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Abstract

We consider the problem of initiation of a propagat-
ing wave in a one-dimensional excitable fibre. In the
Zeldovich-Frank-Kamenetsky equation, a.k.a. Nagumo
equation, the key role is played by the “critical nucleus”
solution whose stable manifold is the threshold surface
separating initial conditions leading to initiation of propa-
gation and to decay. In ionic models of cardiac excitation
fronts, the same role is played by the center-stable man-
ifold of the “critical” front solution. Approximations of
these manifolds by their tangent linear spaces yield an-
alytical criteria of initiation. These criteria give a good
quantitative appoximation for simplified models and a use-
ful qualitatively correct answer for the ionic models.

1. Introduction

Existence of propagating wave solutions in cardiac ex-
citation equations has been well studied, both numerically,
and analytically for simplified models. However there are
numerous applications where the important question is not
whether the excitation wave can propagate, but whether it
will be generated in response to a given initiation proto-
col. In heart, failure of initiation can cause or contribute
to serious or fatal medical conditions, or render ineffi-
cient the work of pacemakers or defibrillators [1, chapters
31,52,53,95,96,98,105-110]. Mathematically, the question
of whether a given stimulation will produce propagating
wave involves non-stationary, spatially non-uniform solu-
tions to a strongly nonlinear equation or system of equa-
tions. Any analytical progress in this direction is therefore
rather difficult, and this problem is mostly approached nu-
merically. We suppose that in view of the importance of
the question, even crude analytical answers could be very
useful.

2. Methods

Our approach is based on the understanding of the ini-
tiation problem in terms of dynamical systems theory, by
treating the partial differential equation model (with one
spatial dimension) as time-dependent ordinary differential

equation in a functional space. From that viewpoint, the
initiation problem reduces to description of the boundary
of the basins of two attractors, of the resting state and of
the propagating wave. It has been demonstrated [2, 3] that
this boundary is the stable manifold of a saddle fixed-point
called “critical nucleus”, which is a spatially non-uniform
unstable stationary solution u∗(x) of the model. This ap-
proach has been used to design sophisticated numerical
methods of determining the initiation conditions, e.g. [4].
We have recently demonstrated that for ionic models of
cardiac excitation, the concept of the critical nucleus has to
be replaced by the concept of “critical front” u∗(x− c∗t),
and one has to consider center-stable rather than stable
manifold, as the boundary of the basins of attraction [5, 6].

Here we use this theoretical background to suggest a
practical method of studying the initiation problem. The
leading idea is to replace the (center)-stable manifold with
its linear approximation, the (center)-stable space. This
implies linear approximation of the partial differential
equations of the model around the critical solution, i.e. crit-
ical nucleus or critical front as appropriate. In this respect,
our method is different from other theoretical approaches,
which used linear or nonlinear expansion around the rest-
ing state [7] or Galerkin-style approximation to arbitrarily
chosen finite-dimensional manifold of the phase space [8].

As test examples for our approach we consider
Zeldovich-Frank-Kamenetsky (ZFK) equation [9] also
known as Nagumo equation [10],

ut = uxx + f(u), u(u− θ)(1− u), 0 < θ < 1/2, (1)

as the archetypical bistable reaction-diffusion equation,
and the simplified piecewise-linear model of INa-driven
cardiac excitation fronts

ut = Duxx + f(u), u =
[
E
h

]
, D =

[
1 0
0 0

]
,

f =
[
hΘ(E − 1)
(Θ(−E)− h)/τ

]
, τ > τmin ≈ 7.6740 (2)

suggested in [11]. The advantage of these two models is
that they represent typical qualitative features of the corre-
sponding classes of more accurate models, and at the same
time admit analytical solutions, both for the propagating
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Figure 1. (color online) Initiation of bistable fronts. (a,b) Response to an below- and above-threshold initial perturbation
in ZFK equation, (1) for θ = 0.13. Blue/red thin solid lines: voltage profiles at regular time intervals, shifted upwards
with time. Dash-dotted black lines: initial conditions, bold solid black lines: the critical nuclei. (c) The sketch of a stable
manifold of the critical nucleus u∗. The critical nucleus is represented by the black dot; the critical trajectories, constituting
the stable manifold, are shown in black. The family of initial conditions is represented by the dash-dotted line. The bold
black line is the critical trajectory with initial condition in that family. The sub-threshold trajectories coming towards the
reader are represented by the blue line, while the red lines going away from the reader represent super-threshold trajectories.
Note that the point where the initial conditions intersect the stable manifold is shown as the empty circle. (d) The critical
“strength-extent” curve separating initiation and decay initial conditions. The two numerical curves correspond to the
original cubic nonlinearity in (1) and its quadratic approximation (3).

fronts, and for the critical solutions, i.e. the cricial nucleus
of (1) and the critical front for (2). The knowledge of the
analytical expression for the critical solution is of course
very handy for bulding a linear approximation around it.

