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Abstract

The relationships amongst phytoplankton and zooplankton production, and fish larval survival to re-
cruitment is examined through linking two generic models. It is first demonstrated that the phytoplankton-
zooplankton models can be appropriately combined with a zooplankton-larvae-recruitment model. The
combined model reveals some general principles. Recruitment tends to be a domed-shaped function of
initial fish egg production. “Bloom” phytoplankton conditions are important for high recruitments. The
timing and duration of fish egg production is important in determining recruitment through their impact
on the phytoplankton bloom. It is argued that optimal recruitment would be obtained if the duration of
larval feeding was less the duration of the phytoplankton bloom; a hypothesis which is testable.

1 Introduction

A key relationship in a dynamical evolution of fish populations is that between “stock” of adult fish of a
particular species and “recruitment” of new adults to that stock at the end of their complex journey from egg
to maturity. That this journey is fraught with perils is witnessed by the fact that, for example, a female cod lays
about 20 million eggs in her life time. Put crudely, if two survive to maturity, we might expect (ignoring fishing)
a fairly stable population; if only one survives we should soon see extinction. The majority of egg-production
is lost during the planktonic egg stage. However, the duration of the larval stage is typically much longer than
that of the eggs, and the larval daily mortality rates are comparable to those of the eggs (see e.g. (Harding,
Nichols & Talbot 1978)). Larval life is also the period when density dependent regulation of fish populations
occurs (Horwood, Cushing & Wyatt 2000).

During the major growth period, a substantial part of the food of the larvae takes the form of zooplankton;
in the North Sea, for example, a large part of the food of cod larvae is made up of copepods, especially the
calanoids. The character and effectiveness of the feeding strategies of the larvae, and their dependence on the
physical environment, especially turbulence intensity, is the subject of much current research. An excellent
overview is given in the papers contained in (Marassé, Saiz & Redondo 1997). More generally, the whole rela-
tively poorly understood question of zooplankton population dynamics and its place in the marine ecosystem
is the subject of major international research programmes under the overall aegis of GLOBEC. Whilst the
lower echelons of the oceanic foodweb, linking herbivorous and omnivorous zooplankton species with photo-
synthesising phytoplanktonic species and their own nutrient have been extensively studied and modelled (see,
e.g. (Edwards & Brindley 1999) and references therein), the link through predation of zooplankton by higher
trophic levels has been relatively neglected, partly because of lack of observational data. A central objective
of GLOBEC is to extend our understanding of this level of interaction through extensive (and expensive!)
observational programmes supported and informed by mathematical and numerical modelling and simulation.

The fish-egg-larvae-recruitment cycle has also received wide attention because of its obvious importance to
world food supplies. As remarked above, the hazardous progress from egg to mature fish is completed only by
a tiny minority, and even at the larval state the survival rate after hatching is typically only ¢1% (Chambers
& A.Trippel 1997). Nevertheless, though always a tiny minority of the hatching larvae, the number of those
surviving to maturity and joining the adult fish stock is subject to huge relative fluctuations year by year, a
matter of real concern for the fishing industry

Against this background, our main concern here is with the interaction of fish larvae, especially the gadoids,
cod and haddock, with their principal planktonic food supply, exemplified in local UK waters and the NE



Atlantic by copepod species. Rather than the detailed form of the interaction, we concentrate on the life history
and survival to recruitment of the larvae. Thus we assume simple functional forms and parameterisations at
a population level of the interaction, exploring the sensitivity and robustness of recruitment predictions to
these assumptions. In this spirit we adopt a mathematical formulation which links a simple model for stock
recruitment (Cushing & Horwood 1994), afterwards abbreviated by [CH] with an equally simple model for
plankton population dynamics ((Truscott & Brindley 1994), afterwards [TB]).

Briefly, the stock-recruitment relationship as modelled in [CH] depends on the amount of food available for
larvae. This relationship has been found to be typically bell-shaped. For small numbers of hatched larvae,
increase of their number leads to an increase of recruitment, as at metamorphosis. However, after a certain
critical value depending on the availability of food, further increase of initial number of larvae leads to a decrease
of recruits. The reason for that is that the large number of larvae consumes most of the available food while
young, and then have less to eat while they grow; hence metamorphosis happens later and fewer larvae live
long enough to reach it. The experimental evidence of the importance of plankton availability on the larval
density dependent mortality has been reviewed e.g. in (Horwood et al. 2000).

