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The re-entrant ventricular arrhythmias of monomorphic ventricu-
lar tachycardia and fibrillation are produced by abnormal spatio-
temporal patterns of propagation in the ventricular myocardium.
These behaviours can be described by solutions of reaction-diffusion
equation excitable medium models, in which the reaction terms
come from the results of voltage clamp analyses of cell excitation
processes, — membrane currents and pumps, intra- and extracellu-
lar ion accumulation and intracellular sequestartion processes, and
the diffusion coefficient tensor is obtained from the propagation ve-
locity and scaled muscle fibre orientation. Numerical solution of
such biophysical detailed models allow the screening putative an-
tiarrhythmic agents, by computing their effects on vulnerability to
re-entry, and the specification of means of pharmacologically modi-
fying meander, to enhance the self-termination of re-entry. Quanti-
tative aspects of defibrillation, by extinguishing propagatiing waves
of excitation by a single shock, or by resonant drift induced by ap-
propriately timed small amplitude, can be computed.

1 Introduction

Some cardiac arrhythmias are due to re-entrant propagation, in which the
same wavefront repeatedly re-invades the same piece of tissue after propa-
gating around an anatomical or functional block. Monomorphic ventricular
tachycardia is probably produced by simple re-entry [1,2] and the order re-
maining in ventricular fibrillation [3,4] may be due to re-entrant waves. The
relatively thick wall of the ventricle means that propagation in ventricular
muscle could be a predominantly three-dimensional phenomenon that occurs
in an anisotropic and heterogeneous tissue, or could be explained by two-
dimensional phenomena that result from the excitation properties rather than
heterogeneity and anisotropy. In this paper we obtain the characteristics of
propagation in one-, and two-dimensional, homogeneous model of ventricu-
lar tissue, and use these to account for the linear regions of unidirectional
conduction blocks seen in mapping studies [5,6], to interpret the changes in
conduction velocity of a re-entrant wave around an extended obstacle [7], to
explain why it is difficult to establish re-entrant propagation in the healthy
ventricle, and to quantitatively assess single shock and resonant drift methods
of eliminating re-entry from ventricular tissue.

There are a number of published and available models for ventricular excita-
tion that summarise the results of voltage clamp experiments on ventricular
tissue and cells — these include the Beeler-Reuter model [8], the Oxsoft guinea
pig ventricular cell model specified in Noble et al.[9,10], the Nordin [11] model
and the phase 2 Luo-Rudy [12] model and its recent modification [13]. None



of these models are definitive, they all represents steps in an on-going pro-
cess of modelling the behaviour of different types of ventricular cells by a
description of membrane currents and pumps, and intracellular ion binding
and concentration changes [14].

In this paper we use equations of the Oxsoft guinea pig ventricle model [9,10],
later referred to as OGPV. These equations provide a convenient starting
point, and can be modified to simulate e.g.the effects of epicardial to endocar-
dial changes in ventricular action potential described by Antzelevitch [15,16],
long QT syndrome [17], and ischaemia - see Boyett et al.[18]. We construct an
excitable medium model for mammalian ventricular tissue by incorporating
ordinary differential equations for ventricular cell excitability into a reaction-
diffusion system of differential equations with the voltage diffusion coefficient
selected to give an appropriate conduction velocity. For a homogeneous two
dimensional medium , the effects of homogeneous anisotropy can be included
by a simple rescaling of coordinates.

2 The numerical model

The Oxsoft equations [9] summarise the results of extensive voltage clamp and
ion flux investigations on mammalian ventricular tissue and cells, and provide
a model for the membrane currents resulting from voltage-dependent gated,
and leakage, conductances; active transmembrane exchanges; and intracellular
ion concentration changes, and Ca**release and sequestration from the sar-
coplasmic reticulum in a single ventricular myocyte. In this paper, we use the
model of guinea pig ventricular cell from the Oxsoft family, the basic ideas of

which can be found in [10], the OGPV model.

