Characterisation of Patterned
Irregularity in Locally Interacting,
Spatially Extended Systems:
Ventricular Fibrillation

V.N.Biktashev*

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, U.K
* on leave from: Institute for Mathematical Problems in Biology, Pushchino, Russia

A.V.Holden

School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Abstract. Surface imaging of electrical activity in isolated heart tissue and computa-
tional models of ventricular fibrillation show patterned irregularity. Such irregularity
in spatially extended, nonlinear systems can result from stochastic and deterministic
processes. We require methods and measures for characterising these patterns, that
provide insight into the mechanisms of the evolving spatio-temporal irregularity, and
that can be related to simple time series measures of local or global (e.g.the electro-
cardiogram) activity and stochastic models.



The re-entrant ventricular arrhythmias of monomorphic ventricular
tachycardia and fibrillation are produced by abnormal spatio-temporal
patterns of propagation in the ventricular myocardium. These be-
haviours can be described by solutions of reaction-diffusion equation
excitable medium models. The direct comparison of such solutions with
existing experimental observations is virtually impossible as there are
too many factors to be taken into account, including not only the com-
plicated dynamics of the re-entrant waves of excitation in the tissue, but
also the way the appearance of these waves on the surface is modified
by the inhomogeneity, anisotropy and three-dimensional nature of heart
tissue. One way of indirect comparison is to compare characteristics of
the complexity of the model and the real data, that are invariant under
these modifications of the signal. Karhunen-Loéve decomposition is a
standard tool for evaluating the complexity of multidimensional signals.
Comparison of the separate and conjoint complexities of the signals on
the opposite sides of the preparation can be considered as an indica-
tor how much three-dimensional effects are essential in the preparation
behaviour.

INTRODUCTION

Many experimental irregular time series that are analysed and modeled as
stochastic processes are in fact recordings obtained at a point in a spatially ex-
tended system e.g neuronal spike trains, conventionally treated as realisations of
stochastic point processes [1], are in fact propagating wave trains of excitation. It
is now routine to monitor activity in spatially extended systems as a sequence of
images (a movie), rather than by (multiple) time series. Such image sequences are
generally not periodic in space and/or time but are irregular, and this irregular-
ity may be generated by the internal dynamics of the system, or may result from
external, applied noise sources. The images may be characterised qualitatively by
features, or quantitatively by measures.

The qualitative characteristics of the patterned irregularity may evolve with
time. We seek to develop approaches to characterise slowly evolving patterned
irregularity in systems where spatial interactions are strongly localised (by nearest
neighbour interactions in spatially discretised systems), by constructing a series of
computational tools that enable experimental data and numerical simulations to
be visualised and quantified within the same conceptual and computational toolkit.
Such spatially extensive systems with local interactions are widespread in physics,
chemistry and biology; we are primarily concerned with excitable media, in which
the local interaction can be represented by a diffusion term. Qualitative changes
in patterned irregularity may result from slow changes in system parameters, or
by switching produced by large fluctuations. Although such a computational ap-
proach, based on signal analysis, simulations, and bifurcation analysis of models
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using continuation algorithms, is well developed for time series [2] it is less well
developed for movie images of sampled evolving continuous fields.

Among the approaches in this direction, an important place belongs to the
Karhunen-Loéve (KL) decomposition, which effectively reduces spatio-temporal
data to a time series of a small dimensionality. Although it is essentially a linear
tool, it can capture many important features of nonlinear spatio-temporal chaos,
as it has been convincingly illustrated on two models, the Kuramoto-Sivashinsky
and Muller-Huse equations in [3], and on a reaction-diffusion system describing a
layered semiconductor structure in [4]. KL decomposition has been successfully
used for the analysis of real experimental spatiotemporal data, e.g. surface chemi-
cal reactions [5] or body surface magnetic field and electric potential maps of heart
activity [6,7], to name just some recent examples.

We illustrate this approach by analysing movie images of electrical activity from
the surfaces of an in vitro, experimental preparation of fibrillating heart muscle,
and images generated by simple mathematical models of fibrillation.

