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Abstract

We classify possible fixed-shaped excitation wave patterns in R?, in terms of the
kinematic approach. These patterns include rotating waves (diverging and converging
spiral waves), and translating waves (retracting waves, “critical fingers” and “V-
shaped” patterns). We analyze regions of existence of these patterns in the parametric
space, and compare the results with those obtained by numerical simulations and with
the “free-boundary” approach.

1 Introduction.

Propagating waves are observed in different physical, chemical and biological excitable
media [1, 2, 3, 4]. One of the most important applications is the analysis of the spiral
waves of excitation which underlie dangerous cardiac arrhythmias [5].

The kinematic approach is an approximation used for the description of propagation
of excitation waves following one after another at large intervals [6, 7, 8]. It exploits the
fact that the main factor determining the wave propagation velocity is the local curvature
of the wave, which provides the equation of motion of the wave as a curve (in 2D) or a
surface (in 3D). In the case of a broken wave, it is necessary to supplement this equation
by boundary conditions at the wave break (tip) and by tip motion equations.

The kinematic approach is ideologically close to the so called free boundary approach
[9] in that both consider movement of lines; the crest line of the wave for the former, and
the front /back line for the latter. However, the conditions of applicability are different, and
the description is made in different terms. For instance, the kinematic approach may be
applicable even in the case when there is no sharp wavebacks, as is the case with cardiac
excitation equations, or even no sharp wavefronts. Another difference is the absence of



the concept of the wave break in the free boundary approach, while it plays an important
role in the kinematic approach. So translation from one language to the other may be not
straightforward or even not always possible.

There are cases, however, when both approaches can be applied and the results are
comparable. Such is the case of the “universal limit” of large-core spiral waves in the
free-boundary approach [10, 11, 12]. The properties of solutions there correspond to the
phenomenological boundary of existence of spiral waves (rotors) OR by Winfree [13]. The
kinematic approach of [8] also considered a boundary of existence of spiral wave solution,
also hypothetically identified with 0R. However, the phenomenological properties of the
kinematic solutions were different, which created an apparent contradiction between the
kinematic approach on one hand, and the free-boundary approach, and, to a certain extent,
the numerical simulations, on the other hand.

In this paper we study the properties of the solutions in the kinematic approach in more
detail, and eliminate the above mentioned contradiction. Briefly, the result is that the
boundary of existence of spiral wave solutions consists of two different analytical branches,
and [10, 11, 12] dealt with one branch while [8] was considering the other branch.

We describe a variety of fixed-shape excitation wave patterns in the vicinity of the
boundary of existence of spiral wave solutions. These patterns may execute translational
(translating waves) or rotational (spiral waves) movement and they exist on different sides
of this boundary. For the sake of completeness, we present all such solutions, including
those known earlier. We describe the dependence of the shapes and kinematical parameters
of the patterns on medium parameters, and regions of existence of different patterns in the
parametric space. The results agree with those of the free-boundary approach [10, 11, 12].
The present results are more complete, in the sense that variations of parameters are con-
sidered which are not expressible in terms of the free-boundary theory. Of course, the
question of realisability of these parameters in any particular reaction- diffusion system re-
mains open, as the parameters of the kinematic description cannot be obtained analytically
and have not been yet obtained numerically. This remains a question for future study.

The structure of the paper is as follows. In section 2 we introduce essential ideas and
equations of kinematic approach. In sections 3 and 4 we present solutions in the form of
translating and rotating waves. Finally, in section 5 we compare our results with results
of free boundary approach.

2 Kinematic approach.

The kinematic approach is based on the curvature-velocity dependence [6, 7, 8] for the
normal velocity of wave propagation, V,,, and curvature of the wave, K:

Vi(s,t) = V. — DK(s,1) (1)

where K is considered positive if the wave is convex in the direction of propagation, s is
arclength along the wave measured from the tip of the wave, and V, and D are parameters



of the medium. From now on we will use dimensionless variables:
1=V.D's, k=DV,'K. (2)

A wave of stationary shape obeys the equation [6, 7]

l

K /l{(l—li)dl—’}/ —Q. (3)
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Here v = G/V, is the dimensionless and G is the dimensional tip shrink rate, i.e. the
component of the tip velocity along the tangent to the wave; Q = DV, 2w, w is rotation
frequency for spiral wave and w = 0 for translating waves. In the case of small curvature
k < 1, equation (3) can be brought to the form

!