We consider the problems on half-fibre, x ≥ 0, with no-
flux conditions on x = 0. As an initiation protocol, we
consider instant spatially-extended perturbation at t = 0
raising the voltage from the resting state,

u(x, 0) = usΘ(xs − x)

for (1) and

u(x, 0) =
[
−α
1

]
+ EsΘ(xs − x)

[
1
0

]
, α > 0,

for (2). Extension to a stimulus with finite temporal dura-
tion is possible [12] but will not be considered here.

3. Results

3.1. Bistable fronts

Fig. 1(a–c) illustrates the concept of the critical nucleus,
as a universal transient observed with any near-threshold
condition, and the role of its stable manifold as the bound-
ary of the basins of attractors. In the limit of θ � 1, the
nonlinearity can be approximated by a quadratic polyno-
mial,

f(u) ≈ u(u− θ), (3)

and then the critical nucleus has the form

u∗ ≈
3
2
θ sech2

(
x
√
θ/2
)
. (4)

We consider the linearized equation for v(x, t) = u(x, t)−
u∗(x). The stable manifold is defined by the equation that
the projection of the initial condition v(x, 0) on the unsta-
ble direction vanishes,

∞∫
0

φ1(x) (usΘ(xs − x)− u∗(x)) dx = 0, (5)

where

φ1(x) = C1 sech3(x
√
θ/2), C1 6= 0,

is the eigenfunction of the self-adjoint linearized operator,
corresponding to the only positive eigenvalue λ1 = 5θ/4.
This leads to the equation of the critical curve us(xs) of
the form

us =
9θ
8

[
2
π

tanh

(
xs
√
θ

2

)
sech

(
xs
√
θ

2

)

+
4
π

arctan
(
exs

√
θ/2
)
− 1
]−1

. (6)

Fig. 1(d) demonstrates the accuracy of this analytical ap-
proximation. We see that the error introduced by replacing
the stable manifold with the stable space is of the same
order of magnitude as the error caused by the quadratic
approximation of the function f(u).

3.2. Cardiac fronts

Fig. 2(a–c) illustrates the concept of the critical front,
as a universal transient observed with any near-threshold
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Figure 2. (color online) Initiation of cardiac fronts. (a,b) Response to an below- and above-threshold initial perturbation
in Courtemanche et al. model [13]. Blue/red thin solid lines: voltage profiles at regular time intervals. Dash-dotted black
lines: initial conditions, bold solid black lines: the critical fronts at a selected time moment. (c) The sketch of a stable
manifold of the critical front u∗. The critical front is represented by the black nearly straight upward trajectory; the critical
trajectories, constituting the center-stable manifold, are also shown in black. The family of initial conditions is represented
by the dash-dotted line. The bold black line is the critical trajectory with initial condition in that family. The sub-threshold
trajectories coming towards the reader are represented by the blue line, while the red lines going away from the reader
represent super-threshold trajectories. Note that the point where the initial conditions intersect the center-stable manifold
is shown as the empty circle. (d) The critical “strength-extent” curve separating initiation and decay initial conditions in
the simplified model (2).

condition in ionic cardiac models, and the role of its center-
stable manifold as the boundary of the basins of attractors.
The specifics of the critical front is that it does not satisfy
the no-flux boundary condition at x = 0 so the problem
has to be considered on the whole line −∞ < x < ∞. In
such setting, the linearized operator has a zero eigenvalue,
corresponding to the equivariance with respect to the trans-
lations along the x axis. A closely related fact is that
critical fronts make a one-parametric family u∆

∗ (x, t) =
u∗(x− c∗t−∆) with an arbitrary parameter ∆, and when
performing linearization v(x, t) = u(x, t) − u∆

∗ (x, t)
about it, one has to make a decision which ∆ to choose. A
natural choice is to demand that the projection of v(x, 0)
on the neutral direction along the zero-value eigenfunction
vanishes, too, as well as the projection on the unstable di-
rection. This leads to system of two simultaneous equa-
tions relating xs, Es and ∆,