For a single isopotential cell the model is in the form of a system of ordinary
differential equations, which can be shorly written in the form

CoV=f(V,u,w),

Ju=g((V,u,w), (1)
ow=h(V,u,w),
where V' = V(1) is the transmembrane voltage, C' is cell capacitance, f is
transmembrane current density, vector u = u(t) describes the fast gating

variables, and vector w = w(#) comprises slow gating variables and intra- and
extra-cellular ionic concentrations, and g and h describe their kinetics. Action
potential solutions of this model and their rate dependence are illustrated in

Fig. 1(a-c).
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Fig. 1. The OGPV model. (a) Action potential for normal (400 ms, solid line) and
high (150 ms, dashed line) pacing rates. (b) Restitution curve, action potential dura-
tion vs diastolic interval, measured at 95% (-86 mV). (¢) Variations of APD during
pacing with changing period (shown by arrows). (d) Voltage profiles of propagating
pulses, at normal (400 ms, solid line) and high (150 ms, dashed line) pacing rates.

This model was incorporated into a partial differential equation model for an
excitable medium in the plane (x,y)

oV =C f(V,u,w)+ DV*V + F(z,y,t)
Ju=g(V,u,w), (2)
ow=h(V,u,w),

where D is the diffusion coefficient for V', V? is the Laplacian operator (a§+a§)
and F(x,y,t) is a time and space dependent forcing that models external



electric current applied to the tissue; as written in (2) it has the dimensionality
of voltage over time, and can be rescaled to current units viathe value of
C' = 0.2 nF. The diffusion coefficient D = 31.25 mm?s~" was chosen to give a
conduction velocity for a solitary plane wave along one of the coordinate axes
of 400 mm/s. Canine ventricular conduction velocities range from 140-250
(transverse) to 500-800 (longitudinal) mm/s [19].

Calculations were performed using the explicit Euler method (except ‘m’ gat-
ing variable which was calculated implicitly) with five-node approximation
of the Laplacian on a rectangular grid of 200x200 to 300x300 nodes with a
time step of 0.01 to 0.05 ms and a space step of 0.1 mm, with impermeable
boundaries

av/ax |l’:l’min773max: av/ay |y:ymin7ymax: 0 (3)

Spiral waves were initiated in one of three ways, by a cut wavefront, twin
pulse protocol, or a phase distribution method. A plane wave was initiated
at one edge of the medium by a 2 ms duration stimulation of a strip 1.3 mm
wide, by a current F'(x,y,t) that gave a dV/dt of 50 mV/ms (10 nA/cell)
and the excitation allowed to propagate to the centre of the medium. The
wavefront was then cut, and all the variables on one side of the cut reset to
their equilibrium values. This numerically convenient but artificial method
allows spirals to be initiated in a 20 x20 mm medium. The twin pulse protocol
[20] requires a larger (30x30 mm) medium, in which a plane wave in initiated
at the lower border by 10 ms stimulation of 50 mV/ms (10 nA/cell) of a
two mm strip, and 180 ms later (after the wavefront has propagated through
the medium, establishing a gradient in refractoriness) the second stimulus is
applied: a 4 ms stimulation of 40 mV /ms (8 nA/cell) over the left 30 x25 mm
area of the medium.

The phase distribution method used one-dimensional calculations to record
values of all dynamical variables in a plane periodic wave of a high frequency,
thus expressing all the 17 variables as functions of single scalar variable, the
phase. To create inital conditions, a distribution of the phase over the plane,
corresponding to an Archimedean spiral with an appropriate wavelength, has
been used to specify the distribution of the dynamic variables viathese func-
tions. This highly artificial method is convenient to produce spiral wave at a
prescribed location. However, it still requires large enough medium to initiate
(we used 20x20 mm), as the larger core in the first revolutions of the spiral
is determined not only by the initiation procedure, but by internal properties
of the medium.



3 One dimensional vulnerability

The reaction-diffusion equation (2) in one dimension has a spatially uniform
solution, corresponding to resting tissue, and can support solitary wave and
wave train solutions. The solitary travelling wave solution propagates at a
velocity proportional to the root of the diffusion coefficient, and so the diffu-
sion coefficient can be chosen to give appropriate length and velocity scaling.
Fig. 1(d) illustrates travelling wave train solutions; at the higher rate the
action potential duration is shortened, and the action potential velocity is
reduced, and the spatial extent (the "wavelength”, say measured at 95% re-
polarisation) is shortened. Thus although there may not be enough room in
the heart for more than one action potential at low rates, as rate is increased
the shorter wavelength may allow more than one action potential.

