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Abstract

Ventricular fibrillation is believed to be produced by the breakdown of re-entrant
propagation waves of excitation into multiple re-entrant sources. These re-entrant
waves may be idealised as spiral waves in two dimensional, and scroll waves in three
dimensional excitable media. Optically monitored, simultaneously recorded endo-
cardial and epicardial patterns of activation on the ventricular wall not always show
spiral waves. Analysis of optically recorded irregular electrical wave activity on the
surface of the heart during experimentally induced fibrillation reveals a strong local
temporal periodicity. The spatial distribution of the dominant temporal frequencies
of excitation has a domain organization. The domains are large (=~ 1cm?) and they
persist for minutes. We show that numerical simulations, even with a simple homo-
geneous excitable medium, can reproduce the key features of the simultaneous endo-
and epicardial visualisations of propagating activity, and so these recordings may be
interpreted in terms of scroll waves within the ventricular wall.

The domain structure can be reproduced in a two-dimensional excitable medium
governed by the FitzHugh-Nagumo equations with a spatial inhomogeneity. We iden-
tified two potential mechanisms that may contribute to the observed experimental
dynamics: coexistence of stable spiral waves with non-commensurate frequencies of
rotation, and Wenckebach-like frequency division from a single spiral source due to in-
homogeneity. Both mechanisms reproduce the uniformity of the dominant frequency
within individual domains and sharp boundaries between domains. The possibility
of distinguishing between different mechanisms using Lissajous figures is discussed.



1 Introduction

Ventricular fibrillation almost invariably occurs during the process of dying, and its onset
underlies sudden cardiac death. It is widely believed that the mechanism of ventricular
fibrillation is that it is produced by one or many re-entrant (spiral in 2D or scroll in 3D)
propagating waves of excitation in the ventricular wall — see [1] [2], [3], [4] and [5] for
numerical experiments with scroll waves in anatomically accurate models.

Recently, detailed mapping of the surface electrical activity of the heart has become
possible [6, 7]. The patterns of excitation during experimental fibrillation may show no
spiral waves on either surface of the heart muscle. This difference between theory and
experiment may mean either that the fibrillation is not due to re-entry, or that the re-entry
waves are masked by the inhomogeneity, anisotropy and three-dimensional nature of the
ventricular wall. Quantitative analysis of the excitation patterns has led to the observation
that the dominant frequency of oscillations has a domain structure, the dominant frequency
being approximately uniform within one domain but different in different domains, and the
boundaries between the domains being quite sharp, with the domains persisting over tens
of seconds i.e. hundreds of times longer than the approximate periodicity of the local
oscillations [8, 9]. Here we show that the three-dimensional nature of the wall alone is
enough to qualitatively explain the experimental observations, as these observations can
be reproduced in numerical experiments with a simple mathematical model.

Mathematical models of cardiac excitability based on voltage clamp experiments with
single cardiac cells and single channels use many variables to describe each cell, and can
take into account the bidomain and anisotropic nature of the cell-to-cell conductivity and
tissue inhomogeneity:

&E = F(E,g;,7)+D-E,
atgi = Gz(Eag]aF)a
i,j=1,...,N,

where 7 is a vector of spatial coordinates; E is the transmembrane voltage; D is the
conductivity operator, which may explicitly depend on 7 and is integro-differential to take
into account the bidomain structure of the tissue or degenerates into a Laplacian if it does
not; and g = (g1,92...)" is a column-vector of local variables, including gating variables
and ionic concentrations. In the case of the OXSOFT model of guinea-pig ventricular cell
[10, 11], N = 16. An illustration of re-entrant activity obtained in such a model is shown
on Fig. 1(a), where we have used a second-order differential operator for conductivity
suggested by Panfilov and Keener [12] and Fenton and Karma [13]:
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This form takes into account the rotational anisotropy of the real ventricular tissue: the
direction of the fibres which is the direction of the largest eigenvector of the conductivity
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tensor D; ;. This is a scroll wave in a small (5 x 5 x 1.5 mm) slab of tissue with specially
chosen boundary conditions, to permit the existence of a re-entrant wave (with zero-flux
boundary conditions, a persistent re-entry wave in this model requires a larger piece of
ventricular wall).

The complicated local kinetics and complicated description of conductivity makes such
a biophysically detailed virtual cardiac tussue computationally expensive. Some qualitative
results can be obtained for simpler models, which caricature the excitation and propagation
properties of cardiac tissue. Neither complicated and stiff local kinetics, nor inhomogene-
ity or anisotropy are required to produce complicated spatio-temporal behaviour of the
excitable medium. We used for simulations the simple homogeneous FitzHugh-Nagumo
(N = 1) excitable medium model with simple diffusion-like conductivity. At some param-
eter values, the scroll wave filaments in this model have negative tension, which leads to
their breakup and development of a three-dimensional “turbulence” of excitation waves,
resembling fibrillation [14, 15]. Figure 1(b) shows a scroll wave in this model before the
breakup into two pieces. The surface patterns of this “numerical fibrillation” demonstrate
the same qualitative features as the patterns observed in optical mapping experiments.

We explore possible mechanisms of the domain structure. Our basic assumption is that
fibrillation is caused by pinned re-entrant vortices[16, 9]. As a single spiral wave would
only produce a periodic (monomorphic) pattern, some modification is required to explain
the polymorphic behaviour. We consider two hypothesis:

M: There are two (or more) different re-entry vortices with different periods, and the
domains of influence of the vortices are the dominant frequency domains.

