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Excitation Wave Breaking in Excitable Media with Linear Shear Flow
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If an excitable medium is moving with relative shear, the waves of excitation may be broken by the
motion. We consider such breaks for the case of a constant linear shear flow. The mechanisms and
conditions for the breaking of solitary waves and wave trains are essentially different: the solitary waves
require the velocity gradient to exceed a certain threshold, while the breaking of repetitive wave trains
happens for arbitrarily small velocity gradients. [S0031-9007(98)07183-X]
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systems display excitable behavior; the return from a per- ot X ax2 oy

turbed state to a single stable equilibrium state may be

achieved by two qualitatively different routes, one Ofwhere u is the co[umn vectqr of reactlng s_peu_eﬁ,
which entails a large excursion from equilibrium, the so'epresents the nonlinear reaction raw@sis the diffusion

called “excitation.” Examples of excitability abound in Enatnx, anda is the gradient of the advection velocity,

chemical systems, notably in the celebrated Belousovcgj.E (“Y’O)'l We _assu;nteh_that, ];O‘D‘ :ho, thel (tl' + 1)- "
Zhabotinsky reaction, but also in the context of sponta; Imensional version of this system has solulions in the
form of periodic waves (solitary waves, in the limit of

neous ignition of stored solids or of leaking reactant fluids. =, " : X .
[1]. Many fundamental physiological processes are driveﬁnﬁn'te period), with the speed and shape determined by

by excitable behavior, and excitability is important in bio- the period (or being unique for a solitary wave), which is

; . typical for excitation waves.
| I hol I f I - . . o .
r?grﬁi?:sr?zcirp ology and some examples of population dy The analysis of the propagation of excitation in this

In appropriate circumstances, a distributed excitabléySteTh'i reeﬁjlly plerforn?et(_j for plane wa}tl)cles. Itl |sfea?;]ly
system can support a traveling wave of excitation fol-S€€N that sell=simiiar solutions aré possiblé only for the

lowed by a return to the equilibrium state, and thetrlwal case of the wave propagating exactly across the

characteristic spiral, target pattern, or scroll wave formd!OW: The generic substitution defining plane waves is
have attracted enormous attention. In virtually all of  u(x,y,7) = v(n,1), n =xC(t) + yS(r), (2)

this work, the supporting medium has been assumed tghere the function€(z), S(r) determine the direction of
be at r_est or in uniform motion. _quever, the eﬁeC_tSpropagation of the waves, tarr) = S(¢)/C(), and are
of medium movement on the excitation wave dynamiCsjefined up to a multiplicative constant. We choose that
have been studied for slight deformations [3], and ef-constant so that at = 0, C(0) = cos#(0) and S(0) =
fects of nonuniform advection onto chemical reactions buking(0). To satisfy the system (1), these functions must
without excitable properties were studied in [4,5]. Lit- gpey differential equations
tle or no attention has been given to the situation where . .
the excitable medium with recovery undergoes relative ¢ =0 §=aC, (3)
straining motion, as in a shear flow or even a nonuni-and the wave profile must obey tlie + 1)-dimensional
form elastic deformation—although experiments with thePDE system
Belousov-Zhabotinsky reaction have demonstrated that v 9%v
sufficiently strong convective motion of the chemically 5, — S + K0OD a2’ 4)
reacting medium can break the excitation waves [6].

In this Letter we identify and analyze the influence Where the effective diffusion matrik (z)D is determined
on excitation waves of one of the simplest examples obY a scaling factor oK (),
relative motion of the medium, a constant linear shear. K(1) = C(t)*> + S(1)*> = 1 + 2at coshsinéy

Plane waves in linear shear flows-Mathematical )
models of excitable media take the form of reaction- + a1’ cos 6y . ()
diffusion systems of equations, and the generic reactiord, = 0(0), and #(z) is the angle between the normal to
diffusion system in a shear flow in tHie, y) plane can be the wave front and the axis (or between the wave front
written in the form and they axis). In physical space, the dependence (5)
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corresponds to a change of the distance between isophaséWith the assumptions listed above, this can be formal-
lines according to the equation (see Fig. 1) ized in a phenomenological model. Let us assume, for
A1) = A0)(1 + 2arcosysinfy + a1>cos 6y)~ /2 simplicity, that the dynamics of the wave width is linear
' with constant relaxation time,.,;. As the instantaneous
(6)  equilibrium state should be changing in accordance with
The propagation angle at tines K(1), this gives
L(O) = Lnorm,

Vi (8)

(7) L = Tr:r(l)f[Kl/z(t)Lnorm - L],
L(t) = Kl/szin

0(t) = arctaniS/C) = arctatan(dy) + at].

