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Perturbative dynamics of spiral and scroll waves involves the “response functions”, i.e. critical eigenvectors of
the adjoint lineaized operator, dual to the Goldstone modes. A well known method of calculating the Goldstone
modes is time integration of the linearized equation. We suggest that backward time integration of the adjoint
linearized equation, which we call causodynamics, can be used to calculate the response functions. This new
method is more robust and easier to implement than existing methods. We illustrate how it works for propagating
and rotating autowaves in reaction-diffusion systems. The method reveals unexpected qualitative difference
between similarly looking regimes.

PACS numbers: 02.90.+p

Autowave vortices, i.e. spiral and scroll waves, are known
as “organizing centres” in spatially extended dissipative non-
linear wave systems of various physical, chemical and biolog-
ical origin[1–3]. But what does it mean to be an “organizing
centre”? Here we introduce “causodynamics”, a mathemati-
cal tool that gives a rigorous and quantitative meaning to this
concept. We illustrate the usefulness of this tool for three ex-
amples of rotating spiral waves. It confirms that a spiral wave
in excitable FitzHugh-Nagumo system[4], where waves prop-
agate from the centre to the periphery, is an organizing cen-
tre. An “antispiral” in a complex Ginzburg-Landau equation
[5], at parameter values where waves propagate from periph-
ery towards the centre, nevertheless is also an organizing cen-
tre. However, a similarly looking, converging “antispiral” in
a variant of FitzHugh-Nagumo equation with reflecting waves
[6] is not an organizing centre.

More technically, causodynamics is a numerical procedure
for computingresponse functions (RFs), which are used in
asymptotic theories of the movement of curved autowave
fronts, as in the Kuramoto-Sivashinsky equation [7], and of
the drift of spiral waves[8] and their three-dimensional rel-
atives, scroll waves[9]. The RFs determine how the effects
of an elementary perturbation onto the wave’s location and/or
phase depend on where the perturbation is applied.

The two uses of causodynamics are closely related. In the
asymptotic theories, the integrals determining the drift of spi-
rals and scrolls converge if the RFs are localized, as in known
examples [10–13]. Hence a “wave-particle duality” of spiral
waves: they fill the whole space, but behave as particle-like
objects[14]. This localization can be identified with the con-
cept of an “organizing centre”, and correlates with the outward
direction of the group velocity. Such correlation was hypoth-
esized some time ago [9] and rigorous results about it have
recently started to appear [15].

The suggested procedure answers two questions: whether a
particular pattern is an organizing centre, and what are its RFs.
The answers are: if solutions of the causodynamics equation

converge to localized functions, this is an organizing centre,
and the localized solutions provide the RFs; if not, this is not
an organizing centre, and RFs do not make sense. The proce-
dure does not use group velocity, so is applicable even if group
velocity is not defined or its direction is not easily decided.

Formal setting: Lyapunov co-vectors of relative equilibria.
Consider a continuous time dynamical system

ψ̇ = f(ψ) (1)

symmetric with respect to a Lie groupΓ of orthogonal lin-
ear transformations,f(Γψ) ≡ Γf(ψ). For instance, (1) can
represent a reaction-diffusion system of equations,ψ spatial
distribution of the concentrations of reagents, andΓ a group
of rotations and translations of the spatial variables.

Consider also a one-parametric subgroupΓt = exp(γ∗t) ⊂
Γ with infinitesimal generatorγ∗. This could be the subgroup
of translations in a certain direction, or the subgroup of rota-
tions around a certain axis. LetΨ beψ viewed in the mov-
ing frame of reference determined byΓt, ψ(t) = ΓtΨ(t).
ThenΨ satisfiesΨ̇ = f(Ψ) − γ∗Ψ. So a relative equilibrium
ψ∗ = ΓtΨ∗: Ψ̇∗ = 0, ΓΨ∗ 6= Ψ∗, i.e. a rotating or propagat-
ing wave, and correspondingγ∗ satisfy the automodel equa-
tion

f(Ψ∗)− γ∗Ψ∗ = 0. (2)