W: There is essentially only one re-entry vortex, but its period is shorter than the min-
imal propagation period in some parts of the tissue, so in those parts intermittent
conduction causing simple rational frequency division is observed. In cardiology this
is described as Wenckebach frequency division.

Note that the hypothesis M is not quite trivial. It is a widespread belief that two or
more periodic sources of waves in an excitable medium cannot coexist for a long time, as
the fastest source should entrain all others. The mechanism of such entrainment is based
on the observation that the excitation waves, in the head-on collisions, annihilate in the
ratio 1:1. This sometimes leads to a natural but hastily drawn conclusion that coexistence
of sources of different frequencies in the same medium is impossible [17]. Entrainment by
the fastest source, however, assumes a relative homogeneity of the medium. If the medium
is strongly nonhomogeneous, then it is conceivable that the waves of the faster source may
be simply unable to penetrate the more refractory part of the medium where the slower
source is located. As a result, some excitation waves annihilate by themselves without
colliding with other waves, and no entrainment will occur. Note that different frequencies
of spiral waves imply an inhomogeneity of properties, in particular the refractoriness.

Using simulations, we identify the key features of the excitation patterns corresponding
to each of the two mechanisms, and apply this to the patterns observed in the isolated



tissue experiments. The result is that both hypotheses are consistent with the experi-
mental data. Moreover, both mechanisms may be involved, either simultaneously, or one
mechanism may switch to the other. In all cases a small number of re-entrant sources in an
inhomogeneous medium is sufficient to reproduce the characteristics of the experimentally
observed domains.

2 Methods

Numerical For homogeneous, three dimensional tissue we used for simulations the FitzHugh-
Nagumo system of equations:

ou = € Yu—u?/3—v)+ Vu,
ov = e(lu+vy—Pv), (2)

where € = 0.3, 8 = 0.75 and v = 0.5, with forward-time Euler differencing with time step
0.03t.u. and simplest seven-point approximation of the Laplacian on a rectangular grid
with space step 0.5s.u., in media of different size with non-flux boundary conditions. The
period of spiral wave in this model is about 20t.u., This choice of parameters provides
negative tension of the filaments, i.e. scroll waves in sufficiently large media are unstable,
their filaments tend to lengthen, curve, touch the boundaries and each other and break
onto pieces, each of which then grows again etc. At the same time, the same set of
equations in two spatial dimensions shows quite stable spiral waves. This is in qualitative
correspondence with the fact that real fibrillation is only observed in sufficiently thick
hearts or heart preparations. The activation patterns at the opposite (upper and lower)
surfaces of the medium were recorded and visualised in the same way as experimental
patterns.

Both hypotheses for the domain structure require a macroscopic inhomogeneity of the
tissue. It is well known that in an inhomogeneous medium re-entrant vortices tend to
drift [18, 19, 20]. To prevent this drift and so produce numerical simulations of stationary
rotating vortices in an inhomogeneous medium, we exploited the effect of pinning to lo-
calised inhomogeneities [21, 22, 17]. We used the following inhomogeneous variant of the
FitzHugh-Nagumo system:

du -1 3 2
? = ¢, (r)(u—u’/3 —v)+Vu
W = @) ®)

in a rectangular region r € [0, X] x [0,Y], X = 30, Y = 12, with impermeable bound-
aries, for # = 0.68 and v = 0.5. Parameters ¢,, depended on r, to represent spatial



inhomogeneities (see Fig. 2):

e(r) = €/x(r),
eu(r) = ex(r) (1+Kexp{—|(r —r)/ N[} + K exp{—[(r — ;) /\:["}) ,

X(r) = :1+%(1+tanh <$_xb)>(k—1). (4)

w

The function x(r) provided a macroscopical inhomogeneity, namely, a non-specific k-fold
slowdown of all dynamic variables in the right hand part of the medium compared to the
left, and the terms K exp() in ¢, provided a localised suppression of excitability in two
‘holes’, the regions with radii of the order )\;. Figure 2 illustrates the distribution of ¢, and
€, in the medium, for two different parameter sets used in the numerics. These sets were
different in parameters k and w: k = (1++/5)/2 ~ 1.618 and w = 3 (producing a stronger
but smoother inhomogeneity) and k = v/2 ~ 1.414 and w = 0 (producing a slighter but
sharper, stepwise inhomogeneity). Other parameters were ¢ = 0.3, K = 100, A\, = 0.6,
A = MVE, 1= (0.15X,0.5Y), r, = (0.8X,0.5Y), and z;, = 0.4X.

The initial conditions were established as follows. A spiral wave was initiated in a
homogeneous medium (kK = 1, K = 0). The dynamic variables U(¢) = u(r,2nt/T),
V(¢) = v(r,2nt/T) were recorded at a point r far from the core of the spiral, for one
rotation period, ¢ € [0,7]. This recording was used to create initial conditions for the
inhomogeneous medium, u(r,0) = U(¢), v(r,0) = V(¢), where the distribution of the
phase ¢ was specified to provide either one spiral wave,

¢ = |r —r|/A — arg(r — 1), (5)

or two spiral waves,
QS = max{\r - I'l|/Al - arg(r - rl), —‘I‘ - rr‘/Ar + arg(r - rr)} ) (6)

around the inexcitable holes r;, r,. Here A; = 3, A, = A)Vk, and arg(r) is defined as the
angle made by vector r with the z-axis (counter-clockwise being positive).

