features with respect to external forces. Small disturbances cause small
changes in the autconcmous evolution of the reverberator. The effect of
the disturbances descends fastly with the increasing of the distance
between an "application point" of external forces and some specific E”".TML'(
reqgion near the spiral wave rotation center, called kernel /3,4,13/. b
: . . - i | = Cotl
Let us consider the case of the simplest reverberator evoluticn, =
when the reverberator in a homogeneous unbounded medium radiates a
spiral wave rotating with a constant frequency around a fixed center.

Then the influence of medium boundaries, weak inhomogeneities or other

-h

(0]

eigenwave sources will cause a shif in frequency and a change of

reverberator locaticn in the course of time, i.e. locaticn and phase

drifts occur.
Current concepts oI such influence mechanisms are phenomenological

s
and insufficient. It seems to be useful to consider simple cases, allow-

ing analytical approach, in order to develop a more exact theory.

o
In this paper the drift of a reverberator in a bounded medium is
-particle" formalism. A reverberator is re-

studied in terms of "field
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garded to be a "point" particle, interacting with environment, which

is governed by a "field" equation with fast oscillation being reduceqd.

2. MODEL. THE FREE REVERBERATOR

One of the simplest eigenwave models, belonging to lambda-omega sys-
tems /7/, which describe diffusion-conducted nonlinear oscillating me-

dia, has been chosen:
U= (1-iR)u - (T-ia)ulul? + 72u; (1)

u = u(r,t) e C, %,2 € R, r - (x,¥), 7 = (3/3x,3/3y), - = 3/°¢t. (This
1s also a special case of the generalized Ginzburg-Landau equation /9/),
Variable u corresponds to the complex amplitude of oscillations, its
phase rate specifying the frequency of oscillations and its gradient -

the local wave number. The replacement « - -y is equivalent to the re-

placement .0 - -, u » u* (asterisk * means complex conjugate), for de
niteness let 0.
In the framework of this model Hagan /6/ has studied particularly

the limit « - 0, that has proved to be simple enough to get an asympro-

Ia]

tlc representation for solutions like a stationary rotating reverber

f the form

O

imi-1 t.

u E Ul(p) i)
and to investigate their stability. Here p, : are the polar coordinates
(rotation center being assumed to take place at the origin). U is a
complex function, m = 0 is the "tepological charge" (number of the arms
of the spiral); for definiteness let m 0. This representation satis-

fies the following condition:

[oN
o]
a]
9]
(@
"

i.e. at large radii, lines of equal phase are close to Archimedian

spirals, and

k’ exXp - 5— + C'(m);

<M
is uniquely defined for every o, 1.e. it appears to be an eigenvalue
of the problem; here C' are constants determined numerically. The so-

=

lution will be referred to as the free reverberator.
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FIELD EQUATION

3.

Let us transform (1) in terms of amplitude and phase a, W,

o =2 exp (iw) :

4= (1-ai-("w)?)a + Via;
. ) Vi(a?)Vw
w = - o+ zal o+ —1—5%—— + Viw.

If the derivatives Ja, V?w and parameter o are small, then variable
a is fast with respect to w, its adiabatical exclusion yields to the

closed equat:on for w:

s gl
2 - VWV v s
wo= =L+ o= u(Tw) - —E—ifﬂl, + Jrw.
T=-{. w)"*
If w is also small (which does take place in the model for a free

reverberator at sufficiently large racii), then the fourth term at the

t
‘ right-hand side may be neglected. The remaining equation with the substi-
tution

w = -1/. in(W) - (.-t

results in the linecar "ficld" equation:

(this develcrment has boeen put forward in /10/). We are interested in
some unusual (infinitely grow:ing) solutions of the equation. tor in-
stance, plane wave solution of (1) with wave number k ccrresponds to
W = exp(. k-z-:kx). However, if there are close circuits, by-passing
of which wil. cause change of w for 2-m, m<0, then functicn W is also
ampiguous: when by-passing the circuits it will ascend (descend) by a
factor of exp(limui).
Tnteract.con of eigenwaves with imperctrable boundaries could e

described in -he framework of (53). So, the wave falling from X -

is described by functicn

<

under condic.cn fu/ X = 05 X

W = cos n(:kx) exp(kit).

4. ADIABACITY

Now let us consider eigenwave medium 1in a bounded (fcr simplicity

finite) reci.on with impenetrable bouncaries:
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(nV) u r = 0, (6)

where n is a normal to boundary I''. In order to deal with a drifting

reverberator, let us consider a framework moving along some trajectory i

r = r’(t) with respect to the laboratory one. At this framework, insteaq
of (1,6), we get

U= (1-i0)u - (1-ia) ulu? + vy + (gfiV)u, (7)
(n?) u (r)j(r+ru(t)) e =0 (8)
or (n'(t)7) u (r)jr e T'(t) = 0. (8"

This is a boundary problem with moving boundaries.

