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1 Introduction

Early experiments on defibrillation revealed that it is sometimes possible to achieve defibrillation

by lower voltage pulses, if they are applied several times and are properly timed [1]. In this chapter

we review some ideas about detailed mechanisms how this method may work. Most of these ideas

are theoretical and tested only in numerical simulations, or in “chemical model” of the cardiac

tissue, the Belousov-Zhabotinsky (BZ) reaction medium; only in some cases experimentalists have

attempted a direct verification in cardiac preparations. The literature on the subject is vast; as the

space allocated for this review is limited, we shall focus on a few “cornerstone” ideas and somewhat

arbitrarily selected examples.

2 Localized stimulation: induced drift of spiral waves

Multiple wave sources in an excitable medium compete with each other. During such competition,

the fastest source entrains more and more of the tissue. If the faster source is the stimulating

electrode, and it entrains the whole of the cardiac tissue, it would have expelled the re-entrant

circuits and perhaps stopped the fibrillation. However the success of that depends on what happens

to the re-entry source when the high-frequency waves reach it.

This has been first investigated in the chemical model of excitable tissues, the BZ reaction

medium [3], and then subsequently in more details in numerical simulations of a variant of the

FitzHugh-Nagumo model [2]. Figure 1 illustrates the main concept. The first panels show the

process of entrainment of the medium by the faster source, which in this particular case is the
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Figure 1: Enslaving (panels 1-4), drift (panels 4-6) and recovery (panels 6-10) of a spiral wave in the field

of externally induced plane waves, in numerical experiments [2]. For comparison, the original position of the

spiral rotation center is shown by a cross on panels 6-9.

electrode located at the lower boundary of the model medium. When the entrained region reaches

the spiral wave, the latter changes its nature: it is no longer a rotating source of waves, but is

a dislocation in the otherwise regular field of waves emitted by the fast source. Notice that it

cannot disappear completely for topological reasons, as it carries a “topological charge”. When

the approximately periodic waves are passing through a certain point in the medium, one observes

oscillations of the dynamic variables at that point, and can assign a phase to those oscillations.

The increment of change of the phase of oscillations around a contour encircling the spiral or is

the dislocation is the same for both of them, as it cannot change as long as the oscillations persist

which they do unless the contour is crossed by the dislocation. Hence the dislocation carries this

topological charge of the spiral wave. Typically it does not stay but drifts (this is sometimes called

(high-frequency) induced drift of spirals, to distinguish from drift caused by other mechanisms).

The direction of drift depends on the parameters of the problem, in particular on the frequency of

the entraining source. When the entraining source stops, the dislocation immediately turns back

into a spiral wave, which locates in a new place. If the duration and direction of the induced drift

are such that the dislocation reaches the place where the regular oscillations are not observed, e.g.

the inexcitable border or a Wenckebach block zone, then the topological restriction is lifted and

the dislocation may be eliminated, so when the high-frequency source stops, the spiral wave does
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not resume, and the re-entry is stopped.

So the success of this method depends on the time factor: if the inexcitable border is far from the

initial location of the spiral core and the induced drift speed is low, it could take a long time to expel

the spiral, and if the stimulation stops earlier it fails. Notably, the amplitude of the stimulation

plays a secondary role here: it should only be enough to initiate the entraining wavetrain; further

increase of that amplitude does not enhance (at least within this particular mechanism) the chances

of success. One can, however, control other parameters, such as the speed of the drift (through

stimulation frequency) and its direction (through location of the stimulating electrode(s)). If one

uses not a point electrode but a “grid” of synchronously working electrodes, then the distance

required for the induced drift is limited by the size of the cell of this grid [4, 5].

3 Delocalized stimulation: resonant drift of spiral waves

Another approach is based on an alternative idealization of the action of the electric current on

cardiac tissue. Suppose, for simplicity and in the first approximation, that a reasonably spatially

uniform electric field (say as produced by a transtoracic defibrillator) acts simultaneously and

similarly on all cells in the tissue. Mathematically, that is equivalent to introduction into the

model of a parameter which explicitly depends on time. Davydov et al. [7] considered a simplified

“kinematic” description of spiral waves and predicted that if the parameters of the model are

changed periodically with a period close to the rotation period of the spiral wave, then the spiral

exhibits large-scale wandering, which in the case of a precise resonance degenerates into a drift

along a straight line, see fig. 2. This theoretical prediction was supported by numerical simulations

of a piecewise linear FitzHugh-Nagumo model, and then immediately confirmed by experiments in