In model [CH], the dynamics of the larvae food, the zooplankton, is very simple; an initial number of
zooplankton is assumed to have a constant growth rate, and to be subject only to loss by grazing larvae.
However, the dynamics of zooplankton itself depends on the amount of its food, and should change significantly,
say, during the spring phytoplankton bloom. Phytoplankton-zooplankton (PZ) systems have been modelled
by many authors; we choose the model [TB] as a simple model describing a phytoplankton bloom by a “prey-
escape” mechanism; essentially an “excitable” phenomenon. In [TB], zooplankton mortality has been assumed
constant, with no account taken of variations of populations or habits of predators.

In this paper, we take the very obvious step of coupling the models [CH] and [TB]. Thus the food source for
fish larvae depends on the zooplankton dynamics, which in turn is coupled to larval populations through the
zooplankton mortality term. Though the model is simple and abstract, it contains enough of the key influences
and dynamics to throw light on the qualitative relationships between larval fish development and phytoplankton
blooms, via the zooplanktonic intermediary. In particular it demonstrates the crucial importance of timing and
temporal pattern of spawning relative to the plankton bloom dynamics. This sensitivity, coupled with similar
sensitivity to initial populations, may go some way to explaining the observed large variations from year to
year in recruitment. Section 2 contains a description of the mathematical model; in Section 3 we present
a representative set of numerical results, spanning a range of parameter values used by other authors (see
(Edwards & Brindley 1996)), and finally Section 4 discusses their character and significance. Notations are
summarised in the Appendix.

2 The Mathematical Model

The model is constructed by coupling the [CH] model for fish recruitment with the plankton populations model
[TB] through the zooplankton herbivore in [TB] which constitutes the food source for fish larvae in [CH].

2.1 A model for plankton dynamics

Turning first of all to the plankton population model, we have an equation for the phytoplankton, P, in the
form
dP/dt = kte (Prp(1 — P/Pmax) — GZ), (1)

where Ppax is the saturation limit for P and G(P) is the functional form representing the grazing “strategy”
of the zooplankton, Z. Following [TB], we assume a Holling type III form

G =rzP?/(P! +P?) (2)

representing a grazing saturating at rz for large P, and varying like P2 for small P. Some justification for
such a form may be claimed where food supplies are patchy and zooplankton display some adaptability in their
raptorial behaviour. But our main reason for selecting it is the indirect evidence that it yields results which
bear a striking resemblance tot he behaviour of observed plankton populations, in which low equilibrium levels
of P and Z can be triggered into bloom conditions in which P increases by an order of magnitude or more
before falling back again as Z responds to the increased food supply.

In [TB], coupled to the P-equation was an equation for Z of the form

dZ/dt = Z (vG — pz) — kcu Ryot- 3)



where « is a measure of the efficiency of conversion of P biomass to Z biomass (in our present model, this
equation is modified to account for the predation by larvae, see (15) below).

Clearly, v < 1, and in [TB] it was assumed that v < 1. Such an assumption ensures, indeed is necessary
for, the occurrence of “excitability”. Mathematically this means that some small initial disturbancies from
equilibrium undergo a large excursion in phase space before returning to the equilibrium state. Biologically
this large (and rapid) excursion represents a bloom, which might arise as one or more physical inputs are
changed, for example by seasonal or locally more rapid changes in radiation (spring bloom), by nutrient inputs
caused by oceanic upwelling associated with storm systems or by effluence from human activities (sometimes
leading to toxic “red tides”).

Less obviously, but importantly, the low value chosen for 7 represents in a crude way the slower growth
to maturity and fecundity of Z individuals. Though, at the individual level a conversion rate represented by
v « 0.3 — 0.5 seems reasonable, the [TB] choice of v = 0.05 reflects the fact that at population level, only
a small fraction of the Z population is contributing to the population growth; this is especially true in the
circumstances of a bloom, when many of the grazing copepods will be too young to reproduce. A formal
extension to age and/or size structured populations, reported in (Clother & Brindley 1999), supports this point
and shows that population excitability is possible for much higher individual conversion rates.

