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Abstract

We consider applications of a recently suggested new

asymptotic approach to detailed ionic models of cardiac

excitation. First, we describe a three-variable approxima-

tion for the excitation fronts in a detailed ionic model of

human atrial kinetics. It predicts not only the speed of the

fronts but also a condition for failure of propagation, i.e.

gives an operational definition of absolute refractoriness.

This prediction is confirmed by direct simulations of the

full model. Next, we consider problem of initiation of ex-

citation waves, using a piecewise linear caricature of the

INa-driven excitation front. We identify the unstable prop-

agating front solution (“critical front”) as the threshold

event between successful initation and decay, which plays

a role similar to the “critical nucleus” in the theory of ini-

tiation of waves in the FitzHugh-Nagumo system.

1. Introduction

The realism of computer models of excitation propaga-

tion in heart is rapidly increasing, and there exists and op-

timistic view that with the help of detailed cardiac compu-

tational models ”it will soon be possible to do in silico ex-

periments that would be impossible, difficult or unethical

in animals or patients”. However, detailed ionic models

are immensely complicated, making analytical treatment

impossible and simulations costly. Fully resolved three-

dimensional models of human heart are still far beyond the

power of current computers. Numerous attempts have been

made to construct simplified mathematical models of ac-

tion potentials. However a simplified model can be trusted

only if it is derived from an ionic model, rather than fitted

to a selected phenomenology such as AP or CV restitu-

tion curves as is the case for some popular simplified mod-

els. Attempts to use asymptotic methods are complicated

by the fact that some of the important small parameters in

ionic models appear in non-standard ways.

We are using a novel mathematical approach for de-

riving simplified models of cardiac excitation from de-

tailed ionic models. It is based on biophysical features of

such models, including those that are unsuitable for tradi-

tional asymptotic methods, such as large magnitude of the

fast sodium current compared to other ionic currents, and

nearly perfect switch behaviour of ionic channels.

We propose that such simplified models combine com-

putational simplicity with trustworthiness and therefore

can present an attractive alternative to detailed ionic mod-

els for large-scale simulations. In this paper, we present

two examples. One is a numerically accurate model of the

excitation front. It requires numerics, but only of a sys-

tem of three equations rather than 21 and only of station-

ary front solutions. The analysis of such solutions leads to

a simple operational definition of absolute refractoriness

which works in non-stationary simulations of unstable spi-

ral waves in the full ionic model. The other example is

a further simplified model, which is not very good quan-

titatively, but is qualitatively correct and allows exact an-

alytical solution for the stationary fronts. We use these

exact solutions to reveal the nature of the critical regimes

between successful initiation and decay.

2. Methods

A detailed exposition of our asymptotic approach can

be found in [2]. We consider monodomain spatially ex-

tended model of human atrial tissue by Courtemanche et

al [1]. The asymptotic analysis is based on assumptions

about smallness of certain quantities in the equations, for-

malized with an explicit small parameter ǫ as:

∂tV = −C−1

M

(

1

ǫ
INa(V, m, h, j) + Σ′

I(V, . . .)

)

+ D∂2

xV ,

∂tm =
(m(V ; ǫ) − m)

ǫ τm(V )
, m(V ; 0) = M(V )θ(V − Vm),

∂th =
(h(V ; ǫ) − h)

ǫ τh(V )
, h(V ; 0) = H(V )θ(Vh − V ),

∂tua =
(ua(V ) − ua)

ǫ τua
(V )

,



∂tw =
(w(V ) − w)

ǫ τw(V )
,

∂toa =
(oa(V ) − oa)

ǫ τoa
(V )

,

∂td =
(d(V ) − d)

ǫ τd(V )
,

. . . (1)

where θ() is the Heaviside function, representing the

nearly perfect switch behaviour of the INa gates. The rest

of the equations are as in [1]. See [2] for further details.

Equation (1) in the singular limit ǫ → +0 and in the fast

time T = t/ǫ gives a closed system of three equations

∂T V = −INa(V )m3hj/CM + ∂2

XV,

∂T m =
(

M(V )θ(V − Vm) − m
)

/τm(V ),

∂T h =
(

H(V )θ(Vh − V ) − h
)

/τh(V ). (2)

where j is slow compared to m and h and remains constant

in the fast time T . As this system is obtained by replac-

ing truly small quantities with zero, it is expected to give

results numerically close to the full model, as far as fast

processes such as fronts are concerned.