The linearized equation, corresponding to (1), is

d
dt
|ψ〉 = F (ψ∗)|ψ〉 (3)

whereF = Df is the tangent operator (linearization) off ,
and|ψ〉 is the perturbation ofψ (in general, we use ket-vectors
to denote infinitesimal perturbations). Consider (3) in the
moving frame of reference,|ψ〉(t) = Γt|Ψ〉(t). This gives

d
dt
|Ψ〉 = F (Ψ∗)|Ψ〉 − γ∗|Ψ〉 = L|Ψ〉, (4)
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whereL = F (Ψ∗)− γ∗ is a constant operator. Appropriately
chosen infinitesimal generatorsγj of Γ produce the “symme-
try modes”, or“Goldstone modes” (GMs), |Ψj〉 = γjΨ∗,
which are eigenvectors ofL,L|Ψj〉 = λj |Ψj〉, with Reλj = 0
(the term descends from particle physics [16]). Thus, if solu-
tion ψ∗(t) of (1) is linearly stable modulo symmetryΓ, then
a solution of (4) or equivalently (3) with typical initial con-
ditions in the limitt → +∞ will be a linear combination of
GMs. That is, GMs can be calculated as leading Lyapunov
vectors (LVs), via long-time limits of solutions to (4) or (3)
with arbitrarily chosen initial conditions, a method often used
in generic systems [17]. Finding GMs as|Ψj〉 = γjΨ∗ is triv-
ial; yet if it wasn’t, equation (3) is conceptually simpler than
(4) as its solution does not require explicit knowledge ofΓt.

The perturbation theory for the drift as in [7–9] requires the
RFs, which are defined as eigenvectors ofL+,

λ̄j〈Ψj | = L+〈Ψj | = (F+(Ψ∗)− γ+
∗ )〈Ψj | (5)

(we use bra-vectors for linear functionals in the space of in-
finitesimal perturbations), dual to the GMs|Ψj〉. Problem (5)
is overdetermined, asγ+

∗ is fixed by the automodel solution
(2). Hence a straightforward approach requires very accurate
knowledge of(Ψ∗, γ∗), otherwise the results are unusable[10–
13]. However, by the analogy with|Ψj〉, vectors〈Ψj | can be
calculated in the comoving frame of reference, as LVs of

d
dt
〈Ψ| = L+〈Ψ| = (F+(Ψ∗)− γ+

∗ )〈Ψ|

(“Lyapunov co-vectors”). By usingγ+
∗ = −γ∗ and introduc-

ing 〈ψ| = Γ−t〈Ψ|,we obtain, via elementary transformations,
the causodynamics equation

d
dt
〈ψ| = F+(ψ∗(−t))〈ψ| (6)

which allows calculation of the Lyapunov co-vectors without
explicit recourse to(Ψ∗, γ∗).

So, eigenvectors of the adjoint linarized operatorL+ can
be calculated as principal LVs of (6), the adjoint linearized
problem in the stationary frame of reference, on the solution
turned backwards in time. The advantage of this method is
that (Ψ∗, γ∗) are not required, it is enough to knowψ∗(t),
which is achieved by direct numerical simulation of (1).

To follow up the effects and to trace back the causes.The
need for backward integration is in fact a very general is-
sue, not restricted to systems with continuous symmetries[17].
The solution of a linear problemd

dt |ψ〉 = F (t)|ψ〉, t ≥ 0,
|ψ〉(0) = |ψ0〉, could be symbolically written via a time-

ordered exponential|ψ〉(t) = exp
(∫ t

0
F (τ) dτ

)
|ψ0〉. For

such exponentials we have the following identity:exp

 t∫
0

F (τ) dτ

+

= exp

 t∫
0

F+(t− τ) dτ

 , (7)

since the exponential of the operator integral is, in fact, a con-
tinuous product, i.e. a limit of a product of a near-identical
operators corresponding to different intervals of a partition of
[0, t], and adjugation swaps the order of multiplication of these
near-identical operators.