Two travelling wave solutions meeting head on collide and annihilate each
other; this destructive interference results from the refractory period of the
travelling waves. Supra-threshold stimulation at a point in a uniformly resting
one-dimensional model produces a pair of travelling wave solutions that prop-
agate away from the initiation site. The initiation of a single solitary wave in
a one-dimensional ring provides a computationally simple model for re-entry:
such unidirectional propagation can only be produced in a homogeneous one-
dimensional medium if the symmetry is broken, say by a preceeding action
potential. Fig. 2(a-c¢) illustrate the responses of a one dimensional ventricular
tissue model to stimulation at different times in the wake of an action poten-
tial. The vulnerable window is the period after a preceeding action potential
during which a unidirectional wave in a one dimensional medium can be ini-
tiated; stimulation during the vulnerable period in the wake of a plane wave
in a two-dimensional medium would initiate a pair of spiral waves. Thus the
test pulse in Fig. 2(b) falls into the vulnerable window.

Starmer et al. [21] have characterised the vulnerable window for Beeler-Ruter
and FitzHugh-Ngumo models. The numerical results of Fig. 2(d) show the ex-
pected increase in the vulnerable window with stimulus intensity and with the
length of the stimulated tissue (the electrode size). If the effects of pharmaco-
logical agents or pathological processes (ischaemia, acidosis) can be expressed
as changes in the excitation system (1) then repeating the computations of
Fig. 2 provides a means of quantifying the pro- or anti-arryhthmogenic effects
of these changes.
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Fig. 2. 1-D vulnerability in the OGPV model. Two conditioning pulses with the
interval of 400 ms passed through the medium rightwards, then the test pulse
was delivered in the wake of the last condioning wave. (a)-(c) shows no, uni- and
bi-directional responses to the test stimuli of the same amplitude 2 msx50 mV /ms
of the same 2 mm piece of the medium, but delivered at different time moments.
(d) shows vulnerable window (ordinate, earliest and latest time delay after the start
of the last conditioning wave) for unidirectional response, as function of electrode
size (abscissa) and stimulus amplitude (shown as label on each line, mV/ms), with

center of the stimulated region fixed.

4 Two dimensional phenomena

Figure 3 illustrates a spiral wave solution of the model, as the spatial distri-
bution of the membrane potential V', at an instant 2.67 s after the spiral wave
was initiated by cutting a broken plane wave halt way up the medium. The
wavefront of the action potential is the sharp transition between light and
dark shade, and far from the tip of the spiral the wavelength of the spiral (the
distance between successive wavefronts) is about 40 mm. The spiral rotated
with an initial period of approximately 170 ms, and over the first 1 s the period
decreased to 100-110 ms. The tip of the spiral may be defined by the intersec-
tion of two isolines; we define the tip by the intersection of the V = —10 mV
and the f = 0.5 isolines, where f is the Ca’" (slow inward) current inactivation
gating variable. The trajectory of the tip of the spiral is not stationary, but
meanders, and its motion is nonuniform, moving by a jump-like alternation



Fig. 3. Snapshot of a spiral wave in the OGPV model. Grayscale shading codes the
transmembrane voltage, white is depolarisation and dark is repolarisation. Shown
are two isolines, one of the voltage and the the other of the I inactivation gate ‘f’.
Crossing of the two isonlines is the instant position of the spiral tip shown by black
circle. The flower-like line is trajectory of the tip in the last two rotations.

between fast and very slow phases, with about 5 jumps per full rotation. This
motion resembles an irregular, nearly biperiodic process, with the ratio of the
two periods close to 1:5.