BZ reaction [6]. Subsequent studies have demonstrated that this “resonant drift” phenomenon is

not restricted to the two particular cases but can be reproduced in a wide variety of spiral wave
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Figure 2: Resonant drift of spiral waves. (a–c) Snapshots of a spiral wave in a BZ experiment at a precise

resonance; black cross is reference [6]. (d) In a pieceswise variant of FitzHugh-Nagumo system at a precise

resonance [7]. (e) In a “kinematic model” of a generic excitable medium without refractorinesss, away from

a precise resonance [8]. (f) In the reaction-diffusion model with OXSOFT rabbit atrium kinetics, away from

a precise resonance [9].

models, including cardiac models (see e.g. [9]).

Following the same logic as with the high-frequency induced drift, if the excursion of the res-

onantly drifting vortex is large enough to bring it into an inexcitable boundary, this can lead to

extermination of the spiral wave, and thus can be thought of as another low-voltage defibrillation

strategy. Some difficulties in practical application of this idea are immediately obvious. As with

the case of the high-frequency induced drift, one needs to know the appropriate frequency of the

stimulation: the further it is from the resonance, the more compact is the trajectory of the drift.
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Figure 3: Mechanism of repulsion of resonantly drifting vortex from an inexcitable boundary [10, 11].

Shown are successive positions of the vortex in exactly 3 periods of stimulation. Black dots at each picture

denote the positions of the vortex tip at the instants of stimulation. (a–c) The stimuli occur in the same

rotation phase, and the trajectory is straight. (c), (d) The natural frequency of the vortex increases near the

boundary, each successive stimulus occurring at a later phase, and the direction of the drift turns. (d–f) The

vortex goes away from the boundary, it resumes its original natural frequency, and the trajectory is again

straight.

The theory proposed in [7] gives the following expression (up to choice of notations):

Rd =

∣∣∣∣∣
cd

ωs − ωf

∣∣∣∣∣ (1)

for the radius of the drift trajectory Rd, where cd is the resonant drift speed depending on the

forcing mode and magnitude, ωf is the angular frequency of the forcing and ωs is the angular

frequency of the spiral. So the lower is the stimulation amplitude, the lower is the drift speed cd

and the more precise should be the resonance to achieve needed Rd.

However, even if the resonant frequency is found, it is still not enough to eliminate the spiral.

Figure 3 illustrates a simulation in a variant FitzHugh-Nagumo model in which a spiral wave

drifting in a straight line reaches the vicinity of an inexcitable boundary. However the spiral does

not annihilate there, but instead turns around and drifts away from the boundary. The mechanism
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of such “resonant repulsion” has been considered in [10, 11], where it was shown that the resonant

drift can be approximately described by a system of ordinary differential equations of the form

dΦ
dt

= ωs(R) − ωf ,

dR

dt
= cd(R)eiΦ + (Cx(R) + iCy(R)), (2)

where R = R(t) = X(r) + iY (t) is the complex coordinate of the instant centre of rotation of the

spiral, Φ = Φ(t) is the phase difference between the spiral rotation and the periodic forcing, ωs and

cd are, as before, the spiral’s frequency and the speed of the resonant drift, and (Cx, Cy) is the vector

of the spontaneous drift of the spiral which would happen without external perturbation, say due

to spatial gradients of tissue properties or to proximity to inexcitable obstacles. If Cx = Cy = 0

and ωs, cd = const then system (2) is easily solved leading to (1). In terms of system (2), the

explanation of the resonant repulsion is in the dependence of its key parameters on the spatial

position of the spiral, particularly ωs = ωs(R). In fig. 3, the closer is the spiral to the boundary,

the higher is its frequency. That destroys the resonance ωs = ωf , which by the first equation leads

to increase in Φ which means a change of the direction of the resonant drift given by cdeiΦ. Such

change continues until the spiral is sufficiently far from the boundary. Then ωs = ωf again and the

spiral drifts along a different straight line, now away from the boundary.