LetG(t1, t2) = exp
(∫ t2

t1
F (τ) dτ

)
be the propagator (tan-

gent map) along a particular trajectory with tangent operator
F (t), so the LVs are the eigenvectors ofG for large(t2 − t1).
LVs with largest real part eigenvalues designate the directions
of the perturbations that grow the fastest or decay the slowest,
for typical, randomly chosen initial perturbations.

To predict or to control the system, it is important to know
consequences of particular perturbations. To determine those,
one needs to know the components of a given perturbation
along the eigenvectors ofG. Such components are obtained
by projecting the perturbation to the eigenvectors ofG+. Ac-
cording to (7),G+(t1, t2) is the propagator of the equation
with adjoint andtime-invertedoperator, i.e. of equation (6).

The leading Lyapunov vectors|ψj〉 indicate the most im-
portanteffectsachievable by small perturbations. They can be
found by calculating the linarized“effectodynamics”equation
(3) forward in time.

The leading Lyapunov co-vectors〈ψj | indicate the most
importantcauses, i.e. what is needed to achieve those effects.
They can be found by calculating the adjoint linearized“cau-
sodynamics”equation (6) backward in time.

Causodynamics of excitation waves.Now we illustrate
how this works for excitation waves in FitzHugh-Nagumo
reaction-diffusion system of equations,

∂tu =
1
ε

(
u− u3

3
− v

)
+∇2u, ∂tv = ε(u−αv+β), (8)

whereα = 0.5, β = 0.75, ε = 0.3, u = u(~r, t), v = v(~r, t),
~r ∈ Rd, d = 1 or 2, andt ∈ [0, T ]. HereΓ is the connected
component of the Euclidean group ofRd. The linearized “ef-
fectodynamics” problem for perturbations|u〉, |v〉 is

∂t|u〉 =
1
ε
(1−u2)|u〉− 1

ε
|v〉+∇2|u〉, ∂t|v〉 = ε|u〉−εα|v〉,

(9)
and the adjoint linearized “causodynamics” problem is

∂t〈u| =
1
ε
(1−ũ2)〈u|+ε〈v|+∇2〈u|, ∂t〈v| = −1

ε
〈u|−εα〈v|,

(10)
whereu = u(~r, t) is a self-similar solution (relative equilib-
rium) of (8), and̃u = u(~r, T−t) is the same solution reversed
in time. Figure 1 illustrates solutions of these three problems
for d = 1, for a single propagating pulse, and fig. 2 the same
for d = 2, for a spiral wave.

The curvature-velocity coefficient in Kuramoto-
Sivashinsky theory[7], which determines whether a convex
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FIG. 1: (color online) Solutions of (a) FitzHugh-Nagumo system
(8) (“dynamics”), (b) linearized system (9) (“effectodynamics”) and
(c) backward adjoint linearized system (10) (“causodynamics”) in
one spatial dimension. Solutions of linear problems are normalized,
maxx∈R(||u〉|, ||v〉|) = 1 and similarly for〈u|, 〈v|. Initial condi-
tions for the linear problems are white noise. Red solid lines:u-
components, blue dashed lines:v-components. Space scale 70, time
interval between profiles 5, time goes from bottom to top, arrows by
the sides indicate direction of calculation. Numerics: cental differ-
ence in space,hx = 0.5, forward Euler in time,ht = 0.1.

autowave front is delayed or accelerated compared to a plane
front, is the matrix element of the diffusion operator between
the GM and the RF of the pulse solution of (8) ford = 1,
fig. 1(a). HereΓ ∼ R1, γ1 = −∂x, and there is only one
GM and one RF. Figures 1(b,c) illustrate how easily the GM
and RF are found numerically. The solution of (9), fig. 1(b),
converges, as it should, to the GM, the spatial derivative of the
pulse. Solution of (10), fig. 1(b) converges to the RF of the
pulse on the same timescale, but backwards in time. These
results are enough to find the curvature-velocity coefficient.