Kk —K2— K —Qk =0 (4)

The boundary condition as s tends to infinity is
K(o0) =0 (5)

and boundary conditions at the tip were formulated in [8]. Their dimensionless form for
the case of small Kk < 1, 2 < 1 and & (0) < %(0) may be presented as

k(0) = ¢ ve+ K (0) +Q=0. (6)

Dimensionless parameters ¢ and v are the only two parameters of the medium in this
approximation. In this paper we assume them both to be small, ¢ < 1, v < 1. Note that
tip shrink rate is

7= G/Vi = ~((0) + Q)/x(0). (7)

So, equation (4) with boundary conditions (5), (6) poses the problem for the unknown
function (/) and unknown number 2. Solutions of this problem with © # 0 correspond
to the rotating waves while solutions with 2 = 0 are the translating waves.

3 Translating waves.

Here we consider the case {2 = 0. Phase portraits of equations (3) and (4) at 2 = 0 are
presented on Fig. 1.

Figure 1 near here




General solutions of (4) with Q = 0 are

ro(l) = 2/(1+A) (8)
k_(l) = —2A2%/cosh?(Ail+ A3) 9)
ke(l) = 2A42/sinh?(Ajl + AJ) (10)
kp(l) = 2A7/cos®(Al + Ap) (11)

with arbitrary integration constants A, A;, A5, A,. These solutions have been discussed
e.g. in [14, 15]. Thus, for € = 0 the problem (4,5,6) has only the solution in the form of a
plane broken wave x = 0. Below we consider € # 0.

All solutions ko4 satisfy boundary condition at infinity (5). Their plots in ([, k) plane
and shapes of corresponding waves are presented on Fig. 2.

‘Figure 2 near here‘

Solution (11) does not satisfy the boundary condition (5). Moreover, for this solution
kp > 1 when Ayl + Ay — 7/2, and hence (4) is not a valid approximation for (3). Some
parts of such solutions can be used to construct appropriate solutions in peace-wise media,
see also [15, 16, 17]. Furthermore, when critical curvature is introduced, the loops in 3(b)
convert into cusps [18], what makes such solutions tractable in the context of the trigger
waves, for which the kinematic theory can be also applied. Following this preduction of the
kinematic theory, the corresponding solutions have been constructed for PDE models in
[19, 20]. For completeness, we present a numerical solution of equation (3), corresponding
to a closed phase trajectory on Fig. 3.

Figure 3 near here

We will call solution x_ a concave wave and solution k; a convex wave, in accordance
with convexity or concavity of the wave line in the direction of movement, and solution
a logarithmic wave, for reasons which will be clear later.

Arbitrary constants in solutions x¢+ may be obtained from the boundary conditions

(6):
1, 1/2
A =2/, A1:§(7 —26) ,

tanh Ay = coth A = é, 12
2 2 (72 . 26)1/2 ( )

with
7> 2 (13)

required for existence of translating waves.



The arbitrary constants and the region of existence for solution (11) are

(26—’}/2)1/2, tan Ay = — 7

1
A= S —
E (2 —92)"?

7? < 2. (14)

One can see from phase portrait on Fig. 1, that the translating waves are concave waves
k_ if kK(0) < 0 and logarithmic waves ko or convex waves k (if they exist) if £(0) > 0.
The logarithmic wave kg corresponds to the equality in (13), and the convex wave K, to
the strong inequality. Note that solutions ¢ and k. can satisfy boundary conditions at
infinity (5) only if £ (0) < 0. Then, by (7), since = 0 and x(0) > 0, we conclude that in
this case v > 0. Taking into account the boundary conditions (6), the regions of existence
of translating waves of different types can be summarised as:

k=0 : e=0 (15)
Ko @ Y =2¢ v>0 (16)
ko @ €e<0 (17)
Ky @ ¥ >2 >0 (18)

Conditions (16) and (18) imply that logarithmic waves k¢ and convex waves x,. are always
shrinking and never growing, while concave waves x_ and plane waves k = 0 may be both
shrinking or growing.