Thus, for plane waves, the problem reduces to that for_ _ o ) )
propagation of excitation waves in a 1-dimensional cable NiS €quation is in terms of the spatial variablg
with diffusion depending explicitly on time. Now we are USed in (4), which physically corresponds to the width
going to study the conditions under which this dependenc:g‘e""suf‘?c}'z'n the direction of the flow. The rescaled width
can cause a propagation block. L=K ./ L, corresponding to the real width measured

Solitary wave blocking—We assume the following Perpendicularly to the wave front, then obeys
properties of the unperturbed version of this equation . k
(K = 1): (i) There exists a stable solution in the form of L = frp‘r}nc(Lmrm - L) — ﬁL’
a solitary wavey(n,t) = V(n — c,1), with width L =
Laom, defined, for example, as the separation betwee
points in which some component ofhas a chosen value.
(i) This solitary wave can develop from initial conditions
in the form of this same wave laterally squeezed, i.e.

L= Lmin - (9)

*Fhe starting and the final asymptotic valuelofs L om.
In between, it decreases beldw,m but always remains

positive. The minimal value of is achieved af. = 0

U("?, 0) = V(k‘f]), k>1, with Wldth; Liniy = Lnorm/k. Which gives
shorter than normal but longer than some minimal width, L
. norm
Liin (Lmin < Lipit < Lnorm)v but if Linit < Lmin the 1+ TPI’OfZK = J (10)
min

wave decays. (iii) The typical time for the development
(establishment) of the wave profileg,r. If, as is often _ _ _
the case, the excitation waves are supported by processes! e system of equations (8) and (10) determines, in
of different time scales, them,.r will be the slowest of Principle, the critical sheas.. and the corresponding time
them (i.e., the time constant of the limiting stage). Thef+ Of the break; however, the exact solution is rather
meaning of this parameter will be seen more clearly fronfedious. _ _ _ _

its use below. IfK # 1 but is any positive constant, 10 obtain a simple analytical estimate, let us consider
then assumption (i) implies that (4) has a stationaryfn® case of practical interest, when the ratio of the
solitary wave solution (7, 1) = V(K—l/z77 — ¢, 1), with activation time scale to the inhibition time scale is

width Ly (K) = Loom K72, If K(7) is not constant but
changes slowly, we may expect that the solution will have

the same form as this wave, slowly adjusting its widthponaqation of excitation waves in this limit is described
accordingly. IfK(r) changes too rapidly, only then may y,, e Fife approximation [7]. In particular, the limiting
the wave solution collapse. stage of wave formation is the establishment of its width,
which happens on the time scale Qf.s *« 7i;, and the
minimal possible width from which the wave can recover
is of the order of the activation front widtlh,,;;, * ¢, Tact,
whereas, in contrast, the normal wave width is, obviously,
Lyorm % Cy Tinh-

In this limit we should expect that the breakup occurs

Tact/Tinh = € K 1. (11)

at y at

only if the effective diffusivity changes very quickly com-
pared with7pr = 7ipn. Assuming, in a self-consistent
way, thatr.. o« 7, and neglecting the change bft) dur-

A(0) ing this time interval,L(¢r) = L,om, to leading order we
A (i z obtain a system of two equations:
tan 6(0 tan 0(¢ _

) ) Lnorm/Lmin = € = Kl/z’ (12)
FIG. 1. Schematic diagram of the plane wave deformation by
the shear flow. Bold solid lines are equiphase lines at time .
moment 0, and bold dashed lines are the same lines at time 1 Tprof K
momentt. Lnorm/Lmin =€ =1+ 2K . (13)
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Using (5) in (12), tam(t.) = a.t. = € !, then (13)

implies 7y /ts = e !, and so the solution is (a) I

| |

I+ = €Tprof = Tact, L”) \ ‘
0) ~ /2 — €. ey DSy |
1 -2 _ Tinh ‘

Qs = Tprofe - 2 > {(d; —
Tact

in agreement with the original assumptions [8]. :i:rllgérzéh gzﬁnﬁg\?\;{.ionvglc())gt(y oér:dizcr)ylritazwlg l? Sélw?,:/:dirmthe

Thus, in this case, there iscaitical shear above which ;0 500 s.u. x 30 s.u., time steps, = 5 X 10~ t.u. Shown
the wave is quenched, and the value of this shear depengge snapshots of th& field (darker shade corresponds to
on the difference between the time scales of activatohigher value) with interval 0.5 t.u. Panel (d) corresponds to
and inhibitor, which is a measure of the excitability of the moment just before the disappearance of the wave: no
the system; the more excitable the system, the bigger tq‘:éxc't.a“o” (black) and only the recovery tail (lighter shade)

eft in the medium; some excitation survived only near the
shear needed to destroy the wave. boundaries.