Simulations were performed with spatial step 0.2 space units (s.u.) of (3) and output
data were sampled with interval 0.64 time units of (3). The value of the variable u in
the solutions to (3) was taken as an equivalent of the optical signal in the experimental
procedure described below. The time unit of (3) was assumed to correspond to 13 ms.,
as if the numerical data were sampled with the frequency 120 Hz; this provides a rough
correspondence of the oscillations frequencies observed in experiment and in numerics.

Experimental Experimental visualisations of electrical activity were from the endo- and
epicardial surfaces of pieces of sheep ventricular wall (5-11 mm thick) that had been excised
and perfused via the coronary arteries, and superfused with oxygenated physiological saline
containing a drug (diacetyl monoxime), that blocked contraction, and a potential-sensitive
dye (di-4-ANEPPS). The video images were obtained at 120 frames/s with a spatial reso-
lution of approximately 0.5 mm . The optical signals at different points were normalised
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Figure 1: Scroll waves in mathematical models of excitable tissues. (a) Kinetics of OX-
SOFT guinea-pig ventricular cell, with rotational anisotropy of conductivity tensor. (b)
FitzHugh-Nagumo model with homogeneous isotropic conductivity, but with negative ten-
sion of scroll filaments. Shown are the isosurfaces of the excitation variable.

()

Figure 2: Spatial distribution of the parameter ¢, in numerical experiments. Lighter shade
represents higher value of ¢,. (a¢) Smooth inhomogeneity, k ~ 1.618, w = 3. (b) Weaker
and sharp, stepwise inhomogeneity, k£ ~ 1.414, w = 0. Two localised defects shown as the
dark spots are regions of reduced excitability, .e. high value of ¢,.



to allow for the variations of the dye concentration etc. The points where the signal was
too low were excluded from consideration, so the shape of the patterns represents not the
excitable ventricular preparation, but merely the stained part of it, typically of the size of
about 3 x 3c¢m?. More technical details can be found in [23].

Irregular, self-sustained re-entrant propagation can be induced in a resting tissue prepa-
ration by rapid electric pacing; this provides an experimental model for the electrical activ-
ity during ventricular tachycardia (high — up to about 10 Hz— frequency activity, believed
to be due to simple re-entry in the ventricle) and fibrillation (irregular, high frequency ac-
tivity due to multiple re-entrant sources). Figure 3 shows typical images of endocardial
activity.

Periods of excitation in our experiments were up to about 200ms in “monomorphic
tachycardia” and in the range of 100-150 ms in “fibrillation”. So we may scale the time
unit of (3) roughly as 5-10 ms.

Visualisation The volume patterns (Fig. 4(c¢) and Fig. 5(¢)) were visualised analogously
to Fig. 1, using isosurfaces of £, namely F = 0. To reveal more details of the complicated
spatial structures, we showed only wavefronts (lower values of g, semi-transparent), and
their edges (intermediate values of g, non-transparent), and made the wavebacks (higher
values of g) invisible.

2.1 Data processing

The processing included calculation of pseudo-ECG, and finding pointwise Fourier spectra
with subsequent pointwise bandpass filtering of the signals and calculating the spatial
distribution of powers of the frequency bands.

Pseudo-ECG The pseudo-ECG signals were calculated from the experimental and sim-
ulation data, u(z,y,t), by simple summation,

E(t) = / / u(z, y, t) dady. (7)

Both the real ECG and the calculated E(t) are integral characteristics of electrical activity;
E(t) has an advantage that it can be easily obtained directly from optical mapping data,
and from the results of numerical simulations, thus providing a uniform approach to both
types of datasets.

Fourier spectra We performed a pointwise discrete Fourier transform on both the sim-
ulation and tissue experimental data,

wz,y, f) = Flulz,y,1)] (8)



to obtain the cumulative power spectra,

Pm:/\wWJme. 9)

Note that a cumulative power spectrum obtained by (9) is a spectrum of the whole
signal, not a power spectrum of the pseudo-ECG (7).

Filtering Given the frequencies of the main peaks and peak widths, the signals were
then filtered to one of the two or three windows,

W;(f) = exp (-Q;(1 - f/£;)") (10)

where f;, j = 1,2(,3) are the central frequencies of the windows, and (), are coefficients
representing filtering quality. Parameters f; and (); were chosen based on the visual
analysis of frequency spectra of the experimental or numerical data, so that each window
is reasonably wide but covers only one frequency peak.

Frequency band power distributions The distribution of the power of the frequency
band j was computed as

&@w=/mm%mm«ﬂw (11)

and these distributions were then visualised as density plots, with black corresponding to
zero and white to the maximal value of Bj(z,y).

3 Results

In experimentally observed patterns of surface actiity, most often, no spiral waves are
apparent and the activity appears to be irregular in space, while at any point it is repetitive
(roughly periodic) in time. The apparent complexity of the patterns of activity on the heart
surface does not remain the same during an episode of experimental ventricular fibrillation,
and this does not appear to be by spiral waves breaking down into irregularity. Cores of
spiral waves are shown in the pictures by symbols D and ®. The locations of these cores
were done manually by visuial analysis of the movies rather than still pictures. Though the
automatic detection of phase singularities is possible [6], manual detection is more reliable.
Figure 3 shows two snapshots from the same experiment. In less than three seconds, the
propagation pattern has changed completely, and where a spiral wave was at one moment,
plane waves are seen later.