The wave line shape in Cartesian coordinates can be obtained from natural equations
(8)—(10) via

sin(¢(¢))d¢ (19)

Hence the asymptotics, for [ — oo, of our solutions are

Yo ~ const+2Ilnzx
y+ ~ tan(24)z. (20)

This is why we called solution kg a logarithmic wave. Note that asymptotics (20) coincide
with those of the retracting waves and the critical finger solution of [11]. Solution x_ with
no wavebreaks coincides with the V-shaped patterns described in [21].



4 Spiral waves.

Phase portraits for equations (3) and (4) for Q # 0 are shown on Fig. 4. The difference
between the phase portraits is insignificant if x and x are small.

‘Figure 4 near here‘

Solutions corresponding to the phase trajectories on the right of the separatrix AO on
Fig. 4b reach infinite curvature in finite length and hence do not satisfy boundary condition
at infinity (5). Corresponding trajectories on Fig. 4a do not go to infinity, but the curvature
becomes very large, Kk < 1, 7.e. the kinematic approach is not formally applicable. For
completeness, we illustrate the shape of these “curly spiral” solutions in Fig. 5.

Figure 5 near here

There are two different types of solutions which satisfy boundary condition at infinity
(5). Some solutions pass through point I at Fig. 4 to the left half-plane, and the curvature
becomes negative. This means that far from the tip, the waves propagate towards the center
of rotation, rather than from it. We will call these patterns convolving spirals. Note that
such patterns in a bounded medium have been observed in numerical simulation [22]. An
example of such a solution and the corresponding wave shape are presented on Fig. 6(b,b’).
Another type of solution is the separatrix AO on the phase portrait. In contrast to the
previous type, this solution is positive everywhere and will be called evolving spiral. The
graph of x(l) and wave shape for this solution are shown on Fig. 6(a,a’). In subsequent
discussion, we consider evolving spirals only, i.e. we replace the boundary condition at
infinity (5) by a more restrictive one:

k(+00) = +0 (21)

‘Figure 6 near here‘

All solutions of equation (4) can be described analytically|[8] (see also [23] for a related
solution in terms of Airy functions). It is convenient to do so in a piecewise manner:

K(l) = £(9/2) QPP £Y?(()),

V2
¢ = Loy, (22)

where for [ < [y we choose upper signs and

_ qJ—Q/s(C) - J+2/3(C)
J13(0) + ¢J41/3(C)’
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Y (¢)



and for [ > Iy we choose lower signs and

_ Liays(§) — gl2/5(C)
I—1/3(C) —qI+1/3(C)’

and where [y and ¢ are integration constants; J,(x) and I,(z) are Bessel functions and
modified Bessel functions respectively. We will call these pieces the J-branch and the
I-branch respectively; note that one is the analytical continuation of the other. These
solutions satisfy boundary condition (21) only when ¢ = 1. Solutions with ¢ < 1 correspond
to the convolving spirals, and those with ¢ > 1 correspond to the phase trajectories on
the right of the separatrix. Spirals of different types can be used to construct piecewise
solutions in inhomogenius media [24].

The tip point (I = 0) may be on the J-branch if Iy > 0 (J-type spiral wave) or on the
I-branch if [y < 0 (I-type spiral wave). The infinite tail of the spiral is described by the
I-branch in all cases. So J-type spirals consist of two pieces, the J-branch at the tip and
the I-branch in the rest, while I-type spirals are of I-branch everywhere.

From (6), the boundary conditions at the tip for J-type and I-type spirals are

Y (<) (24)

2/3
LA

3(1+ Y2 0Y?2Y, = —e (25)

where Yy = Y (), Co = vV2Q/3 - |Io>/? and Y(¢) is the corresponding function from (23)
or from (24).