The situation with the spiral wave, fig. 2, is more compli-
cated. The Euclidean group ofR2 is three dimensional, with
two directions of translations and the rotation. So a typical
solution of effectodynamics equation (9) converges to a linear
combination of the three GMs, i.e. of a gradient of the spiral
wave solution in some direction, and the angular derivative,
fig. 2(b). Different initial conditions, set with a different seed
of the pseudorandom number generator, produce similar pic-
tures. Solution of the causodynamics equation (10) converges
to a combination of the three RFs, fig. 2(c). In our numerics,
this combinationis always localizedin the vicinity of the tip
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FIG. 2: (color online) (a) Dynamics, (b) effectodynamics and (c) cau-
sodynamics of a spiral wave in FitzHugh-Nagumo system (8) in two
spatial dimensions. Solutions of linear problems are normalized as
for fig. 1. Red colour component: absolute value ofu-components,
cyan colour component: absolute value ofv-components. Space
scale40×40, snapshots with time interval 10, time goes from bottom
to top,hx = 0.5, ht = 0.03.

of the spiral. So, this spiral wave is a true organizing centre.
In these and further calculations, the empirical|Re(λj)| did

not exceed 0.03, so the method is reasonably accurate. Indi-
vidual RFs can be extracted from their mixture in the causody-
namics solutions, using the biorthogonality of the set of RFs
to the set of GMs [13].

Different kinds of “antispirals”. We have done a similar
“causodynamic analysis” for the complex Ginzburg-Landau
equation

∂tz = (1− (1− iα)|z|2)z + (1 + iβ)∇2z (11)

wherez = u + iv ∈ C, for α = −0.2, β = −1, and for
a modification of the FitzHugh-Nagumo system with quasi-
soliton regimes, described in [6]. These two models admit
solutions in the form of converging, concave spirals, which
look like sinks rather than sources of waves, “antispirals”, see
fig. 3(a) and fig. 4(a). Are they organizing centres or not?

The effectodynamics solutions in both cases converge to
gradients of the of the nonlinear solutions, which are delo-
calized, fig. 3(b) and fig. 4(b). No difference here.

The difference is revealed by the causodynamics solutions.
For model (11), such solution converges to a narrowly local-
ized peak around the rotation centre, fig. 3(c). So although this
spiral rotates “the wrong way”, it still is an organizing centre,
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FIG. 3: Same, for a converging spiral in the complex Ginzburg-
Landau equation (11). Space scale is40 × 40, time interval between
snapshots is 15,hx = 0.5, ht = 0.025.
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FIG. 4: Same, for a converging spiral in the Mornev et al. system
[6]. Spatial scale50× 50, time interval between snapshots 10, spiral
rotates inward with period about6.8, hx = 0.5, ht = 0.005.

and will behave as an essentially localized, particle-like ob-
ject, in its response to perturbations.

On the contrary, the causodynamics solution of model [6]
shows no signs of localization near the core of the spiral. In-
stead, emphasized is the periphery of the spiral, fig. 4(c). So,
this is not an organizing centre, and phenomenology of spirals

and scrolls in this model will be entirely different from those
in (8) and (11), and not described by asymptotics [8, 9].

Conclusions. Causodynamics, defined as backward-time
integration of the adjoint linearized equation (6), provides a
new method of calculating RFs, alternative to direct solution
of the eigenvalue problem (5). The advantages of the new
method are that it is easy to implement, although it may re-
quire large memory to store the solution of the nonlinear prob-
lem, and it is more robust as it does not need very accurate
knowledge of the automodel solution.

On the qualitative level, this method allows to distinguish
true organizing centres from those only looking so.

The considered examples are from a special area, but the
mathematics involved is fairly generic. Lyapunov vectors are
widely used in the analysis of complex systems. Lyapunov co-
vectors, and causodynamics as a method of their calculation,
can be at least as useful as Lyapunov vectors are already.
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