∞∫
−∞

ψj(x−∆) (u(x, 0)− u∗(x−∆)) dx = 0, j = 1, 2

(7)
where the initial condition u(x, 0) is assumed evenly ex-
tended to x < 0, ψ1,2(x) are projectors on the unstable
eigenfunction φ1(x) corresponding to a λ1 > 0 and on
the translational eigenfunction φ2(x) = ∂xu∗(x) corre-
sponding to λ2 = 0. Note that the linearization oper-
ator in this case is not self-adjoint therefore φj 6= ψj .
For the simplified model (2), the critical front solution

u∗(x) =
[
E∗(x)
h∗(x)

]
has the form [11]

E∗(x) =


−α+ α exp(−c∗x) (x ≥ −ξ),

ω − τ2c2∗
1 + τc2∗

exp
(
x

τc∗

)
(x ≤ −ξ),

h∗(x) =

 1 (x ≥ 0),

exp
(
x

τc∗

)
(x ≤ 0),

where ω = 1 + τc2∗(α + 1), ξ = 1
c∗

ln
(

1+α
α

)
and c∗ is an

implicit function of τ and α defined as the smallest of the
two solutions of the transcendental equation

τc2∗ ln
(

(1 + α)(1 + τc2∗)
τ

)
+ ln

(
α+ 1
α

)
= 0.

This analytical solution for u∗ allows an analytical solu-
tion for the projectors ψj required in (7). The calculations
involved are, however, rather extensive to be presented
here in full, so we refer the interested reader for further
details to [14] or to our future more detailed publications,
and present here only the the outline of the method. The
linearized operator is defined in piecewise manner in the
three intervals I1 = {x ≤ −ξ}, I2 = {−ξ ≤ x ≤ 0}
and I3 = {x > 0}, with singularities at x = −ξ, 0 due
to linearization of the Heaviside functions. Inside each of
the three intervals, the linearized operator has constant co-
efficients, so the eigenfunctions have the form φj(x) =
{φjl(x), x ∈ Il}, φjl =

∑3
k=1 ajkl e

νjklx, l = 1, 2, 3,
where νjkl is the k-th eigenvalue of a 3 × 3 matrix of the



constant coefficients in the interval Il, and index j enu-
merates the eigenvalues λj of the linearized operator. The
matching conditions for the pieces of φj,l(x), l = 1, 2, 3
at x = −ξ and x = 0 lead to a transcendental charac-
teristic (“Evans”) equation for λj , which has been inves-
tigated in [15]. In particular, for α = 1 and τ = 8.2 we
have c∗ ≈ 0.33187 and the only eigenvalue with a positive
real part is λ1 ≈ 0.039903. Besides, we have of course
the eigenvalue λ2 = 0 corresponding to the translation
mode. Similarly, we have ψj(x) = {ψjl(x), x ∈ Il},
ψjl =

∑3
k=1 bjkle

µjklx, l = 1, 2, 3, the matching condi-
tions for which lead to the same characteristic equation as
for φj . After we substitute the thus found ψj(x), j = 1, 2
into (7), we obtain a closed system of two finite equations
relating xs, Es and ∆. It is linear with respect to Es which
is therefore easily eliminated, leaving a single finite tran-
scendental equation relating ∆ with xs and thus implicitly
definingEs as the function of xs. This dependenceEs(xs)
is the sought for critical strength-extent curve. The com-
parison of this analytical prediction with the direct numer-
ical simulations is presented on Fig. 2(d).

4. Discussion and conclusions

The proposed method uses linearization around a criti-
cal solution so it should work when the initial condition is
not too far from the critical solution, with a suitable shift
in space for the case of a critical front. Exactly how far
it should be for the method to work is not obvious a pri-
ori. The considered examples show that the method works
surprisingly well even for such crude initial conditions as
stepwise profiles.

Practical interest presents the possibility of extend-
ing the approach developed using the above archetypical,
“toy” models to more realistic models describing concrete
systems. We expect that the method work in the same way,
only the critical solution, as well as the projectors to its
principal eigenfunctions are to be calculated numerically.
Notice that the case of critical front would be more com-
plicated as we would need projectors of two eigenfunc-
tions. After that, equation (5) is linear so readily solvable
for us, whereas system (7) is nonlinear with respect to the
unknown ∆ so will need numerical solution again.

As already noted, the method readily generalizes to the
stimulation extended in time, which is more usual in elec-
trophysiological applications. The critical nucleus case
then easily leads to the classical Lapicque-Blair-Hill equa-
tion of the strength-duration curve [12], but the critical
front case is again more complicated.
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