4 Feedback controlled resonant drift

The phenomenon of resonant repulsion makes it clear that it may not be the best strategy to

keep stimulation frequency constant or to change it according to a prescribed program, but this

change should be determined by actual events, via a feed-back. The feedback may be realized by

monitoring activity at a point in the medium with a recording electrode. Since the frequency of

real rotation of a drifting vortex is close to, and changes together with the resonant frequency, the
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Figure 4: Mechanism of feed-back driven resonant drift, numerical experiment [12, 11]. Excitation patterns

are shown synchronously with stimuli beginnings, which are issued synchronously with arriving wavefront

to the left top corner of the preparation. Due to the feed-back, each stimulus occurs at the same rotation

phase, up to the phase distance from the registration point to the vortex core. Therefore, the trajectory is

affected only by the usual attraction/repulsion from boundary, without resonant repulsion taking place. As

a result, the vortex annihilates at the boundary.

simplest control strategy is to stimulate synchronously with the monitoring of an action potential

spike by recording electrode, or after a fixed delay. The recorded frequency differs from the vortex

frequency in the frame of reference of its core, due to its motion (a Doppler effect), and therefore

the induced motion of the vortex will not be strictly along a straight line.

The mechanism of feedback driven resonant drift is illustrated in fig. 4. In contrast to the

case of constant frequency stimulation, the trajectory of the vortex core far from boundaries is a

curve, not a straight line, since with motion of the vortex, the phase distance from its core to the

recording point changes. Close to the boundary, there is no resonant repulsion. The trajectory

deviates from what it would be in the absence of boundary, seemingly due to the terms Cx, Cy in

the phenomenological model (2). As a result, the vortex reaches the boundary and annihilates, at
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(a) (b) (c)

Figure 5: Resonant attractors. (a) Phase portrait for resonantly drifting spirals as predicted by the

theory [11]. (b) Tip trajectory computed in light-sensitive variant of the Oregonator model, with the point

registering electrode (the cross) [13]. (c) Tip trajectory measured in an experiment with light-sensitive

variant of the BZ reaction with the registered electrode in the form of a straight line (vertical dashed line)

[14].

a stimulation amplitude at which constant frequency stimulation fails. Numerical simulation show

that the stimulation amplitude necessary for extinguishing the vortex by feedback driven resonant

drift can be by an order of magnitude less than that required for single-pulse defibrillation [12].

The feed-back driven motion of the spiral can be described by an appropriate modification of the

phenomenological model (2). The phase difference Φ between the spiral wave and the stimulation

depends on the phase delay, required for the excitation wave emitted by the spiral rotating around

a point R to reach the registration electrode location. If we denote this dependence as Φ = Φfb(R),

the third-order system (2) reduces to a second-order system

dX

dt
= Cx(X,Y ) + cd(X,Y ) cos (Φfb(X,Y )) ,

dY

dt
= Cy(X,Y ) + cd(X,Y ) sin (Φfb(X,Y )) . (3)

An analytical expression for the function Φfb can be obtained by approximating the shape of the

spiral wave by an Archimedean spiral, which gives a system (3) very well describing the behavior
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Figure 6: Evolution of multiple vortices under feedback driven stimulation [11]. The “leading” vortex is

circled on each panel, traces of annihilated vortices are marked by digits in parentheses. (a) Vortex 1 leads,

vortex 2 repulses from boundary.(b) Vortices 1, 2, 5, 6 have annihilated, vortex 3 leads. (c) Vortices 3, 8, 9

have annihilated, the only alive vortex 4 leads. Further evolution results in annihilation of vortex 4.

of the feed-back driven spirals [12, 11]. Moreover, this approach can be extended to the cases when

the electrode used for detection of the feed-back signal is not point-like, but is spatially extended

over a certain domain; variation of this domain shape and location can be a very effective tool in

controlling the trajectories of the resonant drift [15, 14]. System (3) is an autonomous second-order

system of equations, and it is convenient to study its behavior using phase-plane analysis, see fig. 5.

As it would be expected in a generic ODE system, there are attracting trajectories, which could be

compact, i.e. attracting stationary points or limit cycles (“resonant attractors”), or noncompact

and run away from the medium. Naturally, from the practical viewpoint a resonant attractor within

the tissue boundaries signifies a failure of the the low-voltage defibrillation attempt, so one would

like to avoid it.