2.2 A model for fish recruitment

The model described in [CH] needs rather more introduction, as follows.

Larva weight [CH]| The individual larval weight, W (a,t) is subject to the following constraints:

e Maximum larva weight gain rate per day

AWopax = 1LW. (4)

e Metabolic costs of a larva per day
By =ocW™. (5)

e Maximal amount of food a larva can eat per day:
Runax = (AWmax + Bs)/B, (6)
where the conversion coefficient is weight-dependent,
B = Bmax — (Bmax — Bmin) exp(—jW). (7)
e Maximal volume fraction a larva can search per day:

p(W) = kW". (8)

Moreover, the amount of zooplankton eaten by individual larva per day is calculated according to Holling’s
type 1 kinetics
R(a,t) = min(Rmax, p(W)Z). (9)

Note that the argument a shows that this is the ration of the larvae age group a, and R(a,t) will be used to
calculate total amount of zooplankton eaten by larvae of all ages a at time t.
Then, assuming that the useful biomass obtained by a larva is a fraction of R,

B, = SR, (10)
we find that the resulting rate of gain (or loss, if negative) in weight is given by
DW /Dt = B, — Bs. (11)
Here and below, notation D /Dt stands for
DX/Dt=0X/0a+ 0X/0t

in the age-structured case and
DX/Dt=dX/dt



in the unstructured case, for any quantity X.

Note that, as a consequence of (9), DW/Dt < AWpax (time is measured in units of days).

In case of lack of food, Z, the weight of larvae given by the above equations may decrease or even become
negative. This causes formal mathematical problems but in any case is not biologically sensible; if food is so
scarce that larvae lose weight, they become extremely weak and quickly die out.

Since this does not happen in the examples used in this paper we ignore the possibility of weight decrease
and do not include any terms that would describe corresponding increase in mortality.

Larva number density In the age-structured case, we denote N(a,t) the number of larvae of age a days
per unit volume at day ¢. In the unstructured case, the number density is simply N(¢) . In either case, after
hatching, this evolution means only decrease for every given group of larvae, for several different reasons:

e Non-specific mortality and predation. We assume the relative rate M of this mortality to be age-
dependent, as in [CH]:
= Pr
1+ba’

(12)

e Mortality due to starvation. This happens when the weight gain is negative, i.e. the metabolic demands
are not covered by the amount of food available. In the numerics shown in this paper, this did not happen.

e Metamorphosis. We assume that metamorphosed larvae change their diet and thus withdraw from the
considered trophic subsystem. In [CH], metamorphosis was assumed to happen always if a larva reached
a certain age or a certain weight. To avoid formal problems related to sudden withdrawal of a whole
subpopulation, and to account for intra-subpopulation diversity and for the graduality of the process of
metamorphosis, we replaced this sudden transition with a continuous process, with the rate

T = Cr.exp (aA_aC;T) + Cr,w exp (%) . (13)

The resulting decrease in the number of larvae is then described by

DN/Dt=—-N (M +T.) (14)
Larval biomass The total biomass of larvae can now be calculated as
un:/wmmN@nm
for the age-structured model, simplifying to

L(t) = W(t)N(t)

for the unstructured model, i.e. when all larvae are assumed to belong to a single age cohort. This quantity
does not enter anywhere else in the system of equations, and was used only for presentation of the results of
the calculations.

2.3 The coupled system

Zooplankton biomass increases through consumption of phytoplankton and decreases because of predation by
larvae as well as mortality for all other reasons e.g. predation by other species; we adopt a form of evolution
equations which embodies either the TB or the CH form of biomass increase, viz

dZ/dt = Z (krYG + (1 — krB)rz,0 — krBHZ) — kCH R0t - (15)

Here
Ris(t) = [ Rla, V(a0 da
for the age structured model, or
Riot(t) = R(t)N(t)

for the unstructured model, is total larvae predation rate per unit of zooplankton biomass and 7z is the
constant source of Z biomass assumed in [CH]. Equation (15) reduces to the form of [TB] if ktg =1, kcg = 0
and to the form of [CH] if ktg = 0 and kcy = 1; in our numerical calculations we take kcg = krp = 1.