Thus, the problem of finding the spiral wave solution is reduced to the finite transcen-
dental system (25) with respect to (y and €. Other kinematical parameters of the spiral
wave can be expressed through these two quantities. In particular, the core radius ry and
the angle between the wave tangent at the tip and the direction from the rotation center
to the tip « are

ro=[(1—€%*+74?/Q, tana=~v/(1—e). (26)
Solution of (25) is ,
Q= iw(% — 4?3 (27)

where (j is the least positive root of the equation Yy = Y ({p) with Y ({) from (23) or (24)
and

Yo=7F 7 (28)

(£(2e —7?))""*
Upper or lower signs, and hence J- or I- type of the spiral, are taken so that the expression
in right-hand side of (28) is real, so that J-spirals exist if

72 —2e<0 (29)

and I-spirals exist if
7% — 2¢ > 0. (30)
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In the latter case, there is an additional necessary condition. Since the boundary conditions
at infinity (21) can be only satisfied at ¢ = 1, and this implies that Y () < —1!. Hence we
can see from (24) that

v<0, e€>0. (31)

Comparing (31) with (7) we can see that I-spirals may only be growing, while J-spirals
can be both growing or shrinking.

Finally, note that the existence regions of I- and J-type solutions with ¢ # 1 are
described by inequalities (29)—(31) respectively, as well as those for corresponding /- and
J-type evolving spirals.

5 Conclusion.

Although the solutions with large curvatures and self-intersections might be of interest in
terms of motion of abstract curves, they are of limited interest in the context of excitaton
waves, as the high curvatures violate the applicability of the kinematic approximation, and
excitation waves in all known excitable media strongly interact with each other and cannot
be superimposed. The existence regions for other types of solutions are summarised on
Fig. 7. One can see that regions of existence of translating and rotating waves exactly
complement each other, i.e. there are no gaps and no overlaps between them.

Figure 7 near here‘

Boundaries between regions “J” and “C” (J/C-boundary) and between “I” and “V”
(I/V-boundary) separate regions of spiral and translating waves. In particular, the J/C-
boundary may be identified with Winfree’s phenomenological rotor boundary 0R [13] and
the boundary between spiral and retracting waves as described in [12].

Compare the dependency of the translating wave shrink rate on the distance ¢ to the
J/C-boundary in the parametric space, when this distance is small, for our “convex waves”
and “retracting waves” in the free-boundary theory. First of all, definitions of shrink rates
in the present study and in [10, 11, 12] are different. Here it is the projection of the tip
velocity on the wave tangent at the tip; hereafter this will be refered to as the local shrink
rate. And in [10, 11, 12] the shrink rate was its projection on the asymptotical direction
of the wave far from the tip. We will call this the global shrink rate. We use the symbol
G for the local shrink rate, and denote the global shrink rate by G9°°. The global shrink
rate may be expressed through the local shrink rate as

G = G cos ® — V, sin @ (32)
'Indeed, if ¢ = 1 then Y = —Kj/3(¢)/K1/3(¢). By Sommerfeld’s integral representation, K, (¢) =

oo

Texp(—(cosh«/)) cosh(vy)dy > 0 and if v > 0 then 9,K,({) = [ 9 exp(—(coshe))sinh(vep)dy > 0.
%‘herefore, K5/3(¢) > Ky/3(¢) >0and Y = —K5/3(¢) /K1 /3(¢) < —10as required.




where V,, = V,(1 — k(0)) is the normal tip velocity and & = ¢(00) is the total orientation
angle change along the wave. By denoting § = ¢ — 7%/2, we obtain for our solutions:

GV, = 0(y) (33)
GY V. = (=20)"2+0 (6v,6%?).

These asymptotics agree for small v, and coincide for v = 0, with those presented in [10]:
G = 0 for a “critical finger” and G o 6'/? for “retracting waves”. So we can say that
our convex waves solutions x, can be identified with the “retracting waves” of the free-
boundary theory and the logarithmic wave kg is identical with the “critical finger” of that
theory.

