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Abstract

We outline a mathematical model of the action of an external electric current on excitable

tissue� which considers the action of the current on di�erent parts of the cell membrane within

an ODE description� This model is intuitively clear and numerically e�cient� and is used to

predict and compute the de	brillation threshold for cardiac tissue�

� Introduction

Extracellular stimulation by large ������� KV� and brief ������� ms� pulses applied by remote
electrodes is widely used in clinical and experimental physiology to excite activity in nervous and
muscular tissue� an important area of application is in pacing the heart 	Zipes 
 Jalife� ����
� Such
�eld stimulation is also used to de�brillate heart muscle i�e� to eliminate all propagating activity
when abnormal� re�entrant propagation is generating a life�threatening arrhythmia 	Pan�lov 

Holden� ����
�
For a single cell in such a �eld� the current that �ows in must equal the current that �ows out

of the cell� and so any e�ect must be generated by nonlinear summation of di�erent behaviours
of di�erent parts of the cell� There must be potential gradients across the cell� and so each cell
needs to be considered as a spatially extended object 	Plonsey 
 Barr� ����
 and modelled by a
partial di�erential system� as in 	Cartee 
 Plonsey� ����
�
Here we present a simple ODE approach to the e�ects of extracellular �eld stimulation on

excitable cells and tissues and apply it to estimate the de�brillation threshold for a model of
mammalian ventricular tissue� We apply the singular perturbation approach of Krassowska and
Neu 	����
 to high�order biophysical excitation equations 	Boyett et al� � ����
 and extend the
excitable medium models of cardiac tissue 	Biktashev 
 Holden� ����
 to include the e�ects of
external current inputs� and illustrate de�brillation via the theory of Pumir 
 Krinsky 	����
�
Recent approaches to the theoretical basis of de�brillation 	Keener� ����� Pumir 
 Krinsky� ����

lead to to coupled partial di�erential systems�

� Basic Equations

Biophysical membrane excitation equations are of the form�

C�tu � f�u� v� w��

�tv � g�u� v� w�� ���

�tw � h�u� v� w��

�



where u � u�t� is the transmembrane voltage� C is speci�c membrane capacitance� f is transmem�
brane current density� vector v � v�t� describes the fast gating variables� and vector w � w�t�
comprises slow gating variables and intra� and extra�cellular ionic concentrations� and g and h
describe their kinetics� The variables u and v have comparable characteristic times� There are a
number of di�erent membrane ionic current models� for the same� and di�erent parts of the heart�
These models� that de�ne the functions f � g and h are reviewed in 	Zipes 
 Jalife� ����
� 	Gray

 Jalife� ����
 and 	Pan�lov 
 Holden� ����
� In the illustrations of this paper we have used the
Noble et al� 	����
 model for the guinea pig ventricular cell� incorporated in a tissue model in
	Biktashev 
 Holden� ����
�
We begin with a bidomain approach� for a single isolated cell with an intracellular domain � I�

external domain� E � and the membrane surface� M� and introduce the electrostatic potential �i
and �e in I and E � ui and ue as limit values of �i and �e atM� and electric charge densities qi
and qe at the inside and outside surface of the membrane�
�� Intracellularly� electroneutrality of the cytoplasm means for r � I�

r��ir�i� � �� ���

for a scalar speci�c conductivity �i� Here and below� r denotes the vector of coordinates of a point
in space�
�� In the extracellular domain� electroneutrality means for r � E �

r��er�e� � �� ���

for a scalar speci�c conductivity �e� and for a homogeneous external �eld E�

�e � �E� r�� r��� ���

In the case of a tissue of cells� Eq� ��� is to be replaced � e�g� for cells in a regular ��dimensional
grid� the domain E � I �M forms the elementary volume of the grid� and ��� is to be replaced by
periodic boundary conditions for the �own� cell potential

�own�r� ��i�e�r� � �E� r��

or the �oscillatory component� of the potential� in terminology of Plonsey 
 Barr 	����
 and
Krassowska et al� 	����
�
�� In the membrane� the boundary conditions of the �volume equations� ����� for r �M�

�i � ui� ���

�e � ue� ���

and surface balance of charges on the interior and exterior sides of the membrane�

�tqi � �i�Mui � f �u� � �i�r�i�n�� ���

�tqe � �e�Mue � f �u�� �e�r�e�n�� ���

here f � is the transmembrane current� �i�e are speci�c conductivities� and �M is the Laplacian
operator on the membrane surface� For simplicity of notations� we assume here that �i�e are
constant� Electroneutrality of a membrane element gives

q � qe � �qi� ���

The membrane capacitance is
Cu � q ����

and transmembrane voltage is
u � ue � ui� ����

After de�ning f�r� t�� r �M� through local values of u� v and w� and local kinetic equations
for v and w from ���� these equation form a closed system� which determines evolution of the
distribution of electric properties over the cell at given E�t�� and so describe the action of the
external electric �eld onto the cell�

�



� Reduction to the Membrane

Following the ideas of Krassowska and Neu 	����
 we will now simplify this extensive nonlinear
system of partial di�erential equations� note that in the electric part of the equations� all the
nonlinearity is located in the term f��� and the remaining linear problem can be �in principle�
solved� Summing the Eqs� ��� and ���� we get a linear equation

�i�Mui ��e�Mue � ��er�e � �ir�i�n�� r �M ����

for the overall current balance of the membrane element� which� together with the equations

r��ir�i� � �� r� I�
�i � ui� r�M�
r��er�e� � �� r� E �
�e � ue� r�M�
ue � ui � u� r�M�
�e � �E� r�� r���

����

constitute a well posed elliptic problem for �nding ui�e and �i�e at given E and u� Di�erentiation
of ���� by time and substituting into ��� or ���� together with the slow equations� yields then the
resulting system of equations of the form

C�tu � f�u� v� w� � �Lu� �IE�

�tv � g�u� v� w�� ����

�tw � h�u� v� w��

where u� v and w are now functions of time and position on the membrane� �L is a linear �generally�
integro�di�erential� operator in a space of scalar functions on the membrane� and �I is a linear
operator mapping vectors E to scalar functions on the membrane� The speci�c forms of �L and �I
depend on the geometry ofM and on the coe cients �i�e and �i�e� We use the following properties
of these operators�

� �Lu vanishes if u is spatially homogeneous over the membrane�

� the integral of �Lu over the membrane surface is zero for any u� and

� the integral of �IE over the membrane surface is zero for any E�

These properties follow from the derivation of ����� �Lu represents the currents between di�erent
loci of membrane� both through interior and exterior domains� and �IE is the additional current
due to the external �eld�

� Simpli�ed Two�Compartment Model

We now construct a simpli�ed model� that retains the main features of ����� We approximate
all functions u�x�� v�x� and w�x� by piecewise constant functions� taking� at each time instant
only two values at two di�erent and �xed parts of the membrane� Denoting the two parts of the
membrane by indices � and �� system ���� is then rewritten in the form

C�tu� � f�u�� v�� w�� � ��u� � u�� � Iext�t��

C�tu� � f�u�� v�� w�� � ��u� � u��� Iext�t��

�tv� � g�u�� v�� w��� ����

�tw� � h�u�� v�� w���

where the signs in the last two equations are either all � or ��
In writing this system� we have taken into account the main properties of �L and �I listed in the

previous section� The constant � of the dimensionality of conductivity in ���� should be positive�
it is the e�ective conductivity of the cell in this two�compartment approximation� Iext�t� is the
current produced by the external source and crossing the cell�

�



� Quasi�Stationary Approximation

The system ���� contains a singular small parameter� the ratio of the characteristic times of the
intracellular conductivity �� ��� and of the membrane excitability� �f � Biophysical data 	Weid�
mann� ����
 give the intracellular resistivity of the order of ��� Ohm�cm� which for the cell size of
����� �m gives � of the order of several �S� so �� � �������s� which is much less than �f � � ms�
Numerical calculations of the simpli�ed two�compartmentmodel ���� would require time steps not
greater than ��� while if we can get rid of the small parameter� times steps of around �f would be
adequate�
We exclude the small parameter � by �quasi�stationary� arguments� Rewrite the �rst two

equations of ���� as

C�tU �
�

�
�f �U � 	� v�� w�� � f�U � 	� v�� w �� ����

C�t	 �
�

�
�f �U � 	� v�� w��� f�U � 	� v�� w���� ��	 � Iext�t� ����

where

U �
�

�
�u� � u���

and

	 �
�

�
�u� � u���

Now� in ���� the term ���	 dominates over �
� �f���f���� and omitting the nonlinear term

�
��f���

f��� � ���� becomes a linear equation� If the characteristic time of Iext change is bigger than ���
then this equation describes the fast approach of 	 to its quasi�stationary value�

	� �t� �
�

��
Iext�t��

and we can substitute this value into ����� which yields

C�tU �
�

�
�f �U � 	� �t� � v�� w�� � f�U � 	� �t� � v�� w���� ����

Equations ���� and the last pair of ���� form a closed system� which depends only on the ratio
Iext
�� If we assume that the duration of pulses Iext is shorter than the characteristic time �h of
the slow variables then w� 	 w� 	 W � This �nal simpli�cation gives�

C�tU �
�

�
�f�U �

�

��
Iext �t� � v��W � � f�U �

�

��
Iext �t� � v��W ���

�tv� � g�U 

�

��
Iext �t� � v��W �� ����

�tW � h�U�
v� � v�
�

�W ��

This model is almost as simple as the original ��� ordinary di�erential equation �e�g� � it has
three equations more than the �� variable Noble et al� 	����
 ordinary di�erential system we use
for ventricular excitation�� but describes the e�ect of external current� This has been obtained
from ���� assuming the characteristic time of the external curent pulses� �I � is

��� ms � �� � �I � �f � �g � �h � �� ms�

In practice �I � �f and �g are all of the order of � ms�

�



The general model ���� can be simpli�ed by quasi�stationary arguments to

C�tU �

Z

M

f�U � �L�� �IE �t� � v�W � dM� ����

with separate ordinary di�erential equations for v at each point of the membrane� If the external
�eld E is �xed in direction and varies only in magnitude� then the surface integral in ���� can be
reduced� in a Lebesgue style� to an ordinary integral

C�tU �

Z
f�U � sE �t� � v�W �K�s� ds� ����

where the kernel K�s� is determined by the cell geometry� the conductivities� and the direction of
the external �eld� and because of electroneutrality of the cell

Z
K�s� ds � ��

The simple model ���� corresponds to evaluation of the integral in ���� at two points s � 
 �
�� �

Below we explore numerically some properties of the model ���� and its generalisation to
spatially extended media� To validate the two�point approximationof the integral ����� we compare
the two�point results with those of a �ve�point evaluation of ����� in the form

C�tU �
�

�

�X
j���

f�U �
j

��
Iext�t�� vj�W ��

�tvj � g�U �
j

��
Iext�t�� vj�W �� j � ��� � � � � � ����

�tW � h�U�
�

�

�X
j���

vj�W ��

� Action onto a Single Cell

First we verify the quasi�stationary exclusion of the small parameter in transforming from ����
to ���� by studying the excitation processes in these two systems� and accuracy of the two�point
approximation in ���� by comparision with the results of the �ve�compartment model ����� The
kinetics f��� g�� and h�� were described by guinea pig ventricle myocyte model of Noble et al�
	����
� that has �� kinetic variables� � was ��� S� which is consistent with data of Plonsey 
 and
Barr 	����
� In the vector v we included the three fastest gating variables !h"� !d" and !f"� gate !m"
was not a dynamic variable but a �xed function of u� Thus� model ���� contained �� ODEs� as
opposed to �� ODEs and large values of the parameters � and Iext in ����� and �� ODEs in the
�ve�compartment version �����
We obtained the strength�duration curve # the threshold external current Iext as a function