Metamorphosed larvae We calculate the biomass of metamorphosed fish via the metamorphosis rate and
larva weight throughout all the age groups,

dW&:/T@ﬂW@ﬂm,

for the age structured model, or
dF/dt =T@t)W(t)

for the unstructured model. Again, this quantity does not enter anywhere else in the system of equations, and
was used only for presentation of the results of the calculations.

Initial conditions, hatching and aging In the unstructured model, Ny represents the initial larvae number
density as hatched at day ¢;,
W(t:) = Wo, N(t:) = No, (16)

assuming N(t) = 0 for ¢ < t;. The age argument ¢ in the age-dependent functions M, T' was then understood
as the time since the hatching day ¢;, i.e. a =t — ;.

In the age-structured model, hatching dynamics were represented by initial conditions for the a = 0 bound-
ary:

W(t<t,~,a)=W0, N(t<ti,a):0,
Ng/th, t<t;+tp,

0, t>t; +ty (17)

W(t > t;,0) = Wo, N(tZti,O):{
i.e. the initial weight W, was chosen the same for all hatching days, and the hatching rate was equidistributed
in the interval from day t; to t; + t;, with Ny being total number of hatched larvae. As the time and age
steps in the calculations were 1 day, the unstructured model was essentially a special case of the age-structured
model with ¢, = 1. This corresponds to an assumption of a conceptually isolated packet of water where only
one lot of larvae are hatched.
Finally, the initial value of P and Z were taken as

P(0)=PR,,  Z(0) = Z. (18)

The mathematical model then comprises equations (1), (11), (14), (15), with boundary and initial conditions
(16) to (18) as appropriate.

3 Numerical Results

3.1 Qualitative behaviour

Figures 1 and 2 illustrate the behaviour of the model at kcyg = 0 and at krg = 0 respectively, when the model
is reduced to its prototypes [TB] and [CH].

The phytoplankton-zooplankton part of the model, corresponding to the [TB] prototype, exhibits excitable,
threshold behaviour. This is illustrated on Figure 1, which shows solutions of the model at kcyg = 0, i.e. with
larvae dynamics switched off, and phyto- and zooplankton dynamics, including the parameters values, exactly
as in [TB]. Two cases are shown, a subthreshold perturbation of the stable equilibrium, and a superthreshold
perturbation which represents a phytoplankton bloom. In the the subthreshold case, the initial concentration
of phytoplankton is chosen arbitrarily slightly above the equilibrium value. The resulting increase in phy-
toplankton biomass is relatively short and weak, and causes no substantial increase in zooplankton. In the
superthreshold case, the initial concentration of phytoplankton is 2.5 times higher but its subsequent increase
is rather prolonged, for about a month, very significant, by an order of magnitude, and leads to an order-of-
magnitude increase in the zooplankton. Note that the post-bloom concentration of phytoplankton is much
smaller than the pre-bloom, as it has been almost entirely consumed by the increased zooplankton. The exact
value of the post-bloom phytoplankton is rather sensitive to the details of the model; however, within the
framework of the model, this has little significance for the zooplankton dynamics, for which there is too little
food anyway and where dynamics after the peak is a gradual decay determined by the mortality coefficient.

Figure 2 illustrates the behaviour of the model at kg = 0, i.e. with phytoplankton dynamics switched
off, and zooplankton and larvae dynamics, including the parameter values, exactly as in [CH]. The right panel
illustrates stock-food-recruitment dependence, i.e. number of metamorphosed larvae as a function of initial
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Figure 1: Trajectories for the PZ subsystem [TB] (kcu = 0). Two different initial conditions: subthreshold,
Py = 4-10? (left panel) and superthreshold, Py = 10 - 10® (right panel).
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Figure 2: Stock-recruitment relationship (left panel) and time profile (right panel) the zoo-larvae subsystem
[CH], kts = 0. On this and later figures, the black dot on the left panel designates the point for which the
time profile of the solution is shown on the right panel. Note that the initial value of Z on the profile here,
Zo = 40-107 is 10 times higher than Zy = 4-10% in the [TB] model profile of Figure 1. The choice of parameters
here corresponds to that considered in [CH].



larvae and zooplankton number, for other parameters fixed. The typical feature of this dependence, discussed
in detail in [CH], is that for every value of Zy, there is an optimal value of Ny, given by Nj. When Ny < Ny,
increase of Ny causes increase of the recruitment, since their food is abundant and they always grow at maximal
speed. When Ny exceeds N, larvae consume more of the food while they are young; as they grow further
the food is limited, and they take longer to reach the metamorphosis weight, leading to increased cumulative
mortality and reduced recruitment.