Fibrillation, at least in some cases, is associated with multiple re-entrant sources, hence the

question, whether the above described feedback control strategy can cope with that. Simple simu-

lations demonstrate that multiplicity of re-entrant sources in itself is not a significant impediment

to their elimination [11]. Say, for the case of point registering electrode, the feedback signal will
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(a) (b) (c)

Figure 7: Three-dimensional scroll wave turbulence, (a,b) due to negative filament tension, (c) due to

twisted anisotropy. (a) FitzHugh-Nagumo model, wavefronts are grey semi-transparent, their edges, rep-

resenting the filaments, are dark and non-transparent [17]. (b,c) Fenton-Karma model, shown are surface

voltage distribution (top surface semitransparent), and the scroll filaments between them [18].

come from the one spiral whose waves reach the electrode site, which ensures a directed drift of at

that spiral. Cores of such “leading” spirals are circled on the figure. Other spirals may or may not

annihilate during this stage. Upon reaching the boundary, the leading spiral is extinguished and

the electrode monitors the wavefront from another one, which in turn is extinguished and so on.

As a result, all the spiral waves are progressively extinguished in a time not much longer than that

needed for extinguishing one (see fig. 6).

In reality, the number of spiral waves may not be fixed and they may “multiply” via wave

break-ups while the resonant drift forces them out. The chances of success in that case seem to

heavily depend on concrete parameters, such as size of the medium, the rate of multiplication of

spirals and the rate of their elimination [16].

5 Three-dimensional aspects

Another important feature of fibrillation is its three-dimensionality. Although available experi-

mental evidence is not conclusive, there are theoretical concepts about possible specifically three-
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dimensional mechanisms which can contribute. Here we focus on “scroll wave turbulence”, an

essentially three-dimensional mechanism of multiplication of vortices, observed even in cases when

a two-dimensional medium with the same properties has stable spiral waves.

Early numerical simulations of scroll waves have revealed that the scroll rings are not stationary

but can contract as well as expand [19]. It has been soon realized that if this behavior is extrapolated

for an arbitrary shape of scroll filament, it would mean that the straight shape is unstable in favor

of some more complicated behavior [20]. The earliest asymptotic theory of evolution of scroll

waves with arbitrary shapes did not cover expanding rings [21], and the first that did [22] was too

complicated to clarify this question unequivocally, as the filament motion equations were linked

the evolution of scroll twist and depended on many parameters. However, it has been subsequently

noted that with account of the symmetry of the problem some of the terms in fact vanish and the

dynamics of the filament shapes decouple in the main order from the dynamics of the twist. These

dynamics designate a property of an excitable medium, the “filament tension”, which is positive

if scroll rings collapse and negative rings expand [23]. This happens to be the most important

parameter for the behaviour of scrolls. Straight filaments with negative tension are indeed unstable

which could lead to self-supporting complicated behavior, where the filaments curve and extend,

and multiply when their segments annihilate on medium boundaries or with each other. It has

been speculated that such complicated behavior could be relevant to fibrillation [23, 24]. The first

definitive observation of “scroll wave turbulence” as persistent self-supporting activity mediated by

negative filament tension was in FitzHugh-Nagumo model [17] (fig. 7(a)) and then in other models,

including Barkley variant of the FitzHugh-Nagumo model [18] (fig. 7(b)), the Oregonator model of

the BZ reaction [25] and Luo-Rudy model of ventricular tissue [26].

An alternative mechanism with similar phenomenology has been discovered by Fenton and

Karma [27, 28]. It is also related to curving and multiplication of scroll filaments, but it is only
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Figure 8: (A–C) Development of a scroll wave turbulence and (F–I) its suppression by delocalized periodic

external forcing. Numerical simulations with Barkley model with parameters giving negative scroll filament

tension (a = 1.1, b = 0.10, ε = 0.02), the external forcing is implemented by time-dependent modulations

of parameter b with amplitude bf = 0.03 and frequency ωf = 1.20 close to the fequency of free spiral waves

(ωs = 1.19). From [30].

observed in simulations with spatially non-uniform anisotropy of the diffusion tensor, mimicking the

twisted fibre structure of ventricular walls. This has been observed in FitzHugh-Nagumo model as

well as in a simplified cardiac excitation model developed by the authors for this particular purpose,

since then known as the Fenton-Karma model. At the moment of writing this review, its author

is unaware of detailed theoretical explanation of this phenomenon, although there are theoretical

developments promising that such explanation could be obtained soon [29].

