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If an excitable medium is moving with relative shear, the waves of excitation may be broken b
motion. We consider such breaks for the case of a constant linear shear flow. The mechanis
conditions for the breaking of solitary waves and wave trains are essentially different: the solitary
require the velocity gradient to exceed a certain threshold, while the breaking of repetitive wave
happens for arbitrarily small velocity gradients. [S0031-9007(98)07183-X]
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Introduction.—Many nonlinear dissipative distribute
systems display excitable behavior; the return from a
turbed state to a single stable equilibrium state may
achieved by two qualitatively different routes, one
which entails a large excursion from equilibrium, the
called “excitation.” Examples of excitability abound
chemical systems, notably in the celebrated Belous
Zhabotinsky reaction, but also in the context of spon
neous ignition of stored solids or of leaking reactant flu
[1]. Many fundamental physiological processes are dri
by excitable behavior, and excitability is important in b
logical morphology and some examples of population
namics [2].

In appropriate circumstances, a distributed excita
system can support a traveling wave of excitation
lowed by a return to the equilibrium state, and
characteristic spiral, target pattern, or scroll wave for
have attracted enormous attention. In virtually all
this work, the supporting medium has been assume
be at rest or in uniform motion. However, the effe
of medium movement on the excitation wave dynam
have been studied for slight deformations [3], and
fects of nonuniform advection onto chemical reactions
without excitable properties were studied in [4,5]. L
tle or no attention has been given to the situation wh
the excitable medium with recovery undergoes rela
straining motion, as in a shear flow or even a nonu
form elastic deformation—although experiments with
Belousov-Zhabotinsky reaction have demonstrated
sufficiently strong convective motion of the chemica
reacting medium can break the excitation waves [6].

In this Letter we identify and analyze the influen
on excitation waves of one of the simplest examples
relative motion of the medium, a constant linear shear

Plane waves in linear shear flows.—Mathematical
models of excitable media take the form of reactio
diffusion systems of equations, and the generic react
diffusion system in a shear flow in thesx, yd plane can be
written in the form
0031-9007y98y81(13)y2815(4)$15.00
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where u is the column vector of reacting species,f
represents the nonlinear reaction rates,D is the diffusion
matrix, anda is the gradient of the advection velocity
$c ; say, 0d. We assume that, fora ­ 0, the s1 1 1d-
dimensional version of this system has solutions in
form of periodic waves (solitary waves, in the limit o
infinite period), with the speed and shape determined
the period (or being unique for a solitary wave), which
typical for excitation waves.

The analysis of the propagation of excitation in th
system is readily performed for plane waves. It is eas
seen that self-similar solutions are possible only for t
trivial case of the wave propagating exactly across
flow. The generic substitution defining plane waves is

usx, y, td ­ ysh, td, h ­ xCstd 1 ySstd , (2)

where the functionsCstd, Sstd determine the direction of
propagation of the waves, tanustd ­ SstdyCstd, and are
defined up to a multiplicative constant. We choose t
constant so that att ­ 0, Cs0d ­ cosus0d and Ss0d ­
sinus0d. To satisfy the system (1), these functions mu
obey differential equations

ÙC ­ 0, ÙS ­ aC , (3)

and the wave profile must obey thes1 1 1d-dimensional
PDE system

≠y

≠t
­ fsyd 1 KstdD

≠2y

≠h2 , (4)

where the effective diffusion matrixKstdD is determined
by a scaling factor ofKstd,

Kstd ­ Cstd2 1 Sstd2 ­ 1 1 2at cosu0 sinu0

1 a2t2 cos2 u0 , (5)

u0 ­ us0d, and ustd is the angle between the normal t
the wave front and thex axis (or between the wave fron
and they axis). In physical space, the dependence
© 1998 The American Physical Society 2815
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corresponds to a change of the distance between isop
lines according to the equation (see Fig. 1)

lstd ­ ls0d s1 1 2at cosu0 sinu0 1 a2t2 cos2 u0d21y2.

(6)

The propagation angle at timet is

ustd ­ arctansSyCd ­ arctanftansu0d 1 atg . (7)

Thus, for plane waves, the problem reduces to that
propagation of excitation waves in a 1-dimensional ca
with diffusion depending explicitly on time. Now we ar
going to study the conditions under which this depende
can cause a propagation block.

Solitary wave blocking.—We assume the following
properties of the unperturbed version of this equat
(K ; 1d: (i) There exists a stable solution in the form
a solitary wave,ysh, td ­ V sh 2 cytd, with width L ­
Lnorm, defined, for example, as the separation betw
points in which some component ofy has a chosen value
(ii) This solitary wave can develop from initial condition
in the form of this same wave laterally squeezed, i
ysh, 0d ­ V skhd, k . 1, with width, Linit ­ Lnormyk,
shorter than normal but longer than some minimal wid
Lmin (Lmin , Linit , Lnorm), but if Linit , Lmin the
wave decays. (iii) The typical time for the developme
(establishment) of the wave profile istprof. If, as is often
the case, the excitation waves are supported by proce
of different time scales, thentprof will be the slowest of
them (i.e., the time constant of the limiting stage). T
meaning of this parameter will be seen more clearly fr
its use below. IfK fi 1 but is any positive constant
then assumption (i) implies that (4) has a station
solitary wave solutionysh, td ­ V sK21y2h 2 cytd, with
width LstatsKd ­ LnormK1y2. If Kstd is not constant but
changes slowly, we may expect that the solution will ha
the same form as this wave, slowly adjusting its wid
accordingly. IfKstd changes too rapidly, only then ma
the wave solution collapse.