Figure 3 illustrates the behaviour of the full model for the set of parameters given in the figure caption.
This choice of parameters is not the standard choice of [CH], namely, the PZ subsystem is stronger, but is
within the observed limits as reported in Edwards & Brindley (1996). Comparison of figures 2 and 3 shows
that inclusion of the phytoplankton dynamics in this case does not change the dynamics of larvae qualitatively,
and there is reasonable quantitative agreement; the large increase in Z on Figure 2 after day 50 has little effect
on recruitment, which is completed by then.

We must however caution that not too much significance should be read into quantitative agreement. Quite
modest variations of parameter values can cause large quantitative changes, as exemplified, for example, by
Figure 4, calculated for the “standard” parameter values used by [TB] and [CH] respectively. In this case,
the carrying capacity of phytoplankton as assumed in [TB] is very much lower than in Figure 3 and is not
sufficient to sustain zooplankton concentration sufficient for the larvae development if their number is as large
as in Figure 3. Similar qualitative behaviour is observed for correspondingly smaller larvae populations, but
note the difference of scale of Ny on Figures 4 and 3. We return to this point in the later discussion.

The time profile of the right panel of Figure 4 shows that the peak recruitment in this case has been achieved
solely at the expense of the plentiful original stock of zooplankton which has been steadily decreasing throughout
as the phytoplankton has been heavily suppressed; this is in contrast to the situation shown on Figure 3 where
the zooplankton growth has been sustained by a phytoplankton bloom, despite grazing by larvae. This contrast
between recruitment in Figures 3 and 4 poses a question, can the effect of a phytoplankton bloom enhance
recruitment for low initial values of the zooplankton, and if yes, for what conditions? This has motivated the
further study described below.

3.2 Exploiting the phytoplankton bloom

Numerical experiments with the model suggest that a rather delicate balance between initial conditions is
required for fish larvae to benefit from the phytoplankton bloom. To illustrate this point, we show some
representative examples. The left panel of Figure 5 shows that successful recruitment can be achieved either
at large initial values of zooplankton Zj, provided that the hatching larvae number Ny is within reasonable
limits (see the distant part of the graph), or for lower values of Zy (labeled by the black dot), provided that
Ny is rather precisely valued. For this case the initial biomass concentrations of phytoplankton was chosen at
around the the bloom value. Deviation of Zy or Ny to either side from their optimal values leads to a sharp
decrease in the recruitment number.

The reasons for metamorphosis decrease away from this local maximum are illustrated on the next four
figures, in which this particular example serves to illustrate several important sensitivites of wider importance.
In theneral it is important that high Z lasts long enough for the metamorphosis to complete, which in turn
requires that high P also lasts long enough. Thus we see that

e Hatching number Ny lower than the local maximum point leads to slightly higher values of Z which cause
the premature end of the phytoplankton bloom (Figure 6).

e Higher Ny leads to a lower value of Z and retarded larvae growth, with consequent delayed metamorphosis
and increased mortality, i.e. by the same mechanism as described in [CH] model (Figure 7).

e Lower Zy, again, by standard [CH] mechanism, slows down larvae growth, and decreases recruitment via
a delay of metamorphosis (Figure 8).

e And, finally, higher Z; leads to a premature suppression of the phytoplankton bloom, with subsequent
reduction of zooplankton itself which, again, decreases recruitment (Figure 9).