Although these particular mechanisms are difficult to identify in real experiments with cardiac
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tissue, the essentially three dimensional nature of fibrillation, particularly ventricular fibrillation, is

well known. So the question whether these or other complications caused by three-dimensionality

can be overcome by low-voltage defibrillation techniques, is very important. Theoretical progress

here is limited but nonzero:

• Three-dimensional aspects of the high-frequency induced drift have been numerically investi-

gated for grid-like stimulating electrodes in the already mentioned work [4]. The advantage

of a grid-like stimulation extends to three dimensions even though the grid of the electrodes

stays on the surface, as long as the tissue is not too thick. In that case the third dimension

adds little to the distance the forced vortices must travel before expulsion.

• Resonant stimulation has been studied for the negative-tension mediated scroll wave turbu-

lence in Barkley model [30, 31]. It has been demonstrated that small oscillations of one of

the parameters with a near-resonant frequency can successfully exterminate all scroll wave

activity. The optimal frequency for achieving this is shifted from the solitary spiral frequency,

and the decisive mechanism involved may be not resonant drift as such but inversion of the

filament tension from negative to positive.

6 Pinning and unpinning

The theoretical mechanisms considered above all ignored an important property of cardiac tissue,

its heterogeneity. One important effects this can have on spiral and scroll waves is their “pinning”

to localized inhomogeneities. This has been observed both for high-frequency induced drift [3]

and for “soft” such as drift caused by gradient of tissue properties [32] or resonant drift with or

without feedback [33], in two as well as in three spatial dimensions (see fig. 9). The mechanism of

the pinning to small and/or week local inhomogeneities can be understood in terms of attracting,
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(a) (b) (c) (d)

Figure 9: Pinning to an obstacle. (a–c) Pinning of high-frequency induced drift in 2 dimensions. Spiral

wave in BZ reaction rotating around an inexcitable hole (seen as a black spot in the middle frame) is

entrained by a higher frequency wavetrain, but resumes the rotation as soon as the wavetrain is over [3]

(d) Pinning of gradient induced drift in 3 dimensions. Scroll wave in FitzHugh-Nagumo model drifting due

to spatial gradient of medium parameters is “anchored” to a localized inhomogeneity near the bottom and

stops drifting. “1” is the initial position of the scroll, “∞” is the anchored stationary position in which the

filament stops drifting [32].

“centripetal” force by means of perturbation theory [34], including, in 3 dimensions, the filament

tension [32]. When the inhomogeneity is strong, e.g. an “inexcitable hole”, the pinning is evident

from topological reasons, see fig. 9(b). Obviously, if the drift was induced with the aim of expelling

the vortex from the tissue, its pinning inside the tissue indicates a failure. Hence a question,

whether it is possible to “unpin” such a pinned vortex by a low-energy intervention. If that is

achieved, then it will be possible to eliminate this vortex by either of the induced drifts, or it may

even self-terminate via spontaneous drift.

Figure 10 gives three hints as to how unpinning could be achieved. Panel (a) illustrates that

as far as small perturbations are concerned, a spiral wave is only sensitive to perturbations near

its core. This is well known phenomenologically and is mathematically formalized as localization

of “response functions” of the spiral wave [23, 39, 35]. Panel (b) illustrates one of the effects a

bidomain structure of cardiac tissue has on the interaction of the external electric field and the
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(a) (b) (c)

Figure 10: Localization of spiral sensitivity and of electric field action. (a) Response functions of a

spiral wave. Elevation represents the activator variable, and the surface shade of grey represents the sum of

absolute values of rotational and translational response functions. FitzHugh-Nagumo model, data from [35]

(b) “Dog-bone” shape “virtual electrode” near a point electrode. Shade of grey represents instant distribution

of transmembrane voltage, white for positive and black for negative. Bidomain Luo-Rudy model [36]. (c)

“Weidmann zones” near an anatomical obstacle. Voltage distribution around a circular inexcitable hole

caused by homogeneous external electric field. Bidomain passive membrane model [37, 38].

spatial distribution of the transmembrane potential. Despite the fact that the electrode is a “point”,

the “virtual electrode” it produces is spread in space, has a nontrivial shape, and in some places the

sign of the induced potential is opposite to the sign of the potential at the electrode. Panel (c) shows

how the bidomain structure of the tissue manifests itself around an obstacle in a uniform external

field. The disturbance in the Ohmic properties of the intracellular and extracellular domains

distorts the electric field around the obstacle and create a depolarized zone to one side of it and a

hyperpolarized zone to the other side.