The rotation of the spiral wave can be monitored by following an isoline on the
wavefront, and the trajectory of the tip of the spiral, as illustrated in Fig. 3.
The area enclosed by the tip trajectory is analogous to the core of a rigidly
rotating spiral, and is not invaded by the action potential. Characteristics of
the V(1) observed at different sites in the medium during the evolution of a
rotating spiral wave are:
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Fig. 4. Nonumiformity of propagation velocity around a hole (left column) and in
a spiral wave (right column). Top: isochronal map of one rotation with 1 ms step
between isochrones. Bottom: variation of propagation velocity with time during the
rotation; solid line at the distance 0.5 mm and the dashed line at 5 mm from the
tip along the isochrones.

— only the first action potential, produced by activity invading a resting
medium, has the fast depolarisation and overshoot that are characteristic
of solitary membrane action potential solutions of (1),

— far from the tip of the spiral wave, the repetitive action potentials are faster
and larger than closer to the tip,

— close to the tip the repetitive activity is not only are smaller in amplitude,
and have reduced 9V/0tyax, but appear more as complicated oscillations
than action potentials.

These different behaviours occur in an initially homogeneous medium, in which
re-entry has established a functional inhomogeneity, and are similar to the
behaviours of all functional re-entry waves in excitable medium, and to waves
in excitable media rotating around a small obstacle.
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Fig. 5. Development and ageing of spiral wave after initiation by phase distribution
initial conditions. Two left columns show successive 1-ms isochronal maps; the right
columns shows corresponding pieces of tip trajectory.

Within the functional block or core the membrane potential remains be-
tween -45 and -5 mV; this persistent depolarisation means the inward iy,
is inactivated, blocking propagation into the core. The principal currents
(INaytCay 1Ky, 0 5) Tar from, and within the core are examined in [31].
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Fig. 6. The role of the two major excitatory currents, In, (left) and I, (right),
in forming the shape of the core. Shown are the distribution of the minimal (i.e.
maximal in the absolute value) currents throughout the preparation during 110 ms,
i.e. slightly longer that one rotation of the spiral wave, same as shown in fig. 4.
Vertical axes show values of the currents in nA per cell.

After an initial transient, the spiral is rotating around a compact core con-
tained within a few mm square. The multi-lobed pattern of the trajectory of
the tip illustrated in Fig. 3 takes time to develop, and itself continues to de-
velop with time. This time evolution, or "ageing” is described in [31] and has
been ascribed to the slow changes in intracellular concentrations that occur
in the Oxsoft models.

A different approach to examining this ageing appears by plotting the voltage
isochrones every ms, as in Fig. 5. Here the spiral was initiated from initial
conditions specified by the phase distribution method, to prevent any extended
structures being produced by the method of initiation of the spiral. Close to the
tip of the spiral the distance between the isochrones changes, and so the local
wavefront velocity is changing, with slow velocities occurring at the sharp turns
of the tip. Bunching of isochronal lines is interpreted as an arc of conduction
block in clinical cardiac mapping studies. The spirals initiated from a broken
wave and by the cross field technique have more pronounced transients, and
their tip evolution is described in [31]. The pattern of the tip motion and the
associated velocity of the wavefront near the tip is continually changing, and
the early tip trajectory resembles the linear extended tip trajectories seen in
the Beeler-Reuter model [22]. However, the slowing down occurs along the
linear segments of the trajectory, as well at at the sharp corners.

Girouard et al. have studied propagation of re-entrant waves around a laser

induced linear obstacle in the guinea-pig heart. Fig. 4 compares propagation
around a thin linear obstacle (left) with propagation around a functional block.
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The isochronal maps show the slowed propagation associated with the sharp
turns, and the local normal wavefront propagation velocity. For the obstacle,
the slowing down is confined to the ends of the obstacle, where the curvature
is large, and is consistent with the observations of Girouard et al. For the
functional block there is not a clear connection between the curvature and the
velocity.

We believe that around the obstacle, the slowing down is predominantly due
to curvature effects, while for the functional block the dominant effect is the
propagation of the wavefront into a region of refractory tissue. Although the
wavefront, driven only by Na'current cannot propagate deep into a region
where this current is inactivated, Ca®*tcurrent can carry the wavefront into
refractory region. This is analogous to the interpretation of the onset of irreg-
ularity in re-entry in the Beeler-Reuter model as due to interactions between
Natand Ca**activation fronts [23].