VENTRICULAR FIBRILLATION

During your life your heart beats rhythmically, at about one beat per second,
with the synchronous contraction of the main pumping chambers, the ventricles,
ejecting blood. During fibrillation the chambers of the heart no longer contract
synchronously, but quiver and writhe, and the heart does not eject blood. Unless
the fibrillation self-terminates, or is terminated by a defibrillation shock, death is
imminent. Ventricular fibrillation almost invariably occurs during the process of
dying, and its onset underlies sudden cardiac death. It is widely believed that the
mechanism of ventricular fibrillation is that it is produced by one or many re-entrant
propagating waves of excitation in the ventricular wall, that excite different parts
of the wall at different times, and the same part of the wall repeatedly. The me-
chanical beating of the heart is triggered by excitation waves of electrical activity,
with one wave triggering one heartbeat during the normal, rhythmic, synchronised
beating of the heart. In re-entrant arrhythmias the same wave of excitation passes
repeatedly through the same piece of tissue, repeatedly re-exciting it; contraction
of the ventricular wall is no longer synchronous, the ventricle writhes and squirms
and no longer acts as a pulsatile pump. Propagation of excitation in the heart can
be modelled as the activity of an excitable medium, by reaction-diffusion equations;
in such a medium propagating waves annihilate on collision. In an isotropic, homo-
geneous two dimensional medium the simplest re-entrant wave is a spiral wave. A
single spiral wave can rotate rigidly, around a circular core, or its tip may meander
biperiodically or erratically. The spatio-temporal disorder of electrical activity dur-
ing ventricular fibrillation results from interacting propagating waves from a small
fluctuating number of multiple, moving re-entrant wave sources, where the wave
sources are being born at broken wavefronts and die by destructive interactions
between wave sources or with the boundaries of the tissue.
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Among recent successful approaches to this kind of problems is the series of pa-
pers by Rogers et al [8-11] which develop the idea that since fibrillation is made of
propagating excitation waves, its analysis can be based on detecting the excitation
front segments, and evaluating the statistics of their number and kinematic proper-
ties. Although this has been proved very successful, as for all essentially nonlinear
methods, it inherently depends on a large amount of data of a very good quality,
— otherwise, the detection of the fronts becomes problematic.

KL decomposition, being a linear tool, is significantly more robust with respect
to experimental noise and lack of data. It was also successfully used for the analysis
of fibrillation. Bayly et al. [12] used it to show significant increase of complexity,
measured as the number of the significant KL modes at the onset of fibrillation,
and then gradual decrease of that complexity during first minute of fibrillation.
KenKnight et al. [13] have used KL decomposition to quantitatively describe local
capture of VF by pacing. Bayly et al. [14] have used the observed behaviour of the
five most significant KL. modes to make short-term predictions of VF.

The purpose of the present study is to develop a tool characterising spatiotempo-
ral complexity, which would take into account and effectively exploit the available
simultaneous optical recording from opposite sides of the myocardium. This would
help to give a qualitative answer to the question, to what extent is the myocardial
wall three-dimensional, and in what situations should this three-dimensionality be
neglected or taken into account. The KL method was chosen because of its lin-
earity, which promises robustness, and its already proven ability not only in the
formal characterisation of spatiotemporal complexity, but also to detect very spe-
cific features of fibrillation.

An excellent recent review of various methods of quantifying spatiotemporal
chaos of fibrillating cardiac muscle can be found in [15]. Mechanisms for the ini-
tiation and maintenance of ventricular fibrillation are reviewed in [16], and the
relations between nonlinear wave processes in excitable media and fibrillation are
discussed in the Focus issue of Chaos [17] and in [18].

EXCITABLE MEDIA MODELS

Mathematical models of cardiac excitability based on voltage clamp experiments
use many variables to describe each cell, and can take into account the bidomain
(current flow in extra- and intracellular domains) and anisotropic nature of the
cell-to-cell conductivity and tissue inhomogeneity:

O,E =F(E,g;,7)+D-E,
atgi = Gl(Ea gjaf)a
i,j=1,...,N, (1)

where 7”is a vector of spatial coordinates; E is the transmembrane voltage; D is the
conductivity operator, which may explicitly depend on 7" and is integro-differential
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to take into account the bidomain structure of the tissue or degenerates into a
Laplacian if it does not; and g = (g1,92...)" is a column-vector of local variables,
including gating variables and ionic concentrations. In the case of biophysically de-
tailed models of ventricular tissue [19] the excitation equations are stiff and of high
order. For a monodomain, two-dimensional model of normal ventricular tissue the
spiral wave solution is stable and meanders biperiodically [20,21]. Spiral wave solu-
tions of some biophysical cardiac excitation equations are unstable [19], and break
down into spatio-temporal irregularity. Such spontaneous breakdown of re-entrant
activity has been proposed as a mechanism for the development of fibrillation from
simple re-entry; the stability of the spiral wave solutions for normal ventricular
tissue is consistent with the persistence of re-entrant ventricular tachycardia, in
which the ventricles flutter at a rate ten times faster than the resting heartbeat,
and suggests that breakdown into fibrillation may result from geometric effects e.g.
rotational anisotropy.
A second-order differential operator for conductivity [22,23]:

5 .9 OF
D-E= 3 5Dl (2)
takes into account the rotational anisotropy of the real ventricular tissue: the
direction of the fibres is the direction of the largest eigenvector of the conductivity
tensor D; ;. This direction rotates through about 120 degrees on moving from
the outside (epicardial) to the inside (endocardial) surface of the ventricular wall.
For a medium with simplified FitzHugh-Nagumo local kinetics, with parameters
that have stable scroll waves in a homogeneous, isotropic medium, such rotational
anisotropy of the tissue can be sufficient to make a simple re-entrant, transmural
scroll wave unstable and lead to spatio-temporal irregularity [23].

Complicated local kinetics and complicated description of conductivity make
modelling computationally expensive. Some qualitative results can be obtained for
simpler models, which caricature the excitation and propagation properties of car-
diac tissue. Complicated and stiff local kinetics, or inhomogeneity, or anisotropy
are not required to produce complicated spatio-temporal behaviour of the excitable
medium. We used for simulations the simple homogeneous FitzHugh-Nagumo
(N = 1) excitable medium model with simple diffusion-like conductivity. At some
parameter values, the scroll wave filaments in this model have negative tension,
which leads to their breakup and development of a three-dimensional “turbulence”
of excitation waves, resembling fibrillation [24,25].

Figure 1 near here

Figure 1 shows snapshots of spatio-temporal irregularity in this model. The
surface patterns of this “numerical fibrillation” demonstrate the same qualitative
features as the patterns observed in optical mapping experiments. We used for
simulations the FitzHugh-Nagumo system of equations:
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OE =¢'(E - E*/3—g)+ V°E,
Ohg = e(E + v — Byg), (3)

where ¢ = 0.3, 8 = 0.75 and vy = 0.5, with forward-time Euler differencing with time
step 0.03 t.u. (time units) and simplest seven-point approximation of the Laplacian
on a rectangular grid with space step 0.5s.u. (space units), in media of different
size with non-flux boundary conditions. This choice of parameters provides negative
tension of the filaments, i.e. scroll waves in sufficiently large media are unstable,
their filaments tend to lengthen, curve, touch the boundaries and each other and
break onto pieces, each of which then grows again etc. The same set of equations
in two spatial dimensions shows stable spiral waves with a period of 20 t.u.. This
is in qualitative correspondence with the fact that well developed fibrillation is
much more common in sufficiently thick hearts or heart preparations.

SURFACE ACTIVITY

The electrical activity at a number of points on the inside or outside surfaces
of the heart can be recorded during experimentally induced fibrillation, as mutiple
time series with a high temporal resolution. The spatio-temporal pattern of activa-
tion can be reconstructed and viewed as a map or displayed dynamically; methods
of analysing such displays of cardiac are reviewed in [15], and are based on specific
features (phase maps, propagation velocity vectors, space-time plots and wavefront
statistics and dynamics) or statistical measures (spatial correlation and coherence,
signal decomposition as in Fourier anlaysis or Karhunen-Loéve decomposition). A
higher spatial resolution can be achieved by optical monitoring of the surface elec-
trical activity. The data we used in this study (provided by A.M.Pertsov and
co-authors, SUNY Health Centre in Syracuse, USA), were from the endo- and epi-
cardial surfaces of pieces of sheep ventricular wall, stained with a voltage-sensitive
dye. The video images were obtained at a spatial resolution of 0.6 mm and temporal
resolution of 8 ms. The points where the signal was too low were excluded from
consideration, so the shape of the patterns represents not the excitable ventricular
preparation, but merely the perfused and stained part of it, typically of the size of
about 3 X 3c¢m?. More technical details can be found in [26,27).

Irregular, self-sustained re-entrant propagation can be induced in a resting tis-
sue preparation by rapid electric pacing; this provides an experimental model for
the electrical activity during ventricular tachycardia (high — up to about 10 Hz—
frequency activity, believed to be due to simple re-entry in the ventricle) and fibrilla-
tion (irregular, high frequency activity due to multiple re-entrant sources). Figure 2
shows typical simultaneous images of endocardial and epicardial activity.