Let the framework move together with the reverberator, i.e., let the
solution of (7,8) be nearly periodical and close to the free reverberacey
within some neighbourhood of the origin at any time (near the bounda-

ries the closeness is impossible since the reverberator cannot satisty
(8)) .

From the numerical experiments /3/ one can see that the speced of ::
drift descends rap i1dly with the distance between the reverberator and
the boundaries inc reasing. The estimation made in this paper agrees
with this observation: the speed descends exponentially.

On the other hand, it is natural to cxpect the time of a stable
stationary state regeneration, if any, to grow with the region dimens:cn
growing (e.g., for heat-conduction equation the time is known to be
proportional to the square of medium dimensions, see /5/).

If so, then with the distance between the reverberator and the bouria-
ry being sufficiently large, the boundary will not be displaced essen-
tially for the time of relaxation to the stationary state correspondinc
to the current boundary position.

For this stationary state we get a boundary problem:

(1-1)u - (1-ix)u! ful? + vy + (cV)u = -i.u (9)

(nV) u (r)|., =0, (10)

or in the trigonometrical form

Via + (1-a*-(Tw)?)a = -(cV)a

avViw + 2(VaVw) = a(fR-w=-na‘-(c)w),



bt

ia-

(nV) ajpe 7 0., (nV) wip, < Qs (10")

Velocity vector c and frequency w appear to be eigenvalues: when « and
r' are given, they are uniquely defined. According to /6,8/, the free
reverberator is stable for m = 1 and sufficiently small . We shall as-
sume the stationary state /9,10/ also to be stable. Vice versa, the free
reverberators for m - 1 are unstable, therefore the case m = 1 seems
to be enough; but the generalization for m >~ 1 does not meet any obsta-
cles. Below we shall restrict ourselves with the analysis of the problem
(9,10) -

To a certain degree, such an approximation is analogous to the use of
electrostatics equations for describing the motion of a system of elec-
tric charges, in case theilr velocities are small with respect to the
speed of light. According to the analogy, applicability condition of
such an approximation would consist in

e e
since the wave number k in the model corresponds to the information

transmission speed of 2uk.

SOLUTION TECHNIQUE

w

an be found with the help of asympto=

<
(o]

The solution of preblem

iciently remote.

poundarics are suf

tco large bpe close to the froe reverberator,

mparind

described by "field" equation (5 = &
he correspondind expressions within a region where they both are appli-

cable, yields to the estimations of the reverberator frequency and the

o

drift velocity. For the lack of space only the basic steps of calculat

are nresented, for more details see 1/

pre e
a) Inromal reIto. Under the assumptions made, 1t 1s natural to
solve (8) at not large radil with the help of perturbation technique,

taking into account that the free reverberator 1s 2 sero-order approxi-
mation, and ¢ and - are small parameters. Let us use the fact that at
not large o the free reverberator is, in turn, close to the solution of
tvpe (2) of equation (1) with v = 0, and could pe obtained from it by
the perturbation technique with respect to the small parameter

large p we shall look Zor a solution of (9') in the form
a=a +a',w=Ww_ * w', a' <at, w! . w', assuming , C and (=)
to be small parameters and restrictind ourselves to a linear approxi-

str
mation with respect to each of the irariables.
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A non-perturbed solution is described in /6/ by the functions

0 0

wo =mb, a’ = a°(p) = P(p,m), where P(p,m) is the solution of Greenberg

/5/ equation:

2520 ° 2 2
and
2 m
P(p,m) = 1 =~ %ET' p + ®; P(p,m) - € (mp, p - 0.

While studying equations for corrections a', w' under the assumptiop
that they are growing not too rapidly with P — = (which is necessary for

matching with external expression), the following sroblems arise. At

1 << p <7 exp(v2/:m?) (11)
holds
|
w(p,+) ° mi + Lmzun(p)[?-n(p)+C(M)] + cmp]%‘n(;)+8(m)|sin(f—~) -
o e e e T (12)
n=2 o

and similarly for a(p,'), where additive terms mearning small arbitrary

shifts of unperturbed solution in space and time. lore
C = (c cos :, c sin )
Cn = arbitrary (not too large) coefficients, B(m), >(m) - Jonstants to !
be found numerically. According to /6/
c(n) -0.098; C(2) - 0.298; C(3) - 1.5 ik 3 (13)
Constants B(m) have also been estimated by the authzar:
B(1) -0.31, B(Z) -0.78, B(3) -1.01, R (14)
b) Zxicrnz! vezion, Problem (9,10) results in ==a following equations

for the "field" variable
VIW + (CcTIW = (?k?W = 0. (15)

Here k is the wave nunber according to the frequency . = - & = k.
With allowance for ambicuity of W noted above, the seneral solution of
(15) 1is

e—(cr) 2-amd int, n

W (;k'p)+FnI“+‘ C:k'p) (o)

n+1am
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with arbitrary s G". Here (k')? = k?* - c?/4du; K are