3.3 The role of the hatching time

Success of recruitment depends not only on the parameters of the PZ subsystem, but also on the state in which
this subsystem is at the day the hatching starts. The state of the PZ system will itself depend on the time. The
next series of figures (10-13) illustrates the effect of different larval hatching times. The PZ system is started
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Figure 3: Stock-recruitment relationship and selected time profile and for the full model, i.e. ks = kcu = 1,
where parameters for the PZ subsystem were chosen to match the conditions considered in [CH] (rp = 1,
Prax = 3+ 108, v = 0.15).
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Figure 4: Time profile and stock-recruitment relationship for the full model for the standard set of parameters,
in particular, 7p = 0.3, Ppax = 1.08 - 10°, v = 0.05.
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Figure 5: Local maximum of metamorphosis at relatively low initial values of zooplankton. Larvae take
advantage of the phytoplankton bloom, ensured by its high initial value, Py = 100 - 103. Other parameters
standard.



Stock-Recruitment

Time course

1000 ¢
F(tmax) 100 :
600 77 g
400 ,4;/’ -
000 - AL N INF A7 10

<77

L7t J—&~.
o LI TZTTTTT 7 40
20 1
0 1 Z,110°

111

R RCHTTIT IS RETT T EEErR T |

No 0.1

o

20 40 60 80 100
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at parameter values specified in the legends, and the beginning of hatching (¢;) and number of hatched larvae
Ny varied. The three-dimensional graph for the total biomass of metamorphosed larvae F'(tmax) as a function
of these two varied parameters is shown on the left-hand panels; the right-hand panels, as before, show the
time course of the main dynamic variables corresponding to the point represented by the black dot on the left
panel.

Figure 10 is for parameter values for which in the absence of larvae there is no phytoplankton bloom, so
that the PZ subsystem smoothly approaches the stable equilibrium from given initial conditions. This picture
demonstrates a nontrivial emergent property of the model: triggering the phytoplankton bloom by hatching
of larvae. The left panel shows that, at any value of t;, the stock-recruitment dependence F(tmax) vs No has
a characteristic Cushing-Horwoord bell-shape. The optimal point within the considered range of ¢; and Ny is
shown by the black dot. The time course of the populations corresponding to this point, is illustrated on the
right panel. In the interval of time between ¢t = 0 and ¢ = 25 the evolution of P and Z is the same as in Figure 1.
The event of larvae hatching at day ¢t = 26 causes a slight decrease in the zooplankton concentration, which
triggers the prey-escape growth of the phytoplankton and subsequent period of bloom between approximately
t = 50 and ¢t = 100. However, by the time the phyto-plankton bloom has effect on the zooplankton population,
most of the larvae have already died out so the the recruitment remains very low throughout the considered
range of parameters. Thus, in the unstructured model, the effect of a larvae-triggered bloom is unlikely to have
significant influence on the rectruitment.

For comparison, Figure 11 shows what happens if in the same plankton system, the same number of
larvae hatches over a long period of time. In this case, the phytoplankton bloom caused by early hatched
larvae is beneficial for later hatched larvae. The initial period (¢ between 0 and 50 days) sees development
of the phytoplankton, then there is a long period (¢ between 50 and 100 days) of sustained growth of the
zooplankton feeding on the abundant phytoplankton, and the larvae that hatched at the right time to grow
up by the end of this bloom period have the best conditions for growth and best chance of survival. Due to
the exponential dependence of the larvae survival on the right conditions, this increased chance of survival
is more important than the decrease of the hatched larvae number per day because of its spread over a long
period. Thus, the overall success in Figure 11, F(tmax) ~ 100ug/m?, is much higher than F(tyay) < 10ug/m?
in Figure 10 and is comparable to what is achievable in principle in the plankton system with these parameters,
cf F(tmax) = 200ug/m? on Figures 4 and 5.

As noted in James, Pitchford & Brindley (2001), a phytoplankton bloom initiated exclusively by larvae
is unlikely; however, the effect of larvae may enhance the effect of the season and quicken the onset of the
phytoplankton bloom. It is therefore interesting to study the success of the larvae in the conditions when the
bloom is imminent even in the absence of larvae. This is illustrated on Figures 12 and 13.

Figure 12 shows the unstructured case. The pre-existing phytoplankton bloom has two major effects: (a)
the recruitment can reach much larger values, and (b) to do so, hatching should be precisely timed with respect
to the bloom. Note that on both figures 12 and 10, optimal recruitment is observed when the recruitment
coincides with the end of the phytoplankton bloom.