Figure 2 near here



Periods of excitation were up to about 200ms in “monomorphic tachycardia”
and in the range of 100-150ms in “fibrillation”. So we may scale the time unit of
(3) roughly as 5-10 ms.

DOMAIN STRUCTURE

An important insight in understanding of the mechanism of the fibrillation, at
least in the experimental data considered in this paper, has been recently achieved
by Zaitsev et al. [28], who have analysed the optical recordings of electrical activity
at all points of the preparation as approximately periodic processes, found their
dominant frequencies, and then drawn the maps of the distribution of dominant
frequencies over the preparation. This has revealed something totally unexpected,
a domain structure of the dominant frequencies, with almost the same dominant
frequencies within one domain and sharp interfaces between the domains. The de-
tection of a single dominant frequency is, of course, a strongly nonlinear procedure.
In this section we illustrate how this domain structure looks when analysed using
linear filtering.

We performed discrete Fourier transform on both the simulation and tissue ex-
perimental data u(zx,y,1t),

i(z,y, f) = Flu(z,y,t)] (4)

to obtain power spectra,

P(f) = [ [ la(e.y. pPdody, (5)

which were analysed visually to find the location and width of two or three main
frequency peaks [29,30].

Figure 3 near here

Figure 3 shows typical experimental frequency domains. Panels (a)—(c) show
the spatial distribution of the oscillation power over the preparation, with the low
frequency component in (a) and the high frequency in (¢). The power spectra
of the whole preparation (solid line), and the bandpass filters used to extract the
three principal frequencies are shown on panel (d). The feature of the total power
spectrum is that different frequencies of oscillations are spatially separated, in three
domains. This is visually confirmed by the time series recorded at points in different
domains, panel (e).

In this case, we have found three main frequency peaks with frequency ratio
approximately 2 : 3 : 4, and three spatially distinct frequency domains. There are
clear borders between the different domains. Figure 4 shows Lissajous figures of
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three points chosen in three different domains. In this case, the synchronous char-
acter of these signals is evident. The simplest interpretation for the behaviour seen
in this particular experiment is there was only one re-entrant source, with frequency
of 9.6 Hz (close to that of spiral wave solutions of biophysical models of ventricular
tissue) , and this frequency was divided in the ratio 2 : 3 and 1 : 2 in different
parts of the preparation. In cardiology, such frequency division by simple ratios is
produced by alternating propagation failure, due to a spatial inhomogeneity, and
is called Wenckebach frequency division.

Figure 4 near here

In [29,30] we used this method of the analysis of the spatiotemporal data to
compare two alternative hypotheses for the mechanism of the domain structure of
the fibrillation. We have identified diagnostic features potentially important for
discriminating between the two hypotheses. Some of these features, such as the
domains overlap coefficient, only makes sense in terms of the linear analysis and is
completely lost after detecting a single dominant frequency for each point.

KARHUNEN-LOEVE DECOMPOSITION

Karhunen-Loeve (KL) decomposition is an eigenvalue decomposition of the au-
tocorrelation matrix (spatial autocorrelation function) of the signal. If we consider
the concatenation of the two concurrently recorded endo- and epicardial surface sig-
nals, by analysing KL. spectra and empirical eigenvectors obtained for the conjoint
signal and for its components separately, we are able to diagnose two extreme situ-
ations: the two signals being completely linearly dependent, or completely linearly
independent.

Let signal z(t), z € R?", t € [0, T], be concatenation of two subsignals,

z(t):(x(tg), TER", yeR (6)

For our present application, x and y are the records from the opposite surfaces,
and n is the number of pixels on each of the surfaces. We consider these numbers
identical for both signals, just for the sake of brevity.

KL decomposition is eigenvalue decomposition of the autocorrelation matrix (aka
spatial autocorrelation function) of the signal, which for signal z is [31]

= / ()2 (1) dt. (7)

Here and below, the + superscript denotes matrix transposition. Substituting
(6) into this definition gives



o (T ), 0

yrt yyt

the autocorrelation matrix of the composite signal has a block structure. The
diagonal blocks of this matrix are the autocorrelation matrices of each of the com-
ponents z and y, and off-diagonal blocks are the cross-correlation matrix between
the two signals and its transpose.

There are two interesting cases:

1. Statistically independent signals. Suppose the cross-correlation function zy*
vanishes, then zzt = xzt @yy™ and the eigenvalue problem for the correlation
matrix of z

22t 7Z; = \;jZ; 9)
is reduced to that of the eigenvalue problems of the components’ correlation
matrices,

zzt X, = X, and yytY; = Y. (10)
Thus,

z=(3 ) or (). tb=tmupn (1)

Strictly speaking, Z; might have both components nonzero only in the unlikely
event that some of py exactly coincide with some of ;.

2. Linearly dependent signals. Suppose both subsignals x and y can be obtained
by two different linear transformations of the same low-dimensional “hidden”
signal u,

z(t) = Eu(t), y(t) = Hu(t), (12)

where u € R™, and m may be different from n, say m < n, and = and H are
constant matrices of the format m x n. More specifically, we assume that the
matrices obey the conditions:

(1]

tE=¢l, HYH=q], (13)

where I is the identity matrix. These conditions might appear too restrictive,
but (a) for m = 1 they are always true, and (b) for m > 2 some restrictions
are necessary, otherwise if say x depends only on on the first component of u
and y depends only on the second component of u, they need not be in any
way dependent.



Let U, be the eigenvectors and o, corresponding eigenvalues of the hidden
signal,

uutl, = o,U,. (14)

E(ﬁ)up:@)m(yﬁﬂ( )u,,

—.

= < I;I )W(E+E H+H) Up = (§+n) ( E )WUP = (§+n)oyp < EI ) Up,

that is, z-eigenvectors are images of u-eigenvectors,

Z; = ( E > Up, (15)
and z-eigenvalues are proportional to u-eigenvalues,

Aj = (€ +n)o;. (16)

Then

T (1]

Similarly,

Excluding now the hidden signal from consideration, we see that

Z; = ( ;('j ) , iy =a);, vj=p\;, where a+pg=1. (18)

J

To summarise, by analysing KL spectra and empirical eigenvectors obtained for
the composed signal and for its components separately, we are able to diagnose two
extreme situations. If

e the joint eigenvectors have one component prevailing over the other,

e prevailing components are close to corresponding empirical eigenvectors of the
subsignals, and

e each eigenvalue of the signal is approximately equal to an eigenvalue of ei-
ther subsignal, and each subsignal eigenvalue corresponding only to one joint
eigenvalue,

then we have (11) approximately fulfilled, which means that the signals are statis-
tically independent. If, on the contrary

e both components of each of the joint eigenvectors are close, up to a constant
factor and sign, to corresponding eigenvectors of the subsignals,
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e ecigenvectors of the subsignals are approximately proportional to each other,
and

e eigenvectors of the joint signal are sums of the corresponding eigenvectors of
the subsignals,

then (18) is fulfilled, and there is strong linear dependence between the subsignals,
i.e. they are consequences of the same low-dimensional signal.

DIFFERENT ASPECTS OF COMPLEXITY

The complexity of the experimental and model patterns can be characterised in
different ways:

e Apparent complexity of the patterns on the surface, or individual recordings,

e Behavioural complexity, as the number of “independent causes” that could
produce the observed signals,

The first type of complexity may use either spatial distribution or temporal depen-

dence of a signal separately; the second type requires joint analysis of the spatial
and temporal behaviour.

The analysis of the dominant frequency distribution and its domain structure
uses both temporal behaviour of individual point recordings, to establish the point
spectra, and then the spatial behaviour of this spectra; yet it only gives the ap-
parent complexity, and further conjoint analysis of the mutual behaviour of signals
at different points, as by Lissajous figures, can reveal the underlying behavioural
complexity, i.e. single vs multiple re-entry sources.

The KL analysis uses both temporal and spatial characteristics of the signals
in the same procedure, thus it is potentially more capable of revealing the in-
herent behavioural complexity, such as number of individual re-entry sources or
their specific features. One approach using KL analysis and focusing attention on
the three-dimensional aspects, is the comparison of the conjoint and separate KL
eigendata for opposite surfaces of the tissue.

We illustrate this first for two clear-cut examples, on Figures 5-7 and Figures 8—
10.

Figure 5 near here
Figure 6 near here

Figure 7 near here

Figure 5 shows a stable re-entry inside a medium, which generates periodic pat-
terns on both sides with stable period. Correspondingly, the sum of KL spectra of
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separate sides approximately coincides with the KL spectrum of the concatenated
(conjoint) signal, see Figure 6, where there is only a 20% difference between the
leading eigenvalue for the sum of the separate spectra and the conjoint spectrum.
The behaviour of the KL modes shown on Figure 7 also confirms that the cor-
responding separate and conjoint modes approximately coincide with each other.
This clearly corresponds to the case of linear dependence of the signals as described
above.

Figure 8 near here
Figure 9 near here

Figure 10 near here

Figure 8 illustrates the opposite case. Here there is a double scroll wave in the
medium, which behaves in an unstable way, so the filaments of the two re-entry
vortices constantly change their shape and meander. Thus the surface excitation
patterns, although having roughly the same apparent complexity, have a much
less stable period, and are much less independent on each other, as each of the re-
entry vortices change its position in the medium significantly between the moments
when its excitation wave arrives at one or the other surface. Thus the KL spectra,
Figure 9, show a significant difference compared to Figure 6: the sum of separate
spectra is in no sense close to the conjoint spectrum; e.g. the conjoint leading
eigenvalue is more than 60% higher than the sum of leading separate eigenvalues,
and the conjoint spectrum decays manifestly slower. This is also confirmed by
the visual analysis of the KL modes, Figure 10: the separate eigenmodes coincide,
up to the sign, to the components of the conjoint eigenmodes, but each conjoint
eigenmode has only one of the components effectively nonzero, the other being
much less. This clearly corresponds to the statistical independence of the signals,
as described above.

Note that in both cases, the apparent complexity was comparable, and the dif-
ference in the behaviour was influenced by stable position of the re-entry filament
in one case as opposed to violent meander of the filaments in the other case.

Figure 11 near here

Figure 12 near here

A more complicated case is illustrated by Figures 11 and 12, which present the
KL analysis of the the modelled data from the simulation that generated Figure 1.
The conjoint KL spectrum of the concatenated signal of the two surfaces is close
to the sum of the component spectra, but there is no clear domination of one
surface over the other in the conjoint modes, and the resemblance of components

12



of the conjoint modes with separate modes is only limited. Thus, here we have
an intermediate situation, where the activities on the opposite surfaces are partly
correlated with each other, and partly are caused by independent events. This is
despite the fact that the overall apparent complexity of this regime is clearly higher
than that of the meandering double scroll of Figure 8, as here we have many (6,
in the time average) filaments describing complicated movements. An explanation
of this paradox is that when a filament joins the two opposite surfaces then the
activities it induces on these surfaces are correlated with each other; if it does not,
then the activities on opposite surfaces are generated by excitation waves sent by
the filament at different moments into different directions, thus the correlation is
weak if the filament is moving.

Having considered the model situation with answer known, we can now apply
this technique to the experimental data.

Figure 13 presents a monomorphic tachycardia with a simple excitation patterns,
and Figure 14 shows the results of KL analysis. Only two KL modes are significant,
the conjoint KL spectrum is very close to the sum of the separate KL spectra, and
the conjoint modes are very similar to the separate modes. Thus both epi- and
endocardial sequences are probably produced by one and the same stable re-entrant
source inside the medium, — a conclusion which is in a perfect agreement with the
visual analysis.

Figure 13 near here

Figure 14 near here

Figure 15 illustrates a later, polymorphic stage of the tachycardia in the same
experimental preparation. Its KL analysis is shown on Figures 16 and 17. Here
the situation is more complicated and qualitatively resembles that of the scroll
turbulence of Figures 1, 11 and 12. Thus these surface patterns are probably
produced by a common source i.e. are two-dimensional surface views of a simple
three-dimensional structure within the ventricular wall, however, the influence of
this common source is modulated by factors different for these two surfaces, which
may be medium inhomogeneities inducing a Wenckebach rhythm modifications or
transmural movements of the re-entry block.

Figure 15 near here

Figure 16 near here

Figure 17 near here

The next two figures, 18 and 19 show the KL analysis for the experimental data
illustrated on Figure 2. Here the situation is similar to the previous, i.e. partial
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correlation between the two surfaces. This kind of relationship is the rule for the
polymorphic tachycardia from the described experimental model.

Figure 18 near here

Figure 19 near here

It is interesting to compare the results of the KL analysis and frequency domain
structure in the same preparation, see Figure 20. It would be reasonable to expect
that, if the frequency domains indeed represent clusters of data that oscillate more
or less coherently, but oscillations of different domains are with poorly commen-
surate frequencies, and thus statistically independent, then the KL decomposition
should detect the presence of these coherent and independent structures, and we
should see them as the principal KL modes. In reality, the coherence within the
domains is not ideal and the frequencies are not quite independent, so the ideal pic-
ture is not attained; still, a strong resemblance between the shape of the frequency
domains and some of the main KL. modes can be seen.

Figure 20 near here

The above analysis of the KL spectra and modes is qualitative. These data can
also be used for a quantitative characterisation of the complexity, e.g. via the
spectral entropy defined as

s
S=- ij logp;, where p;= Z—])\" (19)
j ri

and )\; are the KL eigenvalues. The spectral entropies of the numerical and exper-
imental sequences considered above are summarised in Table 1.

Figure Top/lft/epi | Bot/rgt/endo | Conjoint
Stable twisted scroll Figure 5 1.01 1.04 1.43
Meandering double scroll Figure 8 2.07 2.23 2.76
Scroll “turbulence” Figure 1 3.09 3.09 3.38
Monomorphic tachycardia Figure 13 0.22 0.72 0.64
Polymorphic tachycardia Figure 15 2.25 2.01 2.36
Polymorphic tachycardia Figure 2 2.75 2.48 3.00

TABLE 1. KL entropies of experimental and numerical datasets

As it can be easily seen, for the case of linearly dependent signals, the entropies
of the components are equal to the entropy of the conjoint signal. Indeed, in this
case, according to (18), u; = a\;, where o does not depend on j, thus for yu;, the
corresponding fractions p; = /Y pr; = a\;/ Y a)j = A;/ > A, i.e. the same as
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for A;. Consequently, the entropies (19) will be the same for y; as for A;; similarly
for v;. Thus the difference between the joint entropy and those of the components
is yet another indicator of the complexity of the sequence.

From Table 1, the entropies of the components of simple and double scrolls in the
model (significantly correlated) differ by up to 40% from corresponding conjoint en-
tropies, while those of scroll turbulence (fairly independent) are within 10% of each
other. Similarly, the entropies of the components of the monomorphic tachycardia
(strongly correlated) differ more than 3 fold, whereas those of both polymorphic
tachycardias (fairly independent) are within 15% of each other. However, we believe
that, as the phenomenon of fibrillation is so rich, attempts to reduce the estimation
of its complexity to a single number would inevitably lead to loss of some essential
features; thus the full KL spectra may have their own diagnostic value.

CONCLUSIONS AND OPEN QUESTIONS

This application of standard data processing techniques to a practical example
of spatio-temporal irregularity has led to some insights into the processes of fib-
rillation. We have shown that the correlation of spatiotemporal activities on the
opposite surfaces of the myocardium depends on the complexity of the processes in
its volume, and that this dependence is consistent with the current picture of fibril-
lation as an ensemble of one or more scroll waves of excitation in the tissue. This
was based on comparison of KL spectra of separate and conjoint signals, i.e. many
parameters. Whether this can be efficiently reduced to a single numerical criterion,
remains an open question. However, this has done little more than providing
supporting evidence for pre-existing beliefs derived from simple visual inspection
of the activity. A major function of any proposed technique will be to reduce the
large amount of information in the space-time series, so a movie sequence (essen-
tially a highly multivariate time series) is replaced by a lower, maybe univariate
time series amenable to simple dynamic or stochastic modelling. The success of
such approach in the study [14] together with the sensitivity of KL spectra to 3D
events demostrated here, encourage further investigation of KL decomposition as
a possible tool for reconstructing the three-dimensional activity based on surface
observation. Another question for further study is how this interpretation of the
KL modes and spectra will be modified by taking into account the domain struc-
ture, and how this would depend on the precise mechanism of this structure. The
method of Lissajous figures used in [29,30] was based on point recordings and re-
quired careful filtering; it is possible that the KL analysis would make that method
more informative and robust.
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(c)

FIGURE 1. (a) Snapshot of a fibrillation-like activity in the mathematical model, medium
size 503. The semi-transparent surfaces are the excitation wavefronts, that end in opaque curved
rods, their scroll filaments. (b,¢) Snapshot of activation patterns on the (b) top and (¢) bottom
surfaces. Excitation is shown by white.