We can illustrate this by blocking Ca®-conductance, which leaves a simple
rigidly rotating spiral, or by visualising the maximum currents during one
rotation. Fig. 6 shows the maximal magnitude of the principal depolarising
currents, Iy, and [, during just over one rotation, the same computation as
in Fig.5. While sodium current shows the five-petal star shape of the block
(the region where it was nearly zero throughout the rotation), the calcium
current has small circular block and only slightly modulated around. Thus,
the meandering petals can be interpreted as loci where fact sodium waves died
out and propagation was supported by slow calcium waves. The five-lobed
pattern is not an attractor, as its shape is continually and slowly changing.
However it is persistent for long enough to be considered the state of the spiral
wave we would seek to eliminate in section 5; it is important to note that its
behaviour and evolution can be understood in terms of the dynamic balancing
between the fast and slow depolarising currents, rather than simple curvature
and electrotonic loading effects.

5 Defibrillation

5.1 Resonant drift

The tip of the spiral wave solutions presented in Fig. 3-6 moves irregularly in
a complicated trajectory, but does not move out of the medium: if the medium
is large enough to contain the early transient motion around an almost linear
core then the spiral wave remains in the medium.

Small amplitude, spatially uniform repetitive stimulation can be used to pro-

12



duce directed movement of a rigidly rotating spiral wave, if the period of
stimulation is equal to the period of the spiral wave rotation (resonant drift).
If the stimulation period is close but not equal to the rotation period of the
spiral a circular drift is obtained [24,30]. If the stimulation period is fixed, this
drift is strongly influenced by medium inhomogeneities [25]. Such a drift has
been observed in reaction-diffusion model of rabbit atrium based on Earm-
Hilgemann-Noble kinetics [36]. In the OGPVmodel, even in the absence of
inhomogeneities, mthe instantaneous frequency of the spiral is always chang-
ing, because of the meander and the slow change of the spiral wave period
due to ageing and so a pure resonant drift is not observed at any constant
frequency. A typical trajectory, produced by constant frequency perturbation
of a meandering OGPV spiral, is shown in Fig. 7.

Fig. 7. A 2.3 s piece of the tip trajectory of a spiral wave in the 2D OGPV model
under external forcing 1.2 mV/ms (0.24 nA/cell) duration 2 ms each, with period
110 ms. The balls show the tip positions at the beginning of each stimulus. Newer
pieces are darker and older are lighter. This is defined by three processes stimula-
tion+meander+ageing.
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The resultant motion is a nonlinear interaction between the pattern of mean-
der and the motion produced by the perturbations. The directed motion of
resonant drift is much more robust if instead of choosing a fixed frequency,
some kind of feed-back is used to synchronise the stimulation with the spiral
wave rotation [29,30]. Such feedback control can provide the stable resonant
drift in the OGPV model [31]. Figure 8 shows four tip trajectories produced
by repetitive stimulation applied at four different fixed delays after the wave-
front reached the bottom left corner. The delay determines the initial direction
of drift. A repetitive perturbation of 15% the amplitude of the single shock
defibrillation threshold produces a directed motion with a velocity of about

0.75 cm/s.

5.2 Defibrillation theory

The above results about resonant drift were for external perturbations mea-
sured relatively to the defibrillation threshold. This external influence was
modelled as additional current in the equation for the transmembrane poten-
tial, with an explicit time dependence. However, this does not correspond to
real situation, where the defibrillating voltage current is not applied across
the membrane, but imposed extracellularly, and so the above results can be
interpreted only in relative units to something that is also experimentally

measurable, e.g. defibrillation threshold (DFT).

