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Abstract

We outline a mathematical model of the action of an external electric current on excitable
tissue, which considers the action of the current on different parts of the cell membrane within
an ODE description. This model is intuitively clear and numerically efficient, and is used to
predict and compute the defibrillation threshold for cardiac tissue.

1 Introduction

Extracellular stimulation by large (0.1-10 KV) and brief (0.01-5 ms) pulses applied by remote
electrodes is widely used in clinical and experimental physiology to excite activity in nervous and
muscular tissue: an important area of application is in pacing the heart [Zipes & Jalife, 1995]. Such
field stimulation 1s also used to defibrillate heart muscle z.e. to eliminate all propagating activity
when abnormal, re-entrant propagation is generating a life-threatening arrhythmia [Panfilov &
Holden, 1996].

For a single cell in such a field, the current that flows in must equal the current that flows out
of the cell, and so any effect must be generated by nonlinear summation of different behaviours
of different parts of the cell. There must be potential gradients across the cell, and so each cell
needs to be considered as a spatially extended object [Plonsey & Barr, 1986] and modelled by a
partial differential system, as in [Cartee & Plonsey, 1992].

Here we present a simple ODE approach to the effects of extracellular field stimulation on
excitable cells and tissues and apply i1t to estimate the defibrillation threshold for a model of
mammalian ventricular tissue. We apply the singular perturbation approach of Krassowska and
Neu [1994] to high-order biophysical excitation equations [Boyett et al. , 1996] and extend the
excitable medium models of cardiac tissue [Biktashev & Holden, 1996] to include the effects of
external current inputs, and illustrate defibrillation wvia the theory of Pumir & Krinsky [1996].
Recent approaches to the theoretical basis of defibrillation [Keener, 1996, Pumir & Krinsky, 1996]
lead to to coupled partial differential systems.

2 Basic Equations
Biophysical membrane excitation equations are of the form:

Cou = flu,v,w),
v = g(u,v,w), (1)
dw = h(u,v,w),



where u = u(t) is the transmembrane voltage, C' is specific membrane capacitance, f is transmem-
brane current density, vector v = v(t) describes the fast gating variables, and vector w = w(?)
comprises slow gating variables and intra- and extra-cellular ionic concentrations, and g and A
describe their kinetics. The variables u and v have comparable characteristic times. There are a
number of different membrane ionic current models, for the same, and different parts of the heart.
These models, that define the functions f, ¢ and h are reviewed in [Zipes & Jalife, 1995], [Gray
& Jalife, 1996] and [Panfilov & Holden, 1996]. In the illustrations of this paper we have used the
Noble et al. [1990] model for the guinea pig ventricular cell, incorporated in a tissue model in
[Biktashev & Holden, 1996].

We begin with a bidomain approach, for a single isolated cell with an intracellular domain | 7,
external domain, £, and the membrane surface, M, and introduce the electrostatic potential ¢;
and ¢, in Z and &€ | u; and u, as limit values of ¢; and ¢. at M, and electric charge densities ¢;
and ¢, at the inside and outside surface of the membrane.

1) Intracellularly, electroneutrality of the cytoplasm means for r € 7,

V(O’ZV¢>2) = 0, (2)

for a scalar specific conductivity ;. Here and below, r denotes the vector of coordinates of a point
in space.
2) In the extracellular domain, electroneutrality means for r € &:

V(c.Vé.) =0, (3)
for a scalar specific conductivity o, and for a homogeneous external field E,
¢ ~ (E,x), ¥ — 0. (4)

In the case of a tissue of cells, Eq. (4) is to be replaced - e.g. for cells in a regular 3-dimensional
grid, the domain £ UZ U M forms the elementary volume of the grid, and (4) is to be replaced by
periodic boundary conditions for the “own” cell potential

¢own(r) :¢i,e(r) - (E, I‘),

or the “oscillatory component” of the potential, in terminology of Plonsey & Barr [1986] and
Krassowska et al. [1990].
3) In the membrane, the boundary conditions of the “volume equations” (2,3) for r € M:

¢ = wi, (5)
¢€ = Ue, (6)
and surface balance of charges on the interior and exterior sides of the membrane;
Oqi = YAy — f(u)+0:i(Vei,n), (7)
6th — EeAMue + f (U) - Ué(v¢€a n)a (8)

here f, is the transmembrane current, X; . are specific conductivities, and A, is the Laplacian
operator on the membrane surface. For simplicity of notations, we assume here that X; . are
constant. Electroneutrality of a membrane element gives

q=qe=—gi. (9)

The membrane capacitance is
Cu=yq (10)

and transmembrane voltage is
U= U, — U;. (11)

After defining f(x,?),r €M, through local values of u, v and w, and local kinetic equations
for v and w from (1), these equation form a closed system, which determines evolution of the
distribution of electric properties over the cell at given E(¢), and so describe the action of the
external electric field onto the cell.



3 Reduction to the Membrane

Following the ideas of Krassowska and Neu [1994] we will now simplify this extensive nonlinear
system of partial differential equations; note that in the electric part of the equations, all the
nonlinearity is located in the term f(), and the remaining linear problem can be (in principle)
solved. Summing the Eqs. (7) and (8), we get a linear equation

TiApu; + XApyu, = (Ve — 0;V;,m), reM (12)
for the overall current balance of the membrane element, which, together with the equations

V(O’ZVq/)Z) =0, re 7,

¢i = Uy, re Ma

v(aev¢e) =0, re &,

b = u., re M, (13)
Ue — U; = U, re M,

¢€ ~ (E,I‘), r— 00,

constitute a well posed elliptic problem for finding ; . and ¢; . at given E and u. Differentiation
of (10) by time and substituting into (7) or (8), together with the slow equations, yields then the
resulting system of equations of the form

Coiu = f(u,v,w)—i—ﬁu—i—fE,
v = g(u,v,w), (14)
dw = h(u,v,w),

where u, v and w are now functions of time and position on the membrane, L is a linear (generally,
integro-differential) operator in a space of scalar functions on the membrane, and I is a linear
operator mapping vectors E to scalar functions on the membrane. The specific forms of L and I
depend on the geometry of M and on the coefficients o; . and X; .. We use the following properties
of these operators:

o Lu vanishes if u is spatially homogeneous over the membrane,
e the integral of Lu over the membrane surface is zero for any u, and
e the integral of IE over the membrane surface is zero for any E.

These properties follow from the derivation of (14). Lu represents the currents between different
loci of membrane, both through interior and exterior domains, and /E is the additional current
due to the external field.

4 Simplified Two-Compartment Model

We now construct a simplified model, that retains the main features of (14). We approximate
all functions u(x), v(z) and w(z) by piecewise constant functions, taking, at each time instant
only two values at two different and fixed parts of the membrane. Denoting the two parts of the
membrane by indices + and —, system (14) is then rewritten in the form

COuy = flug,vp,wy) +o(us —ug) + L),

Cou— = flu_,v_,wy) +a(ug —us) — Lg(),
vy = glug,