Periodic wave conduction block-For periodic wave
trains the situation is completely different, as the spatial
period measured in terms of the variabjgthe period in (@ = 0) medium is19.0, and the wavelength of the spiral
the direction of the flow) is fixed. In physical space, if wave is41.0.
measured in the instantaneous direction of propagation, The evolution of a solitary plane wave is shown in
the spatial period changes according to (6). But inFig. 2. The horizontally propagating wave was initiated
excitable media, there is always a minimal wavelengthin the quiescent medium and then the flow was switched
A«, at which a periodic wave train can propagate, and s@n, which corresponds to the conditions of the analytical
A(t) decreasing below this value is a sufficient conditionestimation. The activator and inhibitor afeand g and
for the propagation block. From (6) we obtain thetheir characteristic times are, respectivety. « 1 t.u.
following estimate of the time and the angle for whichand i, = 1/€ = 10 t.u. According to (14), this means

the break will occur for any value of the shear howeverthat «. = 10 tu.”! for our choice of parameters. The
small, threshold value of the velocity gradient necessary for

_ breaking a single plane wave was found numerically to
0. = arctaril/k), te=a (k= 1/k), be a. = 6 t.u.”!, the timers. = 1.5 t.u., and the wave
0(t.) = arctartk), (15) orientation at the moment of the break tn.) = 15,
which, to this order of magnitude, is consistent with the
analytical estimates of (14)y. = 10 tu.”!, r. = 1 t.u.,
k = A0)/Ax. (16)  and tard(z.) = 10.
We have studied what happens to autowave struc-

Numerical illustrations—So far we have considered s : )
only plane waves. To verify the estimates and analyzéures at velocity gradients much less than this threshold.

the effect of the shear flow on more complicated autowavé&'ccording to (15) and (16), we have for this medium
patterns, we have performed numerical simulations for th& =~ 2-16, and ata = 0.06 tu.”" the wave break of

FitzHugh-Nagumo system, with the flow incorporated, inth€ Periodic train occurs at ~ 28 t.u. at the angle of
the following form: 6(t.) = 1.14 rad. These predictions, obtained for plane

waves, agree, in order of magnitude, with simulations of

where

9E _ QEE —a)(l —E) — g + ay 9E + DV2E, the evolution of more complicated autowave patterns, the
at X spiral wave and the target pattern.
dg a7) In the first example (see Fig. 3) we initiated a spiral

ag 2
€(lcE —g) + ay ax oDV'g. wave in a quiescent mediuna (= 0) and then switched

on the shear flow. The spiral wave breaks, and the

We shall refer to the space and time units of this equation
VD TR —C )

ot

I{a)

as s.u. and t.u., respectively. The parameter values were

chosen:c; =10, a = 0.02, e =0.1, co =5, 6§ =1, v

and D = 1. We solved this system with explicit Euler .

scheme (forward time, centered space), with space step Qb\ d\

hs = 0.5 s.u., in a rectangular mediuw, y) € [0,L] X | ) i)

[—M /2, M /2] with periodic boundary conditions at = Jlw )\ F\‘\ o J=

— +

252Le2n0c]ic ?ﬁ:fm: dﬁﬁﬁdggéagn?gfcz% ::ity_gAfa/dziér;l;Ze FIG. 3. 7lBreaku_p of a spiral wave. Velocity gradieat=
; e W Y 0,06 t.u”!, medium size200 s.u. X 200 s.u., time steph, =

and the time step,, were varied in different experiments. 5 x 103 t.u. Shown are snapshots of thefield with interval

The minimum wavelength of a periodic train in quiescent25 t.u.
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- — An ODE system of analogous form to the one con-
\(- — b c-f\ sidered in this Letter can also describe the action of an
\ L ; . .
Q % & 3 electric field on a chemical excitable medium, where the
)\ \)\ ‘\,-3 ( role of the advection velocity is played by the electric
(@) ) © (&) — field multiplied by the mobility of the reagent. If all the
reagents have the same mobility, the corresponding PDE

FIG. 4. Breakup of a target pattern. Velocity gradient=

0.06 t.u.”!, medium size200 s.u. X 200 s.u., time steps, —  System is formally equivalent to that for reaction diffusion
5 - 1073 t.u. Shown are snapshots of tliiefield with interval ~ with convective flow [12].
25 t.u. This work has been supported by grants from EPSRC

GR/L 73364 and INTAS-96-2033.