The typical qualitative properties of experimentally observed excitation patterns can
be summarised as follows.



Figure 3: Transient spiral wave on the epicardial surface. Shown are experimental frames
with the interval 25ms. (a) Spiral wave rotates clockwise, symbol ® shows the rotation
center. (b) The same preparation, 2.5s later. No spiral wave is seen; the activation pattern
is nearly plane waves propagating from left to right. The dark line is the “shadow” of an
electrode.



e Synchronous endo- and epicardial views of the same preparation can, and most often
do, show different dynamics. In case of simple excitation pattern, corresponding to
monomorphic tachycardia, the patterns are different but synchronous; in more com-
plex cases, corresponding to polymorphic tachycardia/fibrillation, they seem virtually
independent.

e At every particular point, most of the time the electrical activity is approximately
periodic. The spatio-temporal pattern as a whole can be approximately periodic, in
the examples that correspond to monomorphic tachycardia, but not in the examples
that correspond to polymorphic tachycardia/fibrillation.

e During fibrillation, spiral waves are sometimes seen on the surfaces, but quite often
they are not. If they are seen, they appear only transiently, for a few rotations, and
then disappear.

e The (visual) complexity of the patterns changes with time; at large times, it appears
to increase.

All these observations are consistent with scroll waves of excitation within the bulk of
the ventricular wall. We illustrate this by numerical simulations. Mathematical models
can be used to reconstruct the excitation patterns on the surface and within the bulk of the
tissue, while with current experimental techniques only the surface patterns can be directly
visualised. Simulating this model in different medium sizes, we were able to reproduce the
qualitative features of the experimental surface patterns. Two typical examples are shown
on Fig. 4 and Fig. 5.

Figure 4(a) shows activity in which the epicardial surface is being depolarised by an
almost spatially uniform, time periodic depolarisation, while activity on the endocardial
surface is a wave train propagating from left to right. In both cases the temporal period is
approximately 190ms. A simple three dimensional mechanism for this would be a single
scroll wave, with its filament roughly parallel to the surfaces of the heart, and its position
closer to the endocardial surface, as illustrated by Fig. 4(b,c). If the filament were far from
the epicardial surface, the excitation wavefront would meet the epicardial surface almost
simultaneously, giving a spatially uniform depolarisation. If the filament were closer to the
epicardial surface, the curved excitation wavefront would first meet the epicardial surface
as a narrow band, and excitation would propagate perpendicular to the band, in both
directions, at a velocity faster than the propagation velocity for a plane wave. This is
seen in Fig. 4(c), where the apparent velocity of the simulated epicardial wave front is
considerably higher than that of the endocardial wave, that has the same period. Krinsky
et al [24] have suggested such a scroll wave, or scroll ring, as an explanatory mechanism for
a narrow band of surface excitation that spreads away in both directions from its midline.
For the model (2)), with the parameters used, a single scroll wave is unstable in a large
medium[15], and so a double scroll is used to reproduce this behaviour in Fig. 4(b,c). On
the nearest and on the most distant surfaces of the medium, two-armed spiral waves would
be seen; but the activation patterns on the upper and lower surfaces do not show spiral
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Figure 4: Comparison of experimental surface views of simple excitation pattern
(“monomorphic tachycardia”) with numerical simulations of metastable double scroll in
FHN (medium size 43 x 43 x 43s.u.). (a) e)ﬁerimental patterns, the upper three pictures
are epicardial views and the lower three pictures are endocardial views with interval 50 ms.
(b): numerical simulations, surface patterns. White frames show the region where the
behaviour in the experiment. (¢): numerical simulations, corresponding volume view.



waves. The filaments of the double scroll are curved and far enough from the upper surface.
Therefore, the front is convex when approaching this surface, and a focal source of waves
is observed at the point where the wavefront first touches it. And the lower surface shows
just waves propagating from left to right, as it is close to the double scroll filaments, and
the emanated wave is not convex enough to form a focal source.

White frames on Fig. 4b indicate an area where the experimental excitation patterns of
Fig. 4a are reproduced almost literally. Namely, synchronous oscillations on the epicardial
surface, and waves from the top-left corner to the right-hand side, not the endocardial
surface. That is, if only the region within this white frame was “stained” with the voltage-
sensitive dye, we would see exactly the same activation pattern as in the real experiment.

