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Dynamics of spiral waves in perturbed �e.g., slightly inhomogeneous� two-dimensional autowave media can
be described asymptotically in terms of Aristotelean dynamics, so that the velocities of the spiral wave drift in
space and time are proportional to the forces caused by the perturbation. These forces are defined as convo-
lutions of the perturbation with the so-called response functions. In this paper, we find the response functions
numerically for the spiral waves in the complex Ginzburg-Landau equation, and show that they exponentially
decrease with distance. �S1063-651X�98�06603-3�

PACS number�s�: 82.40.Bj, 02.60.Cb, 64.60.Ht, 87.10.�e

Problem formulation. Spiral waves are observed in two-
dimensional nonlinear active systems of various natures, e.g.,
Belousov-Zhabotinsky reaction �1� cardiac tissue �2�, social
microorganisms �3�, neural tissue �4�, and catalytic oxidation
of CO �5�. They attract attention as model self-organizing
structures, and demonstrate remarkable stability. In this pa-
per, we show that spiral waves have a very selective sensi-
tivity to perturbations.

Spiral waves are often studied in terms of ‘‘reaction-
diffusion’’ PDE systems,

� tu�D�2u�f�u���h�R� ,t �, �1�

where R� �R2, u(R� ,t)�(u1 ,u2 , . . . )T�Rl is a column-
vector of reagent concentrations, f�Rl are nonlinear reac-
tion rates, D�Rl �l is matrix of diffusion coefficients, l �2
and �h�Rl is a perturbation. As shown in �6�, if the last
term in �1� is of a more general form of parametric pertur-
bation �h(u ,R� ,t), this still reduces to �1� in the first order in
� , so without loss of generality here we consider the simpler
form �h(R� ,t). Physical origin of the perturbation may be
various; the most frequent in applications is inhomogeneity
of medium parameters, but the analysis can be also extended
to external influence, anisotropy, etc.

The simplest case of spiral wave is that of the steadily
rotating spiral,

u�Ū�R� ,t ��U�P,	�
t �, �2�

where 
 is its angular velocity and P�P(R� ), 	�	(R� ) are
polar coordinates. This may be observed in perfectly homo-
geneous unbounded stationary media, i.e., at �h�0. In the
presence of perturbations, the spiral will drift in space and
accelerate or decelerate its rotation, i.e., ‘‘drift in time.’’ This
can be represented by

u�R� ,t ��Ū� R� �R� c� t �,t�
1



�� t � ���v�R� ,t �, �3�

where R� c�(Xc ,Y c) is the vortex rotation center and � is its
initial rotation phase.

The asymptotic theory of such drifts has been developed
in �6�. It leads to Aristotelian motion equations, where the
drift velocities are proportional to the forces caused by per-
turbation �h,

� t��H �0 �, � t�Xc�iY c��H �1 �. �4�

In the first approximation, the forces are linear convolution-
type functionals of the perturbation,

H �n ��R� c ,� ,t ���e�in�
t���� �W„n…„r�…,h�R� ,t �
 d2R�

�O��2�, n�0,1, �a,b
��
i�1

l

ai*bi ,

�5�

where r��R2 is the radius vector in the frame of references
attached to the spiral wave, where the polar coordinates are

��P�R� �R� c�, ��	�R� �R� c��
t�� . �6�

We call kernels W(0,1) response functions �RF’s�. They de-
termine the influence of particular perturbations at a particu-
lar site and instant onto the phase �temporal RF, W(0)) and
location �spatial RF, W(1)) of the spiral wave. As seen in Eq.
�5�, graphs of these functions rotate together with their spiral
wave.

The RF’s are interesting characteristics of the spiral wave.
Known experiments and numerics may be interpreted so that
these functions decrease with distance. This decrease may
provide convergence of integrals �5� for nonlocalized pertur-
bations, e.g., caused by variation of properties of the whole
medium. The viewpoint of �7� was that these functions are
asymptotically periodic, similarly to the spiral wave itself.
Our viewpoint �8,6� is that these functions should quickly
decay. In other words, although spiral waves do not look like
localized objects, they behave as such in their dynamics. We
are unaware of any attempts to prove or disprove this prop-
erty directly.