FIG. 1. Schematic diagram of the plane wave deformation
the shear flow. Bold solid lines are equiphase lines at t
moment 0, and bold dashed lines are the same lines at
momentt.
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With the assumptions listed above, this can be form
ized in a phenomenological model. Let us assume,
simplicity, that the dynamics of the wave width is line
with constant relaxation timetprof. As the instantaneou
equilibrium state should be changing in accordance w
Kstd, this gives

ÙL ­ t21
proffK1y2stdLnorm 2 Lg, Ls0d ­ Lnorm,

Lstd $ K1y2Lmin ; t . (8)

This equation is in terms of the spatial variableh
used in (4), which physically corresponds to the wid
measured in the direction of the flow. The rescaled wi
L̄ ­ K21y2L, corresponding to the real width measur
perpendicularly to the wave front, then obeys

Ù̄L ­ t21
profsLnorm 2 L̄d 2

ÙK
2K

L̄, L̄ $ Lmin . (9)

The starting and the final asymptotic value ofL̄ is Lnorm.
In between, it decreases belowLnorm but always remains
positive. The minimal value of̄L is achieved atÙ̄L ­ 0
which gives

1 1 tprof

ÙK
2K

­
Lnorm

Lmin
. (10)

The system of equations (8) and (10) determines
principle, the critical shearap and the corresponding tim
tp of the break; however, the exact solution is rath
tedious.

To obtain a simple analytical estimate, let us consi
the case of practical interest, when the ratio of
activation time scale to the inhibition time scale is

tactytinh ­ e ø 1 . (11)

Propagation of excitation waves in this limit is describ
by the Fife approximation [7]. In particular, the limitin
stage of wave formation is the establishment of its wid
which happens on the time scale oftprof ~ tinh, and the
minimal possible width from which the wave can recov
is of the order of the activation front width,Lmin ~ cytact,
whereas, in contrast, the normal wave width is, obvious
Lnorm ~ cytinh.

In this limit we should expect that the breakup occu
only if the effective diffusivity changes very quickly com
pared withtprof ­ tinh. Assuming, in a self-consisten
way, thattp ~ tact and neglecting the change ofLstd dur-
ing this time interval,Lstd ø Lnorm, to leading order we
obtain a system of two equations:

LnormyLmin ­ e21 ­ K1y2, (12)

LnormyLmin ­ e21 ­

µ
1 1

tprof
ÙK

2K

∂
. (13)
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Using (5) in (12), tanustpd ø aptp ø e21, then (13)
impliestprofytp ø e21, and so the solution is

tp ø etprof ­ tact ,

ustpd ø py2 2 e , (14)

ap ø t21
profe22 ­

tinh

t
2
act

,

in agreement with the original assumptions [8].
Thus, in this case, there is acritical shear above which

the wave is quenched, and the value of this shear dep
on the difference between the time scales of activ
and inhibitor, which is a measure of the excitability
the system; the more excitable the system, the bigge
shear needed to destroy the wave.

Periodic wave conduction block.—For periodic wave
trains the situation is completely different, as the spa
period measured in terms of the variableh (the period in
the direction of the flow) is fixed. In physical space,
measured in the instantaneous direction of propaga
the spatial period changes according to (6). But
excitable media, there is always a minimal waveleng
lp, at which a periodic wave train can propagate, and
lstd decreasing below this value is a sufficient condit
for the propagation block. From (6) we obtain t
following estimate of the time and the angle for whi
the break will occur for any value of the shear howe
small,

u0
p ­ arctans1ykd, tp ­ a21sk 2 1ykd,

ustpd ­ arctanskd, (15)

where

k ­ ls0dylp . (16)

Numerical illustrations.—So far we have considere
only plane waves. To verify the estimates and ana
the effect of the shear flow on more complicated autow
patterns, we have performed numerical simulations for
FitzHugh-Nagumo system, with the flow incorporated,
the following form:

≠E
≠t

­ c1EsE 2 ad s1 2 Ed 2 g 1 ay
≠E
≠x

1 D=2E ,

≠g
≠t

­ esc2E 2 gd 1 ay
≠g
≠x

1 dD=2g .
(17)