The more complicated, irregular surface views are characteristic of the later, “fibrilla-
tion” stages. Such views can be qualitatively reproduced by a small number of interacting
scrolls that are continually breaking down and being born from broken wavefronts. This
is illustrated in Fig. 5, where the model parameters are such that simple (single or dou-
ble) scroll waves are unstable and breakdown occurs. The endo- and epicardial images
show coherence at the scale of the action potential wavelength, so can be described as
propagating, curved wavefronts, that sometimes have ends (corresponding to a phase sin-
gularity), and occasionally spiral forms can be identified. The feature of these surface
images can be simulated by a few interacting scroll waves. The “literal” reproduction of
experimental patterns in the mathematical model seem to have little sense. The reason is
that the dynamics of the scroll waves in this model is inherently unstable, analogously to
the Kuramoto-Sivashinsky wavefronts, and arbitrarily small difference in initial conditions
leads to significant difference in the solution [15]. This feature is essential for the imitation
of the fibrillation, if the latter to be considered as a chaotic process. Figure 5 shows a
typical experimental pattern and its rough qualitative analogue found in a numerical ex-
periment. On the epicardial surface of the experiment and on the top surface in the model,
there are two spiral waves, one rotating clockwise and the other counterclockwise. On the
endocardial and bottom surfaces, the pattern is more complicated: one counterclockwise
rotating spiral (close to the right edge of visible area of the experimental preparation, and
close to the upper edge of the numerical picture), and two-armed clockwise spiral in the
middle. The positions of single spiral waves in all cases were relatively stable, i.e. they
remained on the same place for a few rotations or slowly drifted, both in experiment and
in the model. The two-armed spirals showed significant meander, again, both in the ex-
periment and in the model, so the double &) symbols only very approximately show their
location. Double spiral wave could be produced by an appropriately oriented double scroll
analogous to that shown on Fig. 4(b). However, we can see from Fig. 5(¢) that it was
not the case here, and the two filament are close to each other only near the surface and
are independent in the bulk; perhaps, this could be related to their strongly nonstationary
behaviour. This suggests that the appearance of the double spiral i.e. of the two spirals of
the same sign together, might be a transient and, in a sense, an accidental event, same as
an appearance of a single spiral. This is different from the appearance of pairs of spirals of
opposite signs as described in [6] which appear or annihilate on a regular basis as a result
of a scroll filament touching the surface or detaching from from it.
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Figure 5: Comparison of experimental surface views of polymorphic tachycardia with nu-
merical simulations of scroll turbulence in FHN (medium size 50 x 50 x 50s.u.). Layout is
the same as on Fig. 4. The spiral waves are shown by white @ and ® symbols. Interval
between experimental patterns 50 ms; between numerical patterns 4.2 t.u.
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All qualitative features summarised above, are reproduced in the numerical model.
Namely,

e The patterns on opposite surfaces are indeed different, which is an obvious conse-
quence of the three dimensional nature of the model. Moreover, if multiple scrolls
are present, the pictures are not only different, but look uncorrelated.

e The dynamics of scroll waves is approximately periodic rotation around the filaments
which can slowly move. This provides local approximate periodicity almost every-
where. Filaments of multiple scroll waves do not remain in rest, which provides the
absence of global periodicity. Only simple (single or double) scrolls contained in a
small volume, or attached to medium boundary, showed no drift in this model, and
in this case the surface patterns were approximately periodic as a whole.

e The mobility of the multiple scrolls makes it quite likely for the filaments to appear
on a surface for a short time and then disappear again; this is seen on the surface as
a transient spiral wave.

e The complexity of the volume behaviour and of the surface patterns increases with
the size of the medium, and requires lowered excitability of the local kinetics. Both
these factors are in correspondence with changes in electrophysiology of the cardiac
tissue during fibrillation.

3.1 Frequency domains in experimental fibrillatory patterns

Figures 6 and 7 illustrate the frequency domain structure in experimental fibrillatory pat-
terns.

On Figs. 6 and 7, the top two plots are the pseudo-ECG E(t) and cumulative power
spectrum P(f). Experimental data demonstrated a smooth shape of the recorded action
potential, which produced virtually no higher harmonics, and the main peaks were easily
identifiable, though often partially overlapping, as in Fig. 6. The density plots are is
the frequency domain maps: the spatial distribution of the frequency bands power over
the preparation B;(z,y). The frequency windows W;(f) and power spectra of the whole
preparation after bandpass filtering P(f)W;(f) are shown to the right of the domain maps.
Lower panels show individual signals from different points of the preparation, together with
their power spectra.

The pseudo-ECG signals show polymorphic or fibrillatory activity, especially Figs. 7

Yet, the power spectra P(f) clearly show two dominant frequencies for Figs. 6 and
three for Fig. 7. The feature of the total power spectrum in Fig. 6 is that the two bands
overlap, and so it is not obvious that they correspond to different processes. Yet, in all
examples, on the frequency distribution B;(z,y) panel one can clearly see the large light
regions appearing only on one of the density plots, as well as narrower regions which are
light on two or three maps. The different frequencies of oscillations are spatially separated,
in domains. This is confirmed by the analysis of time series recorded at different points.
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Figure 6: Frequency domains in an experimental polymorphic tachycardia/fibrillation.
Top row: pseudo-ECG E(t) (7), and cumilative power spectrum P(f) (9). Below the
cumulative spectrum: the filtering windows W (thin lines) and cumulative power spectra of
the filtered signals PW; (thick lines). The density plots: frequency domains maps B;(z, y)
(11), the distribution of the power of the frequency bands through the preparation, j = 1
(lower frequency) for the upper density plot, abd j = 2 (higher frequency) for the lower
density plot. Below the density plots: records u(,¢) and corresponding power spectra a(, f)
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Figure 7: Frequency domain structure in a long-time experimental series with a compli-
cated fibrillatory pattern. Here there are three frequency bands and correspondingly three
domain maps; otherwise data format is the same as in Fig. 6.
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The power spectra of the signals from different domains domains hardly overlap, the signal
from the lower-frequency domains often having a slight high-frequency component, and
that the signal from the border zones, as (B) on Fig. 7, has both components. The ratio
of the frequencies in Fig. 7 approximately 4 : 3 : 2.

3.2 Simulation: mechanisms of the frequency domain formation

Mechanism M: multiple independent spiral waves. Figure 8 illustrates coexistence
of two spiral waves in a model with the stronger inhomogeneity £ = 1.618. The period of
the spiral wave in the right half of the medium is longer than the period in the left half, but
no entrainments occur because the waves from the left spiral cannot penetrate the right
half as they either come in the excited/refractory phase, or just slightly advance the phase
of the right spiral if they come during the excitable gap.