In this paper, we study this question for the complex
Ginzburg-Landau equation. This equation is one of the most
basic equations of nonlinear science; another reason for this
choice is its internal symmetry, which simplifies the analysis,
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reducing the two-dimensional eigenvalue problem to a one-
dimensional one. For this model, we find the RF’s numeri-
cally and show that they have the expected localized form.

The linearized theory. Linearization of reaction-diffusion
system �1� on �3� in the frame of reference �6� leads to an
equation with a time-independent linear operator,

L�D�2�
���F�r� �, �7�

where F(r�)��uf�u�U(r�) . This operator has three neutral sta-
bility eigenvalues,

LV�n ��i
nV�n �, n�0,�1, �8�

corresponding to the translations in space and time, with the
eigenfunctions, the translation modes being

V�0 ��
1



� tŪ�R� ,t ����U�r� �,

V��1 �� 1
2 e�i
t��x�i�y�Ū�R� ,t �� 1

2 e�i�����i��1���U�r� �.
�9�

The adjoint linear operator is

L��DT�2�
���FT�r� �, �10�

and its eigenfunctions

Ln
�W�n ���i
nW�n �, � �W�n �,V�m �
d2r���nm ,

n ,m�0,�1 �11�

serve as projectors onto these modes, and are the RF’s. The
requirement that v in Eq. �3� is orthogonal to W(n) leads to
the motion equations �4� �6�.

Application to the complex Ginzburg-Landau equation.
This equation can be written in the form

� tu�u��1�i��u�u�2��1�i���2u �12�

for u�C with real parameters � and � . In this paper, we
restrict ourselves to the case of ��0.5 and ��0 �and omit
�). To apply the general theory of �6� we first rewrite Eq.
�12� in real vector form �9�. Let us denote

u�R� ,t ��� Re u

Im u , � , I�� 0 �1

1 0 � , C�� 1 0

0 �1 � ,

1�� 1

0 � . �13�

FIG. 1. The nonlinear problem solution, �b� temporal mode components, and �c� spatial mode components, as functions of � .

FIG. 2. �a� Spiral wave U1, �b� temporal RF, W1
(0) , �c� real part of spatial RF, Re W1

(1) , and �d� imaginary part of spatial RF, Im W1
(1) .

Spiral wavelength is about 67; (x ,y)���30,30����30,30� .
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Then Eq. �12�, with added perturbation, takes the form

� tu�u��1��I�•u�uT•u���2u��h�R� ,t �, �14�

The unperturbed spiral wave solution �2� to Eq. �12� has the
form

U�r� ��exp�I��•P���. �15�

Here P(�) is a solution to the following boundary-value
problem,

P��P�/���1�I
��1�I���PT•P��1/�2�•P�0,
�16a�

P�0 ��0, P�����1�k2ek�I�o���•1, �→� , �10�

�16b�

where k is a nonlinear eigenvalue, and 
��(1�k2). This
problem was brought to a scalar form by substitution P(�)
�a(�)exp�I�(�)�•1 with real a and � . Solutions to this
problem were studied, e.g., by Hagan �11�; they are illus-
trated below by Figs. 1�a� �for a(�) and ��(�)� and 2�a� �for
U1(x ,y)�.