Next Figure 13 illustrates the effect of spreading of the hatching over a significant period of time. It can
be seen that the dependence remains qualitatively the same; the difference is that the dependence is smoother,
and the peak recruitment results are slightly lower. The optimal timing in this case is when the beginning of
the recruitment is at about the end of phytoplankton bloom.
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Figure 10: Stock-timing-recruitment relationship, standard set of parameters. Left: stock-timing-recruitment
relationship: total biomass of metamorphosed fish, F', as a function of hatching larvae density Ny and hatch-
ing time t; with respect to the start of the phytoplankton bloom. Right: the time profile of the solution,
corresponding to the black dot on the left panel.
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Figure 12: Stock-timing-recruitment relationship. Same as Figure 10, with a higher initial phytoplankton
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Numerical experiments with further spreading of the hatching period reveal no further advantages, in con-
trast to the case of the subthreshold pre-hatching state of the PZ subsystem. This is because the phytoplankton
bloom in this model, once triggered, is a very robust regime and the small influence of the larvae on the zoo-
plankton does not alter it.

4 Discussion

The numerical results obtained above demonstrate that the gualitative features of the results obtained by [CH]
persist when the stock-recruitment model is coupled to a dynamic model for plankton populations [TB]. The
crucial modification is that the food source (copepods), which in [CH] would grow exponentially in the absence
of larvae, is replaced by an evolving copepod population itself dependent on phytoplankton growth through
photosynthesis. A striking feature of the results is the sensitivity of the final recruitment total to variations in
biological and physical influence. By choosing parameter values and initial conditions well within the ranges
used by recent authors (see (Edwards & Brindley 1996)), we can obtain recruitment totals varying by up to
three orders of magnitude. Though these variations compare well with observed variability in recruitment
(Garrod 1983, Cushing 1996), it implies that accurate quantitative prediction is likely to be difficult. It is
possible, nevertheless, to make several general comments.

e In conditions under which strong phytoplankton blooms occur, the accompanying zooplankton population
will, in the absence of larvae, vary substantially over time, typically by an order of magnitude.

e This implies that timing of the appearance of larvae is crucial in determining their food supply and
eventual metamorphosis — the Cushing Match-Mismatch hypothesis (Cushing 1995).

e In non-bloom conditions, zooplankton populations remain more steady, but typically at levels too low to
provide the food supply assumed in [CH]. The qualitative pattern of recruitment resembles [CH], but is
much lower (see Figures 3 and 4).

e Hatching of larvae can stimulate the onset of a phytoplankton bloom, by suppressing the concentration
of zooplankton and triggering the “prey escape” mechanism for the phytoplankton. This phenomenon is
probably typical for trophic chains with more than two species and appropriate time scales.

e Larvae can benefit from the phytoplankton bloom only in a quite narrow range of parameter values,
particularly, hatching timing. Any deviation from optimal values leads to fast decrease of recruitment,
due to the exponential nature of larvae mortality. This means that single batch hatching (egg laying)
is a very high risk strategy; it pays off if the timing is exactly right, but on the whole an extended
hatching period is advantageous. In this case at least some of the larvae enjoy the most favorable feeding
conditions.

e Rough criterion for optimal timing: end of the larval stage (main time of recruitment) should coincide
with the end of phytoplankton bloom. In particular, this implies that the duration of larval stage, if
possible, should be shorter than the duration of the bloom.

Stock-Timing-Recruitment 1000 Time course
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inad wo b T Lo
200 3
150 F
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N E
0 2 b 3
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Figure 13: Stock-timing-recruitment relationship. Same as Figure 12, with hatching spread through a month,
Py =10-103, t;, = 30.
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But how long should we consider a “bloom” to be. One tends to think of exceptional cases of very high algal
concentrations, such as red tides. These are however exceptional, driven by a change in the environment or a
sudden release from predation. More generally the spring bloom is of an extended character. Off the north-east
coast of England in 1976, in a region of fish larval development, the spring bloom of chlorophyll @ > 103ugm=3,
persists for over six weeks (Horwood 1982, figs. 5 & 8). On the central station of the Fladen Ground, in
the same year, such concentrations lasted for 3-4 weeks (Radach 1983). Similar and longer durations of the
spring bloom can be seen in reviews by inter alia Cushing (1995) and Mann & Lazier (1996). Consequently
it may be reasonable to propose that larval development takes the order of the duration of the spring bloom.
However, not only does the spring bloom have different characteristics between and within oceans, but larval
development is very sensitive to local temperatures. This gives scope for discrimination and testing of such an
hypothesis.