Further “caricature” simplification of this model is

achieved by replacing functions M(V ), H(V ), τh(V ) and

INa(V ) with constants, and assuming additionally the limit

of small τm so that m always remains close to its quasis-

tationary value θ(V − Vm) [3]. After a suitable rescaling,

this is brought to the system

∂tV = θ(V − 1)h + ∂2

XV,

∂th = (θ(−V ) − h) /τ. (3)

This system has exact solutions for stationary propagat-

ing fronts V = V (x − ct), h = h(x − ct). Front

speed c satisfies a finite transcendental equation involving

the dimensionless parameter τ and the pre-front value of

V (+∞, t) = Vα, but this equation admits a complete ana-

lytical investigation. In particular, for a fixed value τ , front

solutions are possible for a finite range of Vα, and for all

but marginal values of Vα there are two front solutions:

one stronger and faster and the other weaker and slower.

Further, it appears that the stronger faster front is stable

and the weaker slower front is unstable [3, 4].

3. Results

3.1. Absolute refractoriness

We have studied stationary front solutions in (2) in the

form V (z), m(z), h(z) where z = x − ct, numerically

as solutions of the boundary value problem with boundary

conditions V (+∞) = Vα, h(+∞) = 1, m(+∞) = 0,

V (−∞) = Vω , h(−∞) = 0, m(+∞) = 1. In this prob-

lem, Vα and j are free parameters, and c and Vω are found

as nonlinear eigenvalues. The result is that the solutions

exist for j > jmin(Vα) for a certain function jmin(Vα).
Hence j < jmin(Vα) is the condition of the block of

propagation of the wave, as far as stationary (in the fast

scale) propagation is concerned. Assuming that there have

been no fronts and no external currents for some time, then

the condition of block simplifies further. This is due to the

fact that the recovery phase of an action potential has a

great deal of independence of the circumstances of the its

initiation. That means, that in the wake of the previous

excitation wave and ahead of the next one, j(t) and V (t)
at a point are closely related to each other, and so we can

say that j(t) = jwake(V (t)) for some function jwake(V ),
with a good accuracy. The lines j = jmin(V ) and j =
jwake(V ) have a unique intersection at a point (jcrit, Vcrit).
For the standard parameters of [1], we have found jcrit ≈

0.297 and Vcrit ≈ −72.5 mV. This point gives a simple

numerical criterion: a front cannot propagate through the

tissue where j < jcrit or V > Vcrit. Of these two criteria,

j < jcrit is more convenient for checking in a numerical

simulation, as j does not change much during the front

itself whereas V does.

Fig. 1 illustrates how this criterion compares with the

results of the direct numerical simulation of the full model

(1). The colour coding uses V for the red component and

θ(jcrit − j) for the blue component. Hence the front of the

exciation wave is red, and the absolutely refractory zone,

according to the criterion j < jcrit, is blue. Hence the

prediction is that the front of the wave should stop propa-

gating if and only if the red front reaches the blue tail. The

figure shows one such event. The total duration of the sim-

ulation before the self-termination of the spiral wave was

about 7.5 sec. During this interval, wavebreaks happened

when and only when the red fronts touched the blue tails;

there were four such events.

3.2. Initiation problem and critical fronts

There exists a well developed theory of initiation of

propagating waves in the FitzHugh-Nagumo of equations,

see e.g. [5, 6, 7], in the singular limit when the activa-

tor (excitation) variable is much faster than the inhibitor

(recovery) variable. The fast subsystem coincides with

Zeldovich-Frank-Kamenetsky [8] equation, also known as

Nagumo equation [9]:

∂tu = −(u − u1)(u − u2)(u − u3) + ∂2

xu (4)

where u1 < u2 < u3, u2 < (u1 + u3)/2 and u1

corresponds to the resting state in the two-variable full

FitzHugh-Nagumo system. Initial conditions are consid-

ered which are close to u1 except in a finite “liminal” in-

terval. A key role in this theory is played by the so called



Figure 1. Wavebreak in Courtemanche et al. [1] model. Red component: voltage. Blue component: absolutely refractory

region as predicted by asymptotic theory. Box size 75 × 75 mm2 with D = 0.03125 mm2/ms, snapshots shown with

the interval of 40 ms. The yellow line on the second snapshot indicates the site where the front runs into the absolutely

refractory zone.