Despite the fact that there are only two stable spiral waves, the pseudo-ECG appears
complicated, due to incommensurability of their periods. In order to compare the simula-
tion results with the experiments, we processed the solution u(z,y,t) in the same way as
signals from the real experiments. The results are shown on Fig. 9. In this example, as well
as in all other numerical data, the frequency peaks were well separated, but higher harmon-
ics present. Often, the second harmonic was more powerful than a main frequency peak.
For this reason, visual pre-analysis of spectra was necessary to determine the dominant
frequencies.

In the case of Fig. 9, the frequency bands are well separated, both in the frequency
domain and in space. There is only a narrow border zone with mixed frequencies. The
ratio of the frequencies here was close to the ratio of two small integers, 19.5: 15 x4 : 3.
Note, however, that the electrograms show no entrainment of one spiral by the other. This
is because their cores are sufficiently far from the border separating their domains. In
our computation, this independent rotation of spiral waves lasted a very long time. The
stability of the spirals was enhanced by presence of inexcitable holes, to which the spiral
cores were ‘anchored’ and did not drift (see [21] for more about anchoring).

Another such example is shown on Figs. 10 and 11, where the ratio of the time constants
was less, k &~ 1.414. In this case of the lower inhomogeneity, the two spiral waves persisted
only for a limited time, about 22 revolutions of the slower spiral and 30 of the faster. After
that an excitation wave from the left spiral propagated into the excitable gap of the right
spiral, reached its core and pushed it onto the inexcitable boundary. Thereafter, the right
part of the medium simply conducted two out of every three excitation waves, i.e. the
frequency domains were due to the Wenckebach mechanism.

Mechanism W: one spiral wave and Wenckebach frequency division . This
mechanism was observed in each of the models described above, by specifying one spiral
wave in the faster part of the medium as initial condition. As the period of the spiral
in the faster part in both cases is shorter than the refractory period of the slower part,
Wenckebach frequency division occured. For model of Fig. 11, that was 2:3, i.e. two out
of three waves propagated and every third wave was blocked.
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Figure 8: Snapshots of a fibrillatory excitation pattern produced by two spiral waves with
incommensurate frequencies, in the numerical experiment. The fast spiral is in the left part
of the medium, the slow spiral is in the right part. The background is the distribution of
the parameters as on Fig. 2; the excitation wave is shown light upon it. The arrows show
the direction of propagation of the waves. Labels show time in milliseconds. Parameters:
k ~ 1.618, w = 3, corresponding to panel (a) of Fig. 2. The thin wave that just entered
into the slow right part on panel 1500ms will decay before it meets the wave of the right
spiral.
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Figure 9: Frequency domain organisation of the numerical fibrillatory pattern shown on
Fig. 8. Numerical data processed in the same way as the real experimental data of Figs. 6
and 7.
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Figure 10: Fibrillatory pattern in a numerical experiment with the weaker inhomogeneity,
corresponding to panel (b) of Fig. 2. There are two spiral waves. The faster waves from
the left spiral sometimes penetrate to the right part, perturbing the rotation of the slow
spiral, as shown on the selected sequence of snapshots; but as the right spiral is pinned to
the inhomogeneity, it persists. The slow spiral in the right half existed for 4.2 sec.
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Figure 11: Frequency domain organisation of the pattern of Fig. 8.
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Figure 12: Continuation of the numerical experiment of Fig. 10, 11, after the slow spiral
wave in the right part was annihilated. Now the right part is demonstrating 2:3 frequency
division. The chosen sequence shows one passed wave and one decayed wave. The time
labels are relative to the moment of annihilation of the slow spiral.
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Figure 13: Frequency domain organisation after the annihilation of the slow spiral, corre-
sponding to Fig. 12.
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Similar behaviour was observed in the numerical experiment with two spiral waves and
k = 1.414, after the slower spiral terminated. Selected snapshots of the u field are shown
on Fig. 12 and corresponding data analysis is given on Fig. 13. It can be seen that the
influence of the higher frequency is present in the low-frequency zone, but it diminishes
with the distance.

Transition from M to W. Figures 10, 11 and Figs. 12, 13 represent two different
mechanisms during different stages of the same numerical experiment. This illustrates the
possibility of transition from one mechanism to the other, M to W, and raises the question
when such transition can happen. A simple phenomenological criterium can be suggested
in the assumption that the core of the slower spiral wave is sufficiently far from the site
where the Wenckebach blocks occur. Further into the slower part of the medium from
this site, the faster source would appear as a source of modified frequency, i.e. frequency
divided by the Wenckebach ratio. It is this frequency that will compete with the slower
spiral in the slower part of the medium. Therefore, a sufficient condition of the instability
of the mechanism M with respect to transition to W is: the Wenckebach-divided frequency
of the fast source should be higher than the frequency of the slower source. In other words,
the Wenckebach ratio should be lower than the frequency ratio of the two spirals.

As applied to our two numerical experiments, this criterium predicts stability of the
slow spirals in both cases. Indeed, in the stronger inhomogeneity of Figs. 8, 9 the spirals’
frequency ratio was 1.58 whereas the Wenckebach ratio was found to be 2; and in the weaker
inhomogeneity of Figs. 10-13 the spirals’s frequency ratio was 1.36 with Wenckebach ratio
1.5.