For concave waves solutions x_ the boundary of existence region is line v = 0 and
distance to this boundary in parametric space is —e. The global shrink rate of concave
waves in the vicinity of the point (y =0, e = 0) is

GY IV, = (—26)2 + 0 (v*,¢) . (34)

Finally, using the asymptotics of Bessel functions, we can obtain asymptotics of the rotation
frequency 2 from (27) near the J/C-boundary:

O~ Q53/2

3¢

where (, is the smallest positive root of equation Y'({,) = 0 and Y is from (23). Asymptotic
estimate (35) coincides with that obtained in [25, 12]: Q o< §%/2.

Summarising, we can point out features of translating waves and rotating spiral waves in
an excitable medium, which are identical to the corresponding features in the free boundary
approach [10, 11, 12]:

(35)

e There exists the J/C-boundary, a manifold of codimension 1 in the medium parame-
ters space, at which there exist translating waves of a “logarithmic shape” (logarith-
mic waves/critical fingers).

e On one side from J/C-boundary, there exist spiral waves only but not translating
waves.

e On the other side there are no rotating spiral waves, but there are translating waves
(convex/retracting waves). The asymptotical shape of the convex/retracting waves
in linear.

e The global tip growth rate, i.e. the tip velocity projection on the direction of the
far from the tip, for the logarithmic wave/critical finger equals zero.

e The global tip growth rate of the convex/retracting waves decreases with the distance
§ — 0 to the J/C-boundary in parametric space as o §'/2,



e On the other side of the J/C boundary, the rotation frequency of the spiral waves
decreases with ¢ — 0 as o 6%/2.

In [8], the vicinity of the line € = 0 was considered, implying also |y| ~ 1. This is the
I/V boundary on the diagram Fig. 7. The properties of the rotating and translating waves
around this boundary are partly similar and partly different from those of J/C boundary
(here we assume |y| < 1):

e The I/V-boundary is also a manifold of codimension 1 in the medium parameters
space. At this manifold, there exist translating solutions in the form of broken,
asymptotically linear, rather than logarithmic, waves.

e Similarly to the J/C boundary, on one side from I/V-boundary, there exist spiral
waves only but not translating waves. However, the spiral waves are of I-type rather
than J-type.

e Similarly to the J/C boundary, on the other side there are no rotating spiral waves,
but there are asymptotically linear translating waves. However, these translating
waves are concave rather than convex.

e The global tip growth rate, i.e. the tip velocity projection on the direction of the
far from the tip, for the broken linear waves on the I/V boundary is zero, similarly
to the J/C boundary.

e The retraction rate changes with the distance § to boundary in parametric space
(which for the I/V-boundary can be identified with |e|): o< |e|'/?, similarly to J/C-
boundary.

e On the other side of the I/V boundary, the rotation frequency of the spiral waves is
o 0, rather than o §%/2.

For details of the relevant solutions, see [8]. As some of the properties of these solutions
do not have counterparts in the free-boundary theory, these can be considered as a new
prediction of the kinematic theory.

As the derivation of the kinematic equations in [6, 7, 8] was based on very general
considerations of symmetry and stability, and also on the assumptions of existence of a
certain type of solution, which was never directly verified, the question about observability
of I/V boundary in real reaction-diffusion equations is not obvious. It is clear, however,
that if this behaviour is to be observed, this would not be in a FitzZHugh-Nagumo type
system with disproportion of the excitation and recovery times, with excitation pulses
having sharp backs and sharp fronts, as such systems are covered by the free-boundary
theory. And since most of the well-studied models of excitable systems belong to this class,
this may explain why this behaviour has not been observed so far. Alternative examples
of excitable systems are known. A simple three-component excitable system with sharp
fronts but smooth backs has been proposed as early as 1972 [26], and it is well known that
equations of cardiac excitability produce excitation pulses with sharp fronts but not with
sharp backs.
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Figure captions