: , I 3
n+ima n+ima
jinearly independent solutions of the modified Bessel equation with

complex index n+ima, and

A

K (2z) 2 % z > », IU-(Z) = 0(1), zi = 0

L
i Vz

The solution (16) is real provided

-n ) -n - n
G : (G)*; F = (F)*.
n n ‘a :
For the free reverberator all F', G vanish, besides of G , which
may be put egual to 1. The moving reverberator differs slightly from
- ; - n - ~n n
the free one at small r'| if G =<1, n = 0. In other respects G, F
are to be crosen to satisfy boundary conditions
(nV)W, ., = 0. (17)
The firal result is most easily achieved if the boundary ' may be
described as o = R{:), and R(}) satisfies the inequalities
1. &R
KR B —:{ o (tkKR.
Then arf-.r some calculations we dget
n W -in -24k'R{(" . .
ro= o= o 2 L9 s, (18)
: n - T )
Below we shall see that F° play a part ot corces", having an effect

on the tor and causing its drift. The forces being determined
already as celcnging to the order of zero with respect to C (the differ-
ence between < and x' appears to be not essertial), make the assumption
of adiabac:z seli-consistent.

c) Magenines. . Compare (12,16) in the region (11) by transforming (16)

for variable w. Matching can be accomplished separately for every andgle

mede.

the 0-th mode demonstrates the following condition

of compatib:lity oI internal and external expression:

I
-~
t
]
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w = w’ + 2mak?F?, (19)

where k° is the wave number of the free reverberator /6/ (compare with

/4/) :

X % expi - 2;@ + C(m) - 1},
t © 0.5771... is the Euler-Maskeroni constant.

The comparison for the first mode, in turn, yields the expression for

the drift velocity:

ce” ' . -2-i ma?k [1+ima (C(m)=-1-2B(m)] F. (20)

The comparison for other modes results in determining coefficient

0

Cn (arbitrary for internal viewpoint) via boundary conditions.

The obtained equation of motion (19,20) solves the problem under the
following consideration: specifying phase and lucation drift of the
reverberator via its disposition with respect to boundaries. The de-

pendence on the Sposition appears in (19,20) via 'gencralized forces"

F', F' that can be found by solving boundary probl

(YS9, 17y for

field eguation, in most simple cases - by formulae (18).

zamp /.. Let boundary ' be a circle with a radius S (k)

reverberator's kernel be shifted

distance s with and angle with respect to x-axes, .ks being either

less or of the order of 1. Since s S, we get ar

tituting cthis into (18,19,20), we

the frequency -7

the reverberator in the circular region is

motion

ds . ) N -2ukS .
= -27 m*? >k B'(m) e I.(2aks).
dt X
Here I., I, are the modified Bessel functions of irZ:ices 0, 1; . is

the free reverberator frequency, and coefficients 2' (m) are expressed
via B(m), C(m) (12,14) by the formula

B'(m) = 1 + 28(m) - C(m)
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and are positive at least for small m:
B' (1) = 0.48, B'(2) = 0.44, B'(3) > 0.3.

so, in the model under consideration the reverberator is repelled
from the boundaries, the repulsion speed being much less than the speed

of drift along the boundary (ratio is of the order of ).

6. DISCUSSICN

The estimations of the interaction parameters between the reverbe-
rator and the boundaries in a simple model are obtained. The difference
petween the characters of the processes proceeding near the reverberator
kernel and in the environment enables the application cof the asymptotilc

technique.

In the chosen model, the difference is particularly evident. Function
W may be treated as a potential of some short-distance field, which

'

is "emanated" from the reverberator kernel. It influences back cn the
reverberator when "reflected" from the boundaries and causes it to drift.
Such a treatment results in the description of the eveolution or a
" -

reverberator in terms of "field-particle" equations. The field satisfies

linear equation (5), and coefficients ¢, F' describing the dercrmation

§ field W in the neighbourhood of the kernel, play a part of t=

effocting on the reverberator. In spite of the nonlinearity ef e

with certain

equation, the superposition principle is applicable the

restrictions caused by the multivalern g :

of "potential'.

“he "ferces" cannot be described as derivatives cf the "external

ficld", but should be determined indirectly.
Unfortunately, simple estimations demonstrate that direct numerous

5
checking of the eguations of motion cannot be easy because of exponential
o

3
wi
3
o
—
—

O

arameter «. So, for the validity of the assump-
tions made, the dimensions of the model medium must not be less than a

specific length of the boundary influence descending. However, already
a

with 0.2 the length, according to he estimations made, should be
about 10°-10" times greater than the dimensions of the reverberator

n
kernel. Apparently, some real way to avoid
in che generalization of the theory presen

tances not too large or a finite «.

The author 1is grateful to B.A.Malomed and E.E.Shnol rfor

cussions and permanent attention to the work.
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