So if a spiral wave rotates around such an obstacle, we observe that

• To move this spiral wave, we need to apply a stimulus in a properly chosen zone near its core

= the obstacle,

• A delocalized, nearly homogeneous external electric field, by virtue of its interaction with the
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Figure 11: Top row: a localized stimulus issued in an appropriate phase of the spiral, can shift the spiral

core. If the original location was around an inexcitable hole, the new location can be away from it, i.e. spiral

gets unpinned. Piecewise-linear FitzHugh-Nagumo model, [40]. Second and third row: unpinning of a spiral

from an inexcitable hole, bidomain FitzHugh-Nagumo model [38].

heterogeneity itself, produces a localized stimulus to the tissue just where it is needed, near

the obstacle.

That is, the stimulus is automatically delivered near to where it is needed, and one only needs to

choose the timing, for the Weidmann zone to superimpose with the maximum of the translational

response function, to achieve a displacement of the spiral. If the displacement is large enough to

get away from the zone of attraction of the inhomogeneity, this is unpinning.

The reasoning referring to response functions is valid in the case when the heterogeneity is weak

so a perturbation theory applies. When the heterogeneity is strong, e.g. an inexcitable hole, the
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reasoning is different but the result is qualitatively the same. Figure 11 (top row) illustrates the

idea qualitatively. A localized stimulus near to the core of the spiral, issued in the excitable gap,

can initiate a circular wave (left panel). This circular breaks around the refractory zone, one of the

new wavebreaks joins and annihilates with the spiral (middle panel). The other newly generated

wavebreak curls into spiral in another place, away from the hole (right panel). The net result is

that the spiral is unpinned. To achieve that, the stimulus should be in the correct place, sufficiently

close to the hole, and at the right time, in the excitable gap.

The second and third rows of fig. 11 show numerical simulation of unpinning of a spiral by a

properly timed homogeneous external electric field in a bidomain model. One can see the Weidmann

zones D+ and D− on the panel t = 40. The D− zone serves as the localized stimulus initiating a

new circular wave W (panel t = 80). The circular wave breaks about the refractory tail (t = 200).

One of the new wavebreaks annihilates with the original spiral (t = 280). The other wavebreak

creates a new spiral which is unpinned from the obstacle (t = 360).

The possibility of unpinning a spiral wave from an obstacle using a localized stimulus close

to it was recognized early [40]. It was relatively straightforward to verify it in an experiment

with BZ reaction [41]. The crucial step was the idea of using a Weidmann zone as such localized

stimulus [42]. It was first investigated in simulations with relatively simple models [42] and then

extended to more detailed and realistic models [37, 38] and verified in experiments with rabbit

heart preparations [43].

7 “Black-box” approaches

For the sake of completeness, we should mention attempts to approach the problem of control of

cardiac arrhythmia using generic methods of control of dynamical systems regardless of detailed

mechanisms how the control actually works. We consider two such lines of enquiries.

17



Alekseev and Loskutov [44] observed that a weak parametric periodic perturbation can stabilize

the chaotic behaviour of a nonlinear system and turn chaos into periodic oscillations. That was

done for a mathematical model of phytoplankton-zooplankton community, a system of four ordinary

differential equations. This idea has been applied to a number of other model systems. In particular,

its application to a two-dimensional spiral wave turbulence in a piecewise-linear FitzHugh-Nagumo

model [45, 46] allowed elimination of all spiral wave activity. This application involved point

stimulation with a frequency small enough so waves can propagate, but larger than the frequency

of the spirals. Note this is precisely the conditions that are required for high frequency induced

drift of spirals. Alas data available in the paper do not allow to conclude whether the detailed

mechanism was indeed the high-frequency resonant drift or something different.

Ott, Grebogi and Yorke [47] have proposed that a small modification of a chaotic dynamical

system can change chaos to stable periodic motion. Unlike Alekseev and Loskutov method, their

approach required that changes do not depend on time explicitly, but rather on the current state of

the system, i.e. feedback. This idea was hugely popular and applied to a great variety of dynamical

systems. Cardiac arrhythmias were not an exception: e.g. application of this technique to oubaine-

induced ventricular arrhythmia in rabbit ventricle allowed conversion of chaotic to period behavior

[48]. Again, data available in the paper do not allow identification of detailed mechanism; however,

the ”proportional perturbation feedback” protocol used there, though quite complicated, could

have produced a nearly-resonant perturbation that could cause a resonant drift.