It can be seen that, due to the symmetry of Eqs. �14� and
�15�, the C2-valued RF’s defined by Eq. �11� have the form

W�n ��� ,���exp��I�in ���•Q�n ����, n�0,�1.
�17�

This reduces the two-dimensional problems for W(n) to one-
dimensional problems for functions Q(n)(�):

Q�n ���
1

�
Q�n ���� 1�I
�

�I�in �2

�2

�a2�2�1�I����1�I��e2I�C�� •Q�n ��0,

�18a�

�Q�n ���� , �→0; Q�n �→0, �→� . �18b�

Method of solution and results. It can be seen that if Q(n)

tend to zero as �→� , they do so exponentially, with decre-
ment ���(� ,k) being the smallest positive root of the cu-
bic equation

�3�2�1�3k2���4k��1�k2��0. �19�

This requirement makes problems �18� formally overdeter-
mined, as in fact they are EVP’s, and that the eigenvalues are
i
n is only our expectation. To make them numerically
treatable, they were reformulated as EVP’s with eigenvalues
�0�R for n�0 �temporal mode� and i
��1

r �i�1
i �C for

n�1 �spatial mode�, and the smallness of �0, �1
i , and �1

r

was considered an estimation of the accuracy of the numeri-
cal procedure. The problems were brought to real scalar form
by substitutions Q(0)�(A�IB)•exp(I�)•1 and Q(1)�(C
�ID�iE�iIF)•exp(I�)•1. The half-infinite interval

���0,��) was replaced by a finite interval ���0,�max�.
Boundary conditions A(0)�B(0)�C�(0)�D�(0)�0,
E(0)�D(0), F(0)��C(0), and Q(n)�(�max)
���Q(n)(�max) were posed based on conditions �18b� via
asymptotics of acceptable solutions to the ODE system
�18a�. To select unique solutions of these homogeneous sys-
tems, we added conditions B�(0)�C(0)�D(0)�1, and
normalized the solutions according to Eq. �11� afterwards.
Thus posed boundary-value–eigenvalue problems have been
studied in the double limit in the two numeric parameters,
the cutoff radius �max→�, and the discretization step h→0.
The discretization was second order in h , and the solutions
looked for should decrease exponentially at large � . There-
fore, the expected behavior of the small eigenvalues is

�0 ,�1
r ,�1

i �O�h2�exp����max�� , h→0,

�max→� . �20�

This agrees well with the numerical results shown on Fig. 3,
where the dependence on h is shown in logarithmic, and on
�max in semilogarithmic coordinates, so that the linear form
of the graphs corresponds to the asymptotics �20�. We con-
sider this as a numerical proof of existence of solutions to the
overdetermined problem �18�. The solutions are shown in
Figs. 1�b,c�. Both temporal and spatial RF’s do decay
quickly, being essentially nonzero only in the core. The re-
constructed shape of RF in the (x ,y) plane is shown on Figs.
2�b�–�d�. Only the first components are shown; the second
components are the first ones rotated in the (x ,y) plane by
�/2. The behavior of the RF’s at other tested values of � and
� was analogous; at small (���), the spatial scale of all the
functions grows rapidly, which is consistent with Hagan’s
asymptotics �11�.

Conclusion. We have obtained numerically the response
functions of spiral waves in the complex Ginzburg-Landau
equation. As expected, these functions are localized around
the core of the spiral, and decay exponentially outside it. The
spatial scale of localization, ��1, can be found analytically
from Eq. �19�. Unlike solitons, spiral waves look like essen-
tially nonlocalized objects. On the other hand, their dynamic
properties, determined by the RF’s, are those of localized
objects. This opposition between the nonlocal appearance
and the infinity region of influence, on one side, and local
sensitivity and independence on distant events, on the other

FIG. 3. The absolute values of the eigenvalues ��0� (�) and
��1

r �i�1
i � (�) as functions �a� of discretization step h , at �max

�100, and �b� of cutoff radius �max , at h�0.05.
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side, makes spiral waves a very interesting example of a
self-organization pattern. We believe that this physical prop-
erty of localization is mathematically expressed as the exis-
tence of eigenvalues 0 and �i
 of the adjoint linearized
operator in the space of functions integrable over the plane,
and is common for all proper spiral waves in generic
reaction-diffusion systems. The detailed conditions for this
property is a subject for further study, and here we have

shown only the first, to our knowledge, direct evidence of
this viewpoint.
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