“critical nucleus” u∗(x), which is a nontrivial stationary

solution of (4) such that u∗(±∞) = u1. This solution is

unstable, but has only one positive eigenvalue. This means

that its center-unstable manifold has codimension one and

therefore splits the phase space of (4) into two domains.

It appears that one of those domains corresponds to de-

cay of initial perturbation to u1, and the other to the fronts

switching the system to the excitation state u3.

This property has an important consequence. Consider

any continuous one-parametric family of initial conditions,

such that some initial generate fronts and some lead to

decay. Then the curve in the functional space represent-

ing this family, will join the two domains and therefore

will cross the center-stable manifold of the critical nu-

cleus. Therefore, initial conditions corresponding to the

exact threshold between successful initiation and decay,

will give a solution which will neither decay nor initiate a

propagating front, but instead will approach, as t → +∞,

the critical nucleus (up to a translation in x).

The problem of determining a threshold for a particular

class of initial conditions mathematically reduces, there-

fore, to the problem of finding the intersection of the cor-

responding set of initial conditions with this center-stable

manifold. Technically this can be done by various means,

e.g. Galerkin approximation [7].

Unfortunately, this theory is inapplicable to cardiac

models. It easily seen, that unlike (4), the cardiac fast front

equation (3) does not have any nontrivial stationary solu-

tion, so there is no “critical nucleus” here. However, as

we mentioned earlier, this equation has unstable front so-

lutions. According to [4], these unstable solutions have

exactly one positive eigenvalue, at least in some range of

parameters. We therefore conjecture that the center-stable

manifolds of such an unstable front serve as threshold sur-

faces in the functional space, separating successful excita-

tion from decay. In other words, the “critical front” plays

in (3) the same role as the critical nucleus plays in (4).

By the same logic as for critical nuclei, we conclude that

any continuous one-parametric family of initial conditions

stretching from successful initiation to decay, should have

at least one exact threshold initial condition, resulting in

a solution neither decaying nor generating the propagating

stable front, but instead approaching the unstable front.

Fig. 2 verifies this prediction. We used initial conditions

V (x, 0) = Vα+Vstimθ(xstim−x), h(x, 0) = 1 on an inter-

val x ∈ [0, xmax] for a large enough xmax. The width xstim

of the initial stimulus was fixed, and the amplitude Vstim

varied. Larger values of Vstim initiated propagating fronts,

and smaller values led to diffusive spread of V . Accord-

ing to the conjecture, the values of Vstim very close to the

threshold should lead to solutions approaching the unstable

front, before either developing into a stable front or diffus-

ing. This is precisely what is observed. The advantage

of (3) is that the unstable front solution and its speed are

known exactly, so we can compare the transient front pro-

files for near-threshold initial conditions with the unstable

front solution, as well as their speeds. So Fig. 2 confirms

our conjecture. As with ZFK equation, practically useful

prediction could be obtained via a suitable approximation

for the intersection of the given class of initial conditions

with the center-stable manifold of the critical front.

4. Discussion and conclusions

We have shown only two examples how the new asymp-

totic approach can yield theoretical results which can have

useful practical applications. The theory of excitable sys-

tems based on the singular asymptotics of the FitzHugh-

Nagumo system has been developed for more than forty

years and produced remarkable results. Regrettably not all

of those results are applicable or even have correct analo-

gies for cardiac models, as solutions of (4) and (3) have

sometimes very different properties. Hence further inves-

tigation of the asymptotic approach represented by equa-
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Figure 2. Critical fronts in the caricature model (3). The width of the initial stimulus is xstim = 0.3 and the amplitude is

Vstim = 12.716330706144868which is slightly above the threshold for panels (a-c) and Vs = 12.716330706144867which

is slightly below the threshold for panels (d-f). (a,d): Evolution of the voltage profiles. Initial stage is similar in both cases,

later the upper profile develops into a stable front and the lower profile dissipates. (b,e): Same, in the moving frame of

reference with respect to the front point xf (t) defined via V (xf (t), t) = 0. For comparison, dashed green and dotted blue

lines are the exact solutions for the stationary unstable and stable profiles, respectively. Initially profiles are very close to

the unstable stationary profile, and evolve towards the stable stationary profile above and homogeneous distribution below.

(c,f): Evolution of the speed of the front point xf (t). For comparison, dashed green and dotted blue lines show the speeds

of the unstable and stable stationary profiles, respectively. In both cases, the front point first moves with the speed of the

unstable front, and then speeds up towards the speed of the stable front above and drops to zero below.

tions (1–3) is needed.
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