Finally, a major assumption in the [TB] model is that the populations called P and Z are homogeneous.
This is clearly not true in practice. The rapid growth rate and short lifespan of individual phytoplankton means
that some formal averaging process over a larval lifespan is likely to be adequate in that case. However, the
fact that copepod growth rates and lifespans are comparable to that of the predator larvae suggest that age-
dependence or, more importantly, size variation in zooplankton is likely to be important. A valuable exercise
for the future is then a coupling of a stock-recruitment model to an age-dependent or otherwise variable P-Z
model. e.g. (Clother & Brindley 1999).
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Appendix: table of notations!

Notation Std (init) val Units Meaning
Units
d day
m meter
Ug micrograms

Independent variables

t d time

a d age

Dynamic variables

P(t) 4-103 pugm™3 phytoplankton biomass concentration
Z(t) 4-10% pgm=3 zooplankton biomass concentration
W(t,a) 33 7 weight of one larva

N(t,a) 1 m—3 larva number per volume (per day of age)
F(t) 0 pgm 3 metamorphosed fish biomass per volume

Model parameters

kTR 1 contribution of TB model

kcu 1 contribution of CH model

Prax 1.08 - 10° pugm3 TB phytoplankton saturation constant

rp 0.3 d-! TB phytoplankton maximal growth rate

Tz 0.7 d-! TB zooplankton maximal grazing rate

P, 5.7-103 pugm=3 TB zooplankton grazing satiation constant

o 0.05 TB zooplankton grazing efficiency

Wz 0.012 d-! TB zooplankton non-specific mortality rate

v 0.2234 CH larvae weight-search volume exponent

k 0.0154 m3d~! g™ CH larvae weight-search volume coefficient

BL 0.089 d-! CH larvae initial mortality to predation rate

b 0.005 d-! CH larvae mortality to predation decrease rate
TZ,0 0.0875 d! CH zooplankton growth rate, regardless of food
n 0.67 CH larvae weight-metabolic cost exponent

o 2.6 pgl=mdt CH larvae weight-metabolic cost coefficient

7 0.002 ug~t CH larvae maximal digestive coefficient exponent
Bmax 0.48 CH larvae max digestive coefficient

Brmin 0.135 CH larvae minimal (initial) digestive coefficient
TL 0.12 d-1! CH maximal larva growth rate

ar 100 d CH larvae metamorphosis age

Wr 3165 7y CH larvae metamorphosis weight

Cr.a 1 d-1! CH larvae metamph-age rate coefficient

Crw 1 d-1 CH larvae metamph-wgt rate coefficient

Aar 3 d CH larvae metamorphosis age spread

AWr 31 Ug CH larvae metamorphosis weight spread

I The units are for the unstructured model. For the age-structured model, extensive quantities describing larvae age groups are
per day of age, i.e. have additional dimensional factor of d 1.
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Notation Std (init) val Units Meaning

Computation parameters

B 4-103 pgm=3 initial phytoplankton biomass concentration
Zy 4-10% pgm=3 initial zooplankton biomass concentration
Wo 33 7ty initial larva weight
No 1 m3 total hatched larva number per volume
t; 0 d hatching begin
th 1 d hatching duration
tmax 256 d total calculation time
At 1 d calculation time/age step
Auxiliary functions
G d-! TB amount phyto eaten by zoo per zoo ug per day
Rinax pgd=t CH maximal daily ration of one larva
R pgd=t CH actual zooplankton biomass eaten by one larva
Riot pugm~—3d~!  CH amount of zoo eaten by larvae of all ages
p d—! CH fraction of volume searched by larvae
B CH larva food conversion efficiency
B, pgd=1 CH biomass obtained by larva from food
B; pgd=! CH biomass spent by larva for energetic needs
AW pgd=! CH larva theoretical weight gain rate
AWmax pgd—t CH maximal larva weight gain rate
M d-! CH larvae mortality to predation rate
T d-! CH larvae metamorphosis rate
L pugm=3 larvae biomass
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