time (t. = 48) and orientation of the waveé[t.) =
1.3 rad] are in good correspondence with the theory.
The correspondence in this case would be better but
for the phenomenon _Of plaStl_Clty of the_ excitation *On leave from Institute for Mathematical Problems in
wave: as the process is nonstationary, the wsual_ breakup Biology, Pushchino, Moscow region, 142292, Russia.
happens later than the time at which conditions of = tajso with Institute for Theoretical and Experimental
stationary propagation are violated. This explanation was  Bjophysics, Pushchino, Moscow region, 142292, Russia.
confirmed by numerical experiments when the flow was [1] P.J. Ortoleva,Nonlinear Chemical WavegWiley, Chi-
stopped before the wave broke, but after it should have  chester, 1992).
happened accordingly to the analytical estimate; the wave[2] Nonlinear Wave Processes in Excitable Medédjted by
subsequently broke, despite the absence of the flow. A.V. Holden, M. Markus, and H.G. Othmer (Plenum,
In the other example (see Fig. 4) we initiated a series _ New York, 1991). _ N
of topologically circular waves by periodical stimulation [3] A.P. Mufiuzuri, C. Innocentl, J. M. Flesselles, J. M. Gilli,
of a point in the medium with the period equal to the ﬁééﬁ‘)gladze, and V.1. Krinsky, Phys. Rev. &0, R667
p.enOd of the spiral wave. It can be seen that while t!’]e [4] M.A. Allen, J. Brindley, J.H. Merkin, and M. J. Pilling,
first wave propagates without problems, the propagation Phys. Rev. B54, 2140 (1996).
of the second is suppressed and the third wave is blockeds} v . wu, D.A. Vasquez, B.F. Edwards, and J.W.
This block occurs not for the whole wave but only at Wilder, Phys. Rev. 552, 6175 (1995).
some points, leading to wave breaks which curl up into [6] K.I. Agladze, V.I. Krinsky, and A.M. Pertsov, Nature
spirals. The first breaks occur to the third wave, at time (London) 308, 834 (1984).
t =~ 63 t.u., that is19.4 t.u. after its initiation, and at a [7] P.C. Fife, Mathematical Aspects of Reacting and Diffus-
propagation angle of aboét = 1.3 rad, i.e., the same as ing Systemslecture Notes in Biomathematics Vol. 28
in the previous case. (Spring-Verlag, Berlin, 1979). _ .
These two examples show that, at least for the particu—[8] Th|§ result can also be substantla}ted by numerlcal sim-
lar model chosen, the conditions of the wave break are Ulation and by accurate asymptotic analysis of the phe-
- nomenological ODE model; this, however, is beyond the
almost the same whatever the origin and shape of the

. > . scope of this communication and will be published else-
pattern is, and the order of magnitude of the velocity whepre. P

gradient necessary for the wave break agrees with thgg; m. Markus, G. Kloss, and I. Kusch, Nature (LonddBij1,

estimate (15) obtained for plane periodic waves based on = 402 (1994).

the quasistationary arguments. [10] J.E. Truscott, and J. Brindley, Philos. Trans. R. Soc.
As we see in Fig. 3, a spiral wave at timesuccumbs London A 347, 703 (1994).

to wave breaks which then develop into new spiral[11] A.V. Holden, Nature (London}92 20 (1998).

waves. Thus, in a linear shear flow a “chain reaction’[12] A.P. Mufiuzuri, V. Pérez-Mufiuzuri, M. Gomez-Gesteira,

of spiral wave births and deaths leads to a “frazzle gas” V:I- Krinsky, and V. Pérez-Villar, Int. J. Bifurcation

of excitation wavelets. The mechanism for the generation ~ Chaos Appl. Sci. Eng4, 1245 (1994); A. Belmonte

of this frazzle gas is different from that described in [9]. ~ 2"d J.-M. Flesselles, Europhys. Le@2 267 (1995);

As this mechanism requires only a finite deformation of A.P. Mufiuzuri, V.A. Davydov, V. Peérez-Mufiuzuri
a y M. Gémez-Gesteira, and V. Pérez-Villar, Chaog Solitons

the medium, we may expect that it can play its role not Fractals7, 585 (1996); P. Katanek, J. Kosek, DSnita,

only in constant flows, but in a more wide variety of I. Schreiber, and M. Marek, Physica (Amsterdag#D,
situations. If oceanic plankton dynamics are considered 79 (1995); H.Sewikova, J. Kosek, and M. Marek, J.

as an excitable medium [10], then currents can influence  Phys. Chem100, 1666 (1996); M. G6mez-Gesteied al.,
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