We shall refer to the space and time units of this equa
as s.u. and t.u., respectively. The parameter values
chosen: c1 ­ 10, a ­ 0.02, e ­ 0.1, c2 ­ 5, d ­ 1,
and D ­ 1. We solved this system with explicit Eule
scheme (forward time, centered space), with space
hs ­ 0.5 s.u., in a rectangular mediumsx, yd [ f0, Lg 3

f2My2, My2g with periodic boundary conditions atx ­
0, L and nonflux boundary conditions aty ­ 6My2. The
sizes of the medium,L and M, the velocity gradient,a,
and the time step,ht, were varied in different experiment
The minimum wavelength of a periodic train in quiesc
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FIG. 2. Conduction block of a solitary plane wave in th
linear shear flow. Velocity gradienta ­ 10 t.u.21, medium
size 500 s.u.3 30 s.u., time stepht ­ 5 3 1025 t.u. Shown
are snapshots of theE field (darker shade corresponds
higher value) with interval 0.5 t.u. Panel (d) corresponds
the moment just before the disappearance of the wave:
excitation (black) and only the recovery tail (lighter shad
left in the medium; some excitation survived only near t
boundaries.

(a ­ 0) medium is19.0, and the wavelength of the spira
wave is41.0.

The evolution of a solitary plane wave is shown
Fig. 2. The horizontally propagating wave was initiate
in the quiescent medium and then the flow was switch
on, which corresponds to the conditions of the analyti
estimation. The activator and inhibitor areE and g and
their characteristic times are, respectively,tact ~ 1 t.u.
and tinh ~ 1ye ­ 10 t.u. According to (14), this mean
that ap ~ 10 t.u.21 for our choice of parameters. Th
threshold value of the velocity gradient necessary
breaking a single plane wave was found numerically
be ap ­ 6 t.u.21, the time tp ­ 1.5 t.u., and the wave
orientation at the moment of the break tanustpd ­ 15,
which, to this order of magnitude, is consistent with t
analytical estimates of (14),ap ­ 10 t.u.21, tp ­ 1 t.u.,
and tanustpd ­ 10.

We have studied what happens to autowave str
tures at velocity gradients much less than this thresh
According to (15) and (16), we have for this mediu
k ø 2.16, and at a ­ 0.06 t.u.21 the wave break of
the periodic train occurs attp ø 28 t.u. at the angle of
ustpd ø 1.14 rad. These predictions, obtained for plan
waves, agree, in order of magnitude, with simulations
the evolution of more complicated autowave patterns,
spiral wave and the target pattern.

In the first example (see Fig. 3) we initiated a spir
wave in a quiescent medium (a ­ 0) and then switched
on the shear flow. The spiral wave breaks, and

FIG. 3. Breakup of a spiral wave. Velocity gradienta ­
0.06 t.u.21, medium size200 s.u.3 200 s.u., time stepht ­
5 3 1023 t.u. Shown are snapshots of theE field with interval
25 t.u.
2817
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FIG. 4. Breakup of a target pattern. Velocity gradienta ­
0.06 t.u.21, medium size200 s.u.3 200 s.u., time stepht ­
5 ? 1023 t.u. Shown are snapshots of theE field with interval
25 t.u.

time (tp ø 48) and orientation of the wave [ustpd ­
1.3 rad] are in good correspondence with the theo
The correspondence in this case would be better
for the phenomenon of “plasticity” of the excitatio
wave: as the process is nonstationary, the visual brea
happens later than the time at which conditions
stationary propagation are violated. This explanation w
confirmed by numerical experiments when the flow w
stopped before the wave broke, but after it should ha
happened accordingly to the analytical estimate; the w
subsequently broke, despite the absence of the flow.

In the other example (see Fig. 4) we initiated a ser
of topologically circular waves by periodical stimulatio
of a point in the medium with the period equal to th
period of the spiral wave. It can be seen that while t
first wave propagates without problems, the propagat
of the second is suppressed and the third wave is bloc
This block occurs not for the whole wave but only
some points, leading to wave breaks which curl up in
spirals. The first breaks occur to the third wave, at tim
t ø 63 t.u., that is19.4 t.u. after its initiation, and at a
propagation angle of aboutu ø 1.3 rad, i.e., the same a
in the previous case.

These two examples show that, at least for the parti
lar model chosen, the conditions of the wave break
almost the same whatever the origin and shape of
pattern is, and the order of magnitude of the veloc
gradient necessary for the wave break agrees with
estimate (15) obtained for plane periodic waves based
the quasistationary arguments.

As we see in Fig. 3, a spiral wave at timetp succumbs
to wave breaks which then develop into new spi
waves. Thus, in a linear shear flow a “chain reactio
of spiral wave births and deaths leads to a “frazzle g
of excitation wavelets. The mechanism for the generat
of this frazzle gas is different from that described in [9
As this mechanism requires only a finite deformation
the medium, we may expect that it can play its role n
only in constant flows, but in a more wide variety o
situations. If oceanic plankton dynamics are conside
as an excitable medium [10], then currents can influe
their spatial dynamics.
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An ODE system of analogous form to the one co
sidered in this Letter can also describe the action of
electric field on a chemical excitable medium, where
role of the advection velocity is played by the elect
field multiplied by the mobility of the reagent. If all th
reagents have the same mobility, the corresponding P
system is formally equivalent to that for reaction diffusio
with convective flow [12].
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