However, in the second case, Figs. 10 and 12, the slower spiral has been annihilated.
This happened because its core was too close to the domain boundary. Thus, in effective
prediction of the stability is more difficult, as the above criterium of stability is only
necessary but not sufficient. If mechanism M is metastable, its duration may vary greatly.

3.3 Comparative phenomenology of the two mechanisms.

Experimental fibrillation is obviously more complicated process than the numerical mech-
anisms considered above. This is, in particular, due to such factors as inhomogeneity,
anisotropy and three-dimensionality of the real cardiac muscle. This makes the spiral
waves invisible or at least unrecognizable on the surface excitation patterns in the major-
ity of cases, and so direct comparison with the two mechanisms is impossible.

There are some robust features of the excitation patterns, however, which would be
preserved despite the above mentioned factors; such as e.g. the periods of the re-entry
sources. Is it possible to use such features to establish which of the two mechanisms, if
any, is responsible for a particular excitation pattern?

In this section, we study some of these features, to see which of them can distinguish
between the two mechanisms. These are summarised in the Table 1.
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Figure 9 11 13 6
Frequency ratio 1.58 | 1.36 | 1.50 | 1.20
Sharp domain margins present yes | yes | yes | yes
Broad mixed frequency regions present | no | no | yes | yes
Domains overlap coefficient 0.06 | 0.11 | 0.23 | 0.34
Recurrence seen in the Lissajous curve | no |no | yes | no
Mechanism M M W M?

Table 1: Diagnostic features of the two mechanisms

Frequency ratio. This is a would-be obvious criterium as for the mechanism W, this
ratio must be equal to a ratio of two small integer numbers, whereas for the mechanism M it
may be any real number, and therefore if a particular ratio happens to be that of two small
integer, it is a strong indication of the Wenckebach mechanism. In practice, however, life
is a bit more complicated as the precision with which the frequencies can be determined,
is limited by the duration of the signal. For experimental data it is even more difficult as
the widths of the frequency peaks are broader and the precision of the main frequencies
is less. In the examples considered, frequency ratios of numerical experiments Figures 9
and 11 are significantly different from nearest small-integer ratios, and for Fig. 13 it is
exactly 3:2, so in theory this criterium works well. For real experimental data, the ratios
are exactly 6:5 for Fig. 6 and very close to 4:3:2 for Fig. 7. This might mean that in both
cases mechanism W takes place, or may be a result of a simple coincidence: one can see
on these figures that the frequency bands are quite wide for these signals.

Domain boundaries. Figures 11 and 13 are convenient for comparative study of the
two mechanisms, as both mechanisms take place in the same ‘numerical preparation’. In
the two-spiral regime Fig. 11 there is only a thin strip of mixed frequency on the border.
In the one-spiral regime, the mixed frequency occupies the major part of the slow half
of the medium. This is because the excitation waves propagating through the right part
retain the “two passed — one missed” frequency division structure and thus the frequency
component of their original source, and the inhomogeneity of their train is only slowly
damped down by phase diffusion [25]. Note that in the experimental patterns, see e.g.
Fig. 6, thin borders as well as large regions of mixed frequency were observed.

The location and sharpness of the domain borders does not coincide with the borders
of the distribution of tissue parameters, which is clearly seen in the numerical experiments.
In all four cases, the width of the domain boundary is approximately the same, i.e. about
3 space units, whereas the border of the medium parameters was 3 space units wide in
one series and 0.2 space units (one computational step) wide in the other series. And in
all four cases, the location of the domain borders was significantly displaced with respect
to that of medium parameters, into the slower region, so that the domain border and the
step in the medium parameters hardly overlap.

To measure the degree of overlap between the domain distributions, we calculated the
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overlap coefficient defined as the cosine between these distributions considered as vectors
of Ly, i.e.

ok = / B;(z,y) B (x, y) dz dy ( / B;(x,y)? de dy / Bk(a:,y)2da;dy> Ty

The values of this coefficient are presented in the Table; these agree with the results of
visual analysis, i.e. it is larger for the maps where overlap is evident. Its values for the two
real experiments are close to each other and are larger than those in numerical experiments.
Thus, whereas the overlap coefficient might be a useful diagnostic quantity in principle, it
is hardly suitable to reliably distinguish between the two mechanisms.

Lissajous figures. As we already mentioned, closeness of the ratio of the domain fre-
quencies to that of two small integers could be a sign of frequency division, but is not very
practical due to the limited length of experimental series and instability of experimental
frequencies, seen as large width of the experimental spectra. A classical way to distinguish
between commensurate and incommensurate frequency ratios is the Lissajous curve, i.e.
the graph of the two signals where the x coordinate is one signal and y coordinate is the
other signal. This method, unlike simple numerical comparison of mean frequencies, has
the additional advantage that it allows for variations in the signals frequencies as long as
these are synchronous. Such variations may widen up the spectra. But the Lissajous fig-
ure only monitors the dependence of one signal on the other, and if the frequencies change
synchronously then, ideally, the Lissajous figure does not change at all, or realistically,
changes only slightly.

Lissajous curves for the numerical experiments described above are presented in Fig. 14.

This was done with filtered signals, computed using forward and inverse Fourier trans-
forms as

us(z,y,6) = Re (fl [( v.1) Zwy-m]) . (13)

where i(z,u, f) is the time-Fourier image (8) of the original signal u(z,y,t), and Wj,
j = 1,2 are the frequency windows (10).