of stimulus duration �Fig� ��� The results obtained for the three models ����� ���� and ����
coincide with a good precision� Thus � is large enough for the quasi�stationary approximation
to be valid� and two�point evaluation of the surface integral gives reasonable accuracy� and in all
other numerical experiments we used only model �����
The threshold current was also determined at a stimulus duration of � ms and di�erent intervals

after a preceding action potential� The excitability of the biophysical excitation equations for
cardiac tissue is highly dependent on the history of the cell activity� Intervals between action
potentials as short as those in Fig� � cannot be achieved by a pair of stimuli applied to a resting
cell� as they are less than the standard �from rest� action potential duration� Since we are specially
interested in the de�brillation threshold� the cell has been preconditioned by an excitation sequence
identical to that of a point in a developing spiral wave during �rst �� rotations� in this model� the
average period of the spiral wave is around ��� ms�

�
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Figure �� Strength�duration curve for a single isolated cell excited by an extracellular current
pulse� � � computed with two�point evaluation of integral� model ����� � � quasi�stationary model
����� � � computed with �ve�point evaluation of integral� model �����
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Figure �� Excitation threshold of a single cell excited by an extracellular current pulse of � ms
duration computed using model ����� as a function of time since the beginning of the last con�
ditioning action potential� in model ����� To ensure that the state variables were close to those
found during re�entry� the cell was conditioned by a train of action potentials obtained from a
re�entrant spiral solution� the inter�wave interval is the interval between the minimum of u of the
previous excitable gap� to the start of the current pulse�
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	 Action onto an Excitable Fibre

The generalization of equations ���� for spatially extended tissue is straightforward as the deviation
of each individual cell from an isopotential state takes place only during the short time periods of
external stimulation� and outside these periods cable theory gives

�tU �
�

�C
�f�U �

�

��
Iext �t� � v��W � � f�U �

�

��
Iext �t� � v��W �� �D��xU

�tv� � g�U 

�

��
Iext �t� � v��W � ����

�tW � h�U�
v� � v�
�

�W ��

where U� v� and V are now functions not only of time t� but also of distance along the �bre
x� and the di�usion coe cient for voltage� D� is proportional to the intercellular conductivity�
D � ����� mm�
s gives a conduction velocity of about ��� mm$s for a solitary wave through
resting tissue� The value of D is necessary only for the interpretation of spatial scales as equations
���� are invariant under simultaneous change of spatial scales and coe cient D�


 On the Asymptotic Theory of De�brillation

We now apply this approach to evaluate the de�brillation threshold for a tissue� i�e� the amplitude
of an externally applied current pulse necessary to abolish all propagating waves� and compare
it with the prediction of the asymptotic theory of de�brillation for our model� The theory was
described by Pumir 
 Krinsky 	����
 and is based on separate consideration of the slow and fast
processes during the process of propagation 	Fife� ����� Tyson 
 Keener� ����
� During re�entrant
activity and �brillation� propagation in the whole heart is an irregular and changing pattern of
waves and wavelets 	Gray 
 Jalife� ����
� The asymptotic theory of de�brillation assumes that
on the fast time scale the medium has two alternative stable equilibria� which depend on the slow
variables� The propagation of the wavefront� in the fast time scale� is a trigger wave between the
equilibria that is either �antegrade�� when the excited region grows� or �retrograde� propagation�
when the excited region shrinks� The wavefront of a propagating pulse is an antegrade trigger
wave� and its back a retrograde wave� In a resting medium� the upper� �excited� equilibrium is
more stable� so a suprathreshold perturbation produces an antegrade trigger wave� and the excited
region expands� During the excited state� the evolution of the slow variables lowers the stability of
the excited state while the stability of the resting state increases� until a retrograde trigger wave
can propagate�
In this approximation a wavefront cannot spontaneously change direction of propagation�

When a de�brillating shock is applied to the whole medium� if the intensity of the shock is high
enough� then all the cells of the medium can be thrown into the excited state� and thereafter only
retrograde waves will occur throughout the medium and these will trigger all the medium into the
resting state� Driving all the medium into the excited state provides a simple understanding of
de�brillation� However it is not necessarily exact� First� not all the cells may be excitable� i�e�
have the alternative �upper equilibrium� at the moment of shock delivery� Second� the require�
ment of all the excitable cells to be triggered into the excited state is excessive� De�brillation
requires that only retrograde waves are generated after it� To ensure this� it is only necessary to
excite all those cells which have the resting state as the more stable state� and it is not necessary
to excite those which have the excited state as the more stable�
The boundary between these classes of cells is in the state space of the slow variables� and

corresponds to the values of these variables when the two equilibria are equally stable� If u is
much faster than both v and w� this �equal stability� is represented by a �Maxwell rule�� for the
right�hand side of the fast excitability equation�

Z uexcited�v�w�

uresting�v�w�

f�u� v� w�du � �� ����

�



Figure �� �a� Subthreshold ���� nA� � ms� and �b� suprathreshold ���� nA� � ms� response of a
re�entrant wave in one�dimensional ring to a de�brillating shock� In both cases the wavefront is
initially advanced� in the suprathreshold case the wavefront collapses back to its position at the
time the pulse was applied� and meets its waveback� The circumference of the ring is �� mm� and
the membrane potential is displayed every � ms� i�e� the conduction velocity of the wave before
de�brillation was ��� mm$s�

�



When there is only one slow variable w� as in the FitzHugh�Nagumo system considered by
Pumir 
 Krinsky 	����
� this equality has a unique solution at the �critical value� wcr� and the
de�brillation condition is then reduced to the requirement� that all cells with w � wcr should be
excited� However�the �Maxwell point� falls exactly at the centre of symmetry of the excitability
model used by Pumir 
 Krinsky 	����
� f�u� v� w� � F �u� � w with a cubic F � and for this
model� in the style of ����� a cell at the critical point cannot be excited by a uniform �eld of any
magnitude�
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Figure �� Velocities of forward fronts of excitation waves� mm$s� as functions of interwave intervals�
ms�

In biophysical excitation equations there is no such symmetry and so the theory is applicable
as long as the realistic �slow processes� v and w are slow enough for the asymptotic approach to
be valid� The margin ���� between preferably�excited and preferably�resting cells is a manifold of
codimension �� and so �nding the exact de�brillation condition would imply �nding the points with
the highest threshold on this manifold� We do not need to search the whole space� only in a subset�
corresponding to states of cells present in the tissue in the moment of de�brillation� Estimation of
the de�brillation threshold requires a model of �brillation� as well as a model for the de�brillation
process� We estimated the velocities of propagation of wavefronts of excitation pulses driven at
the highest possible frequencies� provided by a spiral wave solution� Since� as it was mentioned
in Section �� the excitation properties are strongly in�uenced by the pre�history of excitations�
we used here exactly the same pre�conditioning procedure as for Fig� �� The dependence of
premature pulse propagation velocity on the coupling interval is shown in Fig� �� A ��� mm long
one�dimensional model governed by ���� without external current was integrated with boundary
conditions u�x�� t� � U �t� at one end� and non��ux condition on the other� where U �t� was the
transmembrane voltage pro�le of a developing spiral wave solution recorded at a point far from the
core �see Fig� ��b� in 	Biktashev 
 Holden ����
� point !D"�� Thus� pulses propagated through the
�bre in the same sequence as they typically do in �D during development of a spiral wave� After

��



�� such pulses� the ��th one was initiated prematurely with a controlled advance in time� and its
velocity was measured via crossing times at points distant ��� and ��� mm from the boundary� The
smallest coupling interval we could obtain was �� ms� Comparison with the threshold�interval plot
�Fig� ��� gives the excitation threshold corresponding to this interval of ��� nA� and this provides
the estimate of the de�brillation threshold� This theoretical estimate has been obtained from
the threshold�interval relation for the ODE models including the models of external action �����
���� and ����� and from the velocity�period relation for one�dimensional experiments without any
external action� connected by the asymptotic theory of de�brillation� An independent �direct�
estimation of this threshold was made in experiments with model ����� which is both spatially
extended and involves external stimulation� For a one�dimensional �bre with periodic boundary
conditions a uniform external �eld can extinguish a recirculating wave� the stimulus pulse forces the
wavefront forward� and the wavefront then decays back to its position at the time of stimulation�
while waveback continues to propagate �Fig� ��� All activity is extinguished when the waveback
meets the wavefront� The resulting de�brillation threshold for these computations is ��� nA�
which is similar to the �theoretical� estimation of ��� nA�

Figure �� Snapshots from movies of suprathreshold �above� with ��� nA$cell� and subthreshold
�below� with ��� nA$cell� de�brillation by a spatially uniform � ms depolarising current pulse
of a spiral wave in a model of a �� � �� mm slice of ventricular tisue� with 	t � ���� ms and
	x � ��� mm� and cellular excitability described by the Oxsoft guinea pig ventricular model
	Noble ����� Biktashev 
 Holden ����
�

For a spiral wave solution of the two�dimensional analogue of ����� there is a narrow gap
between between waveback of the spiral wave and the following wavefront� The response of such
a counter�clockwise rotating re�entrant spiral �Fig� �� �� to a brief de�brillating pulse is similar
to that seen in the one�dimensional model� the wavefront is forced forward� and then relaxes
back to its position at the time the shock was applied� while the waveback continues to rotate
counter�clockwise� All activity is extinguished when the waveback reaches the wavefront� The
e�ect of the de�brillating pulse is mainly determined by the behaviour of the wavefront just after
its application� if it was strong enough to make the front jump ahead into a region of refractory
medium where it cannot propagate but instead retracts� then it continues to retract and so the
de�brillation is successful as all activity is extinguished� The predominance of the e�ect on the
wavefront follows naturally from the fact that the wavefront is determined by the fast processes�
with a time constant �f close to the duration of the de�brillating shock� In this particular model�
the de�brillation threshold was found to be ��� nA�

��



Figure �� Wavefronts and wavebacks visualised as ���mV isolines every �� ms during �left� the
suprathreshold and �right� subthreshold de�brillating shocks of Fig� �� The red isoline is just
before the de�brillating pulse was applied� the spiral wave is rotating counterclockwise�

Since the external currents occurring in our calculations are in nA per cell� we cannot directly
compare these results with clinical or experimental data� However� the dimensionless ratio between
the excitation and de�brillation thresholds can be compared� In our model� this ratio has been
found to be about ����
Real cardiac tissue is heterogeneous and so the experimental estimation of the excitation thresh�

old gives the threshold for the most excitable tissue� while the experimental estimation of the
de�brillation threshold gives the threshold for elimination of the activity in all the tissue� Thus
the exprimental ratio will always be more than this theoretical value� # e�g� � the ratio mentioned
by Dillon 	����
 is about ���

� Discussion

In spite of its practical importance� the processes of de�brillation still remain obscure� Most
theoretical approaches have been based on linear models 	Knisley et al� � ����� Sepulveda et al�

� ����� Krassowska et al� � ����
� while some numerics of nonlinear models 	Cartee� ����
 and
theoretical studies with simpli�ed models have been attempted 	Pumir 
 Krinsky� ����
� The
reason for this lack of progress is the combination of nonlinearity and the hierarchical multi�
timescale structure of biophysical excitation equation with the necessity for a representation of
the complicated spatial structure for every cell� We have overcome these problems by applying a
series of well known methods� to full�ll nonlinear averaging� the result is the simpli�ed models of
���� and ����� This reduction of an in�nite dimensional system to an ordinary di�erential system
may be of value in a range of applications of nonlinear science�
These simpli�ed models have been veri�ed numerically and allow us to use biophysically de�

tailed excitation equations� and so we are now in a position to provide a quantitative� theoretical
explanation for the e�ects of changes in parameters in the excitation equations on the de�bril�
lation threshold� and to design optimal de�brillation pulse parameters� Experimental techniques
now exist 	Zhou et al� � ����
 for testing such quantitative descriptions of the mechanisms of
de�brillation�

��
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