An absolute estimation of DFT can be obtained by quantitative theory of
interaction of extracellular current with membrane excitation processes (see
e.g. [32]) with theory of defibrillation [33,34]. This has been applied to the
OGPV model in [37]. The basic idea of the description is that if the external
current comes in through a part of the cell membrane in one direction, exactly
the same current must come out through another part of the membrane. And
the resulting model can be written in the form

- 1 ]eggt(t) ]ewt(t) 2
atV_ZC(f(V—I_ 20y ,u_|_,w)—|—f(V— 20y ,u_,W))—l—va
T (1
Oug =g(V £ 2toE ),ui,w) (4)
atW:h(Vv %7“’)7

where the notations are mainly the same as in (1), (2), with the difference that
V and w are average values over the cell, I.,; external current flowing through
the cell, a effective cell conductivity with respect to this current (so that
+1.,4+/(2c0) is additional transmembrane voltage produced by this current),
and ug are two vectors of faster gating variables, which behave significantly

14



Fig. 8. Tips trajectories of resonantly drifting spirals, with feedback via registered
electrode in the bottom left hand corner of the medium and delays 0, 25, 50 and
75 ms; average period of rotation is within 100 to 110 ms, square size 20 mm. The
stimulations was by pulses 2 ms long 2 mV /ms (0.4 nA/cell) strong. The balls show
the tip positions at the beginning of each stimulus. The visible fractures in the
trajectories correspond to different phase locks between stimulation and meander.

different in the two membrane parts (these include ‘h’, *d” and “f). The gating
variables ‘my’ were not dynamic variables but fixed functions of the trans-
membrane voltages V + I..;/(2a). All the dynamic quantities V', I, uy and
w are functions of time and of the location of the cell in space; I.,; has been
considered as a function of time only, i.e. it was assumed that the current is
uniform over the tissue.

The validity of this simple system of equations depends on several assump-

tions, including the separation of time scale of various processes and approx-
imation of the cell body by just two compartments; these were verified by
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numerical tests in [37].

Typical responces of a spiral wave in this model to a 2 ms pulse of I.,; are
shown on figs. 9 and 10. The stimulus has both depolarisiand repolarisaing
effects, and in the region ahead of the front the depolarisation effect overbal-
ances the hyperpolarisation, and the front jumps forwards. The later evolu-
tion depends on how far the wavefront jumped. If the stimulus was above the
threshold (see fig. 9, upper row), the front advances to the region where the
tissue has not recovered yet, and the antegrade propagation is not possible.
Hence, the front retracts, i.e. begins to collapse backwards, and the excitated

region shrinks until it vanishes, as the depolarising wavefront moves backwards
and the repolarisation waveback carries on moving forwards.

Fig. 9. Snapshots from movies of suprathreshold (above, with 800 nA/cell) and
subthreshold (below, with 650 nA/cell) defibrillation by a spatially uniform 2 ms
depolarising current pulse of a spiral wave shown on fig. 3. Time moments are chosen
0, 3, 40 and 80 ms (left to right) measured since the beginning of the stimulus.

A smaller (subthreshold) shock will produce a smaller advance in the position
of the front and thus allow the possibility for it to recover its forward prop-
agation. This possibility depends on two factors, the refractory state of the
medium and the front curvature, which in turn depends on the geometry of
the wavefront at the moment of the shock delivery. The lower row of fig. 9
shows the case when, after the shock, the propagation resumes not along the
whole front, but only at the most concave segment of it, where the front cur-
vature assist the propagation. This is sufficent to resume the rotation of the
spiral wave. So, from this example it can be seen that DFT measured in two
dimensions should be usually higher than that in one dimension.

We have applied the theory of [33] and [34] to calculate the one-dimensional
DFT based on the properties of the single cell version of equations 4 and the
restitution curve of original 1D model; this was found to be about 840 nA/cell.
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Fig. 10. Wavefronts and wavebacks visualised as -10 mV isolines every 10 ms during
(left) the suprathreshold and (right) subthreshold defibrillating shocks of Fig. 9.
The first isoline is just before the defibrillating pulse was applied; the spiral wave is
rotating counterclockwise.

The numerically computed 1D DFT was approx. 740 nA/cell, and in 2D,
approx. 750 nA/cell. These values are for the rectangular current pulses of 2 ms
duration, and with an intracellular conductivity assumed to give o = 10uS
(note that only the ratio of I.,:/«a is used in the model). This shows that the
2D effects are less important than other simplifications used. We believe that
the crudest of the simplifications of that theory is the use of Fife technique [35],
considering the excitation wave propagation as trigger waves in bistable media
with one fast variable (the transmembrane voltage), while the conditions of
propagation are governed by slow and local evolutions. The evolution in the
OGPV model is more complicated, as there are three other variables u of
characteristic time scales roughly comparable to that of the transmembrane
voltage.