Figure 1. (a) Phase portrait of equation (4) with 2 = 0. The separatrix solution (8) and
two members of every family (9)-(11) are shown. The phase plane is separated by
bold lines, the axis £ and the separatrix kg, into four regions with different behaviour
of solutions. On the right of the separatrix are solutions &, of the form (11). These
solutions reach infinite curvature in finite length, and thus can not satisfy boundary
condition at infinity (5). On the left of x'-axis are concave wave solutions x_ (9).
They start from the point K = 0, K = 0 at | = —oo and return to this point
at | = 4+o00. Finally, between the x'-axis and the separatrix, are the convex wave
solutions x, (10). Their behaviour is similar to that of the separatrix solution, i.e.
phase trajectories go from infinity to the point s = 0, K = 0, when [ runs from
—Aj JAT (or —A for k) to +oo (lower part) or go from this point to infinity when [
runs from —oo to —A5 /AT (—A for ky) (upper part). (b) Phase portrait of equation
(3) for comparison. The difference is insignificant for small x and x'. For large x > 0
trajectories of (3) are closed, while trajectories of (4) go to infinity.

Figure 2. Curvature vs arclength for translating waves: (a) ko(l) (8) for e = 0.1, (b) x4(()
(10) for e = 0.1, v = 0.5, and (c¢) k—() (9) for e = —0.1, v = 0.5. The corresponding
wave shapes are shown on panels (a’) — (¢’). The tips are marked by the points on
the lines, the dotted lines are the analytical continuations of the wave lines through
the tips. The arrows show the direction of the wave propagation.

Figure 3. (a) Curvature vs arclength for the numerical solution of (3,6) 2 = 0, ¢ = 0.01
and v = 0. (b) The corresponding wave shape. The tip is marked by the point on the
line, the dotted line is the analytical continuation of the wave line through the tip.
The arrow shows the direction of the wave propagation. Self-intersection of the wave
line means this wave shape, although being a formal solution to the corresponding
ODEs, cannot be observed in a real excitation wave, and the high curvature in the
loops means the kinematic approximation is not valid.

Figure 4. (a) Phase portrait of equation (3) with Q = 0.5 in coordinates (kQ%/3,k'Q1).
(b) Phase portrait of equation (4) in coordinates (kQ 2/3,x'Q"!). O is a complex
equilibrium, I is a non-equilibrium singular point. Bold solid line AQO is the separatrix
of the origin.

Figure 5. (a) Curvature vs arclength for a “curly spiral” solution with = 0.005, ¢ = 0.2,
v = 0.35. (b) Its wave line shape. Spiral rotates in counterclockwise direction, as
shown by arrows. Rotation center is at origin. Tip is shown by point. Dashed
circle is the tip trajectory. (c¢) Magnified view of dashed rectangle on (b). Self-
intersection of the wave line means this wave shape, although being a formal solution
to the corresponding ODEs, cannot be observed in a real excitation wave, and high
curvature in the loops means the kinematic approximation is not valid.
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Figure 6. Curvature vs arclength for (a) evolving and (b) convolving (sink) spirals and
(a’,b’) shape of their wave lines. Both spirals rotate counterclockwise (shown by
arrows) around the origin. The tips are shown by points. Dashed circles are the
tips trajectories. Parameters of spirals are: (a) € &~ 0.13, v ~ —0.67, Q = 0.1 (b)
e =0.19, v = —0.89, © = 0.2. (a”,b”): magnified views of dashed rectangles on
(a’) and (b’). Evolving spiral (a¢) was obtained from analytical solution (22), while
convolving spiral () is the result of numerical integration of equation (3)

Figure 7. Existence regions for spiral and translating waves in the (e, y)-plane. Solid lines
are boundaries between the regions. Bold line separates regions of rotating (I and
J) and translating (C and V') waves. In region “J” where (29) fulfilled, J-type spiral
waves exist. Region “I” is defined by conditions (30), (31). In this region I-type
spiral waves exist. Region “C” is defined by conditions (18). In this region convex
translating waves (10) exist. In region “V” where € < 0, concave translating waves
(9) (“V-shaped waves”) exist. In addition at the boundary of “J” and “C” regions,
logarithmic waves (8) exist, and at the line e = 0 half-plane waves exist.
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