These Lissajous figures show a clear distinction between the commensurate, (b,d) and
incommensurate, (a,c) cases. Disregarding a few loops corresponding to the transient in
the beginning of the numerical experiment, panel (b) shows a bold figure which makes
2 up/down motions, e.g. two tops and two bottoms, per one horizontal motion, thus
showing 2:1 commensurate frequencies. On panel (d), the transient is more pronounced,
so we emphasise the main Lissajous figure showing one complete loop of it with filled
circles. This figure has three maxima and minima in the vertical direction vs two maxima
and minima in the horizontal direction, thus demonstrating frequency ration 3:2. The
panels (a) and (¢) do not have such structures and thus demonstrate independent signals.

The Lissajous figures for the tissue experiments shown on Figs. 6 could not be inter-
preted with such certainty, as their shapes were apparently smeared out by experimental
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Figure 14: Lissajous curves of numerical experiments: (c) Fig. 9, two spirals, (d) 2:1
Wenckebach mechanism in the same model as Fig. 9, (e) Fig. 11, two spirals, and (f)
Fig. 13, 2:3 Wenckebach with a transient. On each graph, the abscissa is record A and
the ordinate is record C of the corresponding filtered experimental or numerical series.
The filled circles on panel (d) are to emphasise the main Lissajous figure compared to the
deviations from it due to the transient.
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noise and/or some non-stationary processes in the preparation, which was impossible to
establish due to the shortness of the experimental series.

This approach, however, can be quite useful if the experimental data are obtained for
a considerably longer time. This is illustrated for the experiment shown on Fig. 7. Figure
15 shows Lissajous figures of signals recorded at the three points A, B, and C in Fig. 7
chosen in three different domains. In this case, the synchronous character of these signals
is evident. This figure also illustrates the necessity of the filtering the electrograms, as
described in section 2: without such filtering, the synchrony would not be seen. To ensure
that this synchrony is not an artifact of the filtering, we plotted similar figures for signals
of exactly the same spectra but with randomised phases of the Fourier coefficients. These
randomised Lissajous figures are also shown on Fig. 15. They look quite erratic. This
proves that the true filtered data show genuine dependence, not reducible to their spectral
properties only, and therefore, not due to the filtering. Thus, we can conclude that in this
particular experiment, there probably was only one source, with frequency of 9.6 Hz, which
was divided in the ratio 2 : 3 and 1 : 2 in different parts of the preparation.

4 Discussion and Conclusions

Optical monitoring of surface activity is providing high-resolution images of the irregular
spatio-temporal activity in different experimental models of ventricular fibrillation [26, 6,
7]. The differences in spatial activity reported here demonstrate the essentially three-
dimensional nature of the electrical activity that generates fibrillation in this animal tissue
model. Ventricular fibrillation is believed to be produced by re-entrant wave sources, where
a single re-entrant source that generates spiral waves in thin, effectively two dimensional
tissue, and scroll waves in thicker, three dimensional tissue, breaks down to generate new
re-entrant sources. The observed surface patterns of excitation have been interpreted in
qualitative terms as the surface manifestations of three-dimensional scroll waves within the
ventricular wall [27, 28]. During the course of fibrillation, the number of re-entrant sources
increases with time, to fluctuate about some mean. In [27, 28] we have shown that the
observed surface patterns of excitation in this preparation can be interpreted in qualitative
terms as the surface manifestations of three-dimensional scroll waves within the ventricular
wall, with the axis of the scroll filaments lying roughly parallel to the heart surfaces. In
an intact heart, these waves would be around filaments which are closed (i.e. scroll rings)
or that terminate an inexcitable boundary.

The domain structure seen in Figures 1, 2 and 9 is only apparent after Fourier trans-
formation of the signals, and illustrates a local spatial order in the surface activity. The
frequency resolution of the Discrete Fourier Transform is limited by the length of the time
series analysed, and since fibrillation in vivo is a short-lived process the ratio of frequen-
cies obtained from different points will always be between integers. However, the common
occurence of simple integer ratios between the dominant frequencies of different domains
is highly suggestive of a frequency division mechanism for the domains. The features
of most of the tissue experiments can be reproduced by a single re-entrant source, with
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Figure 15: Lissajous figures of the recordings A, B and C of Fig. 7. Left column: raw data.
Middle column: filtered data. Right column: filtered data with randomised phases.

29



intermittent conduction through regions of spatial inhomogeneity producing frequency di-
vision; the features of all the tissue experiments can be reproduced by a small number of
re-entrant sources and such frequency division. Thus the surface patterns of activity can
be reproduced by one, or a few, re-entrant sources, combined with heterogeneity. In the
tissue experiments the re-entrant sources will be within the ventricular wall. The ventric-
ular wall has a laminar structure [29], and the connections between neighbouring sheets of
ventricular tissue might form the anatomical sites for the heterogeneity that produces the
frequency division.

Implications for defibrillation Understanding the detailed processes occuring during
actual examples of fibrillation is very important for the design of tools for defibrillation.
In particular, the feasibility and realisation of low-voltage defibrillation by feedback driven
resonant drift depends on there being only a small number of re-entrant sources [20]. If
there is only one re-entrant source, the problem which of the sources to control does not
occur. If there are several apparent sources, but these are produced by frequency division
from one source, it is necessary to identify that source. For example, for Fig. 7 it is clear
that the feedback controlling its motion the should be based on the frequency band of the
highest frequency component, that of 9.6 Hz.
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