8 Conclusion

A striking picture emerges from the above review. Although a wide variety of theoretical mecha-

nisms is considered, the resulting experimental protocols required to exploit these mechanisms are

not so varied. So implementation of the idea of unpinning involves a correct choice of the phase
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of the stimuli with respect to the spiral rotation around the hole, say to ensure that the depolar-

izing Weidmann zone falls within the excitable gap. A practical way to achieve that is using some

kind of feedback, and the protocol of that feedback may be close or indistinguishable from the one

required for resonant drift. Moreover, “scanning through the phases” may leed to series of stimuli

of the sort that would be needed to arrange a high-frequency resonant drift. The stimulation pro-

tocol to implement Alekseev-Loskutov chaos control strategy seems to be indistinguishable from

the one needed for high-frequency resonant drift, and the protocol for Ott-Grebogy-Yorke strategy

could produce feedback-driven resonant drift. Application of the sufficiently homogeneous exter-

nal electric field, which is important for classical single-shock fibrillation, is crucial for the success

of resonant-drift approach, and is also required for unpinning. Even successful experiments with

low-voltage defibrillation may be interpreted in different ways; e.g. results of [49] are, in principle,

consistent with such scenaria as high-frequency induced drift, feedback-driven resonant drift and

unpinning. So, while experimental testing of theoretical ideas as always remains a priority, there are

still theoretical challenges, such as formulation of unequivocal experimental protocols and criteria

that would allow to distinguish between different mechanisms. Such distinction hopefully should

allow to to suggest possible ways to improve the efficiency of the low-voltage defibrillation.
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[38] Takagi S., Pumir A., Pazó D., Efimov I., Nikolski V., Krinsky V.. A physical approach to

remove anatomical reentries: a bidomain study Journal of theoretical Biology. 2004;230:489-

497.

[39] Biktasheva I. V., Elkin Yu. E., Biktashev V. N.. Localised sensitivity of spiral waves in the

Complex Ginzburg-Landau Equation Physical Review E. 1998;57:2656–2659.

[40] Krinsky V. I., Biktashev V. N., Pertsov A. M.. Autowave Approaches toCessation of Reentrant

Arrhythmias Annals of the New York Academy of Sciences. 1990;591:232–246.

[41] Huyet G., Dupont C., Corriol T., Krinsky V.. Unpinning of a vortex in a chemical excitable

medium International Journal Of Bifurcation And Chaos. 1998;8:1315–1323.

[42] Pumir A., Krinsky V.. Unpinning of a rotating wave in cardiac muscle by an electric field

Journal of theoretical Biology. 1999;199:311–319.

23



[43] Ripplinger C. M., Krinsky V. I., Nikolski V. P., Efimov I. R.. Mechanisms of unpinning and

termination of ventricular tachycardia American Journal of Physiology - Heart and Circulatory

Physiology. 2006;291:H184–H192.

[44] Alekseev V. V., Loskutov A. Y.. Control of a system with a strange attractor through periodic

parametric action Soviet Physics Doklady. 1987;32:270–271.

[45] Loskutov A. Y., Cheremin R. V., Vysotskii S. A.. Stabilization of turbulent dynamics in

excitable media by an external point action Doklady Physics. 2005;50:490–493.

[46] Loskutov A. Y., Vysotskii S. A.. New approach to the defibrillation problem: Suppression of

the spiral wave activity of cardiac tissue JETP Letters. 2006;84:524–529.

[47] Ott E., Grebogi C., Yorke J. A.. Controlling Chaos Physical Review Letters. 1990;64:1196–

1199.

[48] Garfinkel A., Spano M. L., Ditto W. L., Weiss J. N.. Controlling Cardiac Chaos Science.

1992;257:1230–1235.

[49] Pak H. N., Liu Y. B., Hayashi H., Okuyama Y., Chen P. S., Lin S. F.. Synchronization of

ventricular fibrillation with real-time feedback pacing: implication to low-energy defibrillation

Amer. J. Physiol.. 2003;285:H2704–H2711.

24