FIGURE 2. Typical experimental frames of surface electrical activity during a fibrillation
episode. Upper row: epicardial view. Lower row: synchronous endocardial view. Left to right:
time interval 33 ms. Excitation is shown by white.
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FIGURE 3. Dominant frequency domains in the experimental model of fibrillation. (a)—(c)
Spatial distribution of the frequency components of the signal power (black is zero, white is the
maximal value), each frame represents a square piece of surface of approximately 3 cm in size. (d)
The cumulative power spectrum and the windows (dashed lines) used to extract the frequency
components shown. (e) Signals recorded at points A, B and C designated on (a)—(c). It is possible
that the highest frequency domain (¢) is synchronous with the re-entrant source, while the two
other domains correspond to Wenckebach divided frequencies with ratios 1:2 and 2:3.
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FIGURE 4. Lissajous figures of the filtered recordings from points A, B and C of Figure 3.

(c)

FIGURE 5. A twisted scroll wave with a stable period, medium size 153, parameters as de-
scribed in text except § has a gradient along the z-axis from 0.646 to 0.714. Notations the same
as in Figure 1.
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FIGURE 6. KL spectra of the surface patterns in the numerical simulations of of the stable
twisted scroll shown on Figure 5: amplitudes of eigenfunctions vs their ordinal number. “+7:

[43

spectrum of both surfaces processed together; “x” and “x”: spectra of the two surfaces processed

separately; “0”: sum of the two separate spectra.
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FIGURE 7. The principal KL modes of the surface patterns from the numeric stable twisted
scroll of Figure 5, (a—e) processed together, (a) most powerful mode, (e) fifth most powerful
mode, (f—j) processed separately, (a) most powerful mode,

rows: top surface, bottom rows: bottom surface.
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FIGURE 8. Meandering double scroll wave, medium size 43%. Notations the same as in Fig-
ure 1.
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FIGURE 9. KL spectra of the surface patterns of the numerical meandering double scroll
Figure 8, same format as in Figure 6. Note that the joint spectrum (“+”) is significantly different
from the sum of separate spectra (“0”).
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FIGURE 10. The principal 3 KL modes of the surface patterns from the numerical meandering
double scroll Figure 8. Same format as in Figure 7. Note that for most principal modes, the
amplitude of one side (top(a), bottom(b), top(c), bottom(d)) is much larger than on the other
side (bottom(a), top(b), bottom(c), top(d)). Also, the larger components of the joined modes
coincide with most powerful separate modes, compare: top(a)=top(f), bottom(b)~bottom(f),
top(¢)~bottom(g), bottom(d)~-bottom(g). These are indications of statistical independence of

N

the two signals.
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FIGURE 11. KL spectra of the surface patterns of the numerical simulations of Figure 1:
amplitudes of eigenfunctions vs their ordinal number. Format the same as in Figure 6.
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FIGURE 12. The principal KL modes of the surface patterns from the numeric scroll turbulence
of Figure 1. Format the same as in Figure 7.

FIGURE 13. Surface activity during a polymorphic tachycardia, epicardial surface above,
endocardial surface below. Each pair of images is 33 ms apart, and white areas code the onset of
excitation, dark areas recovery from excitation
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FIGURE 14. (a) The KL spectra and (b—g) the principal KL modes of the experimental
monomorphic tachycardia shown on Flgure 13. (bfd) processed together, (e—g) separately. Top

-«
Y.
|

rows: epicardial surface, bottom rows: endocardial surface.

FIGURE 15. Surface activity during a polymorphic tachycardia, epicardial surface above,
endocardial surface below . Each pair of images is 33 ms apart, and white areas code the onset
of excitation, dark areas recovery from excitation
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FIGURE 16. KL spectra of the polymorphic tachycardia of Figure 15. Format is the same as
in Figure 6.

FIGURE 17. The principal KL modes of the experimental polymorphic tachycardia shown on

Figure 15. Format the same as in Figure 7.
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FIGURE 18. KL spectra of the polymorphic tachycardia of Figure 2. Format is the same as in
Figure 6.
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FIGURE 19. The principal KL modes of the polymorphic tachycardia of Figure 2. Format the
same as in Figure 7.
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FIGURE 20. Comparison of the frequency domains and selected KL modes of the polymorphic
tachycardia of Figure 15. (a) The frequency domain corresponding to the higher frequency band,

7.9Hz. (b) The frequency domain corresponding to the lower frequency band, 6.1Hz. (¢) The
first KL mode of the separate epicardial sequence. (d) The third KL mode of the separate
endocardial sequence. The two frequency domains are supplements of each other, i.e. each point
of the preparation, if oscillates, has one of the two frequencies. The selected KL modes are close
to the corresponding components of the lower-band domain.
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