6 Discussion

The results described above are all for homogeneous isotropic 2D models; the
real ventricle is three-dimensional, with an anisotropic fibre architecture, and
inhomogeneous, both in the sense of presence of inexcitable obstacles (such as
blood vessels) that can act to pin reentrant sources [38], and with gradients in
excitation properties, the transmural endo-to-epicardial differences described
by Antzelwitch [15,16] and the base-to-apex differences that normally give the
ventricular depolarisation and repolarisation the same polarity in the ECG.
These anisotropies and inhomogeneities may mask the simple behaviours de-
scribed above; in particular, the transmural rotational anisotropy cannot be
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be eliminated by a simple coordinate transformation.

In three-dimensional homogeneous media the generalisation of a spiral wave
is a scroll wave, that can have an open linear or curved filament, or a closed
filament that (in principal [39], but almost certainly not in the heart) can be
knotted. Instead of considering motion of the spiral tip, we need to consider
filament motion. The asymptotical approaches to the dynamics of the scroll
filaments have been proposed [40,41]; up to now only for non-meandering
scrolls. Another approach to spiral and scroll waves motions comes from the
application of the symmetries of the Euclidean Group of transformations [42];
but this still has to be developed to account for curved scroll wave dynamics.

It is interesting that some important properties of scroll waves, for instance,
the filament tension [41], that determines the stability of the scroll filament
shape, can be found from 2D simulation, and so it is computationally feasible
to approach this using the OGPV model. Practical interest in this quantity is
that if the tension is negative, then in thick enough medium, the scroll waves
will tend to multiply, and this might provides yet another theoretical scheme
for the development of fibrillation.

A striking feature about the anatomical organisation of the ventricular muscle
is spiral organisation of the orientation of the muscle fibres on the epicardial
surface. At any one point on the ventricular wall, as one penetrates the wall,
the fibre orientation changes; there is a transmural rotational anisotropy. This
rotational anisotropy not only may contribute to the formation of a re-entrant
scroll wave [43], but can lead to spiral wave breakdown of a scroll wabe [44].
This provides a resolution to the paradox that numerical solutions, and exper-
imental observations on thin ventricular slice preparations [45] demonstrate
stable spiral while ventricular fibrillation is believed to be due to breakdown
of spirals.

Fig. 11. Spiral wave in the OGPV model in thee dimensions with rotational
anisotropy of 3:1 velocity ratio and total rotation angle 120°, size of preparation
5 x5 x 1.5 mm.

Reproducing propagation in three-dimensional, biophysically realistic cardiac
wall models with rotational anisotropy is possible — see Fig. 11, but a system-
atic investigation is in practice at the limits of available computing resources.
Our preliminary approach is to use restructurable grid schemes for solving
the full biophysical equations, with computations guided by phenomenology
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known from simpler FitzHugh-Nagumo like caricatures. Within such a three
dimsnional model it is possible, in prinicple, to incorporate transmural gra-
dients in the parameters of the excitation equations, with little increase in
computational load. Although we can simulate the transmural shape changes
in ventricular action potentials by scaling [0 [18], the actual changes in ionic
currents with position in the ventricle is still being investigated, and so detailed
simulations are perhaps premature. What is feasible is preliminary computa-
tions that simulate rather than reconstruct the changes in action potential
shape, to see if these changes in action potential shape, and their rate de-
pendence, have significant effects on propagation. Thus we are in a position
to move into three-dimensional computations of propagation in currently re-
alsitic models of ventricular tissue, that include biophysical, anatomical and
histological detail. The modelling of propagation phenomena in ventricular tis-
sue and the whole ventricles is feasible. The real test of these computational
investigations will be when they are validated against three dimensional vi-
sualisations of propagating activity in real hearts, obtained via laser-mapping
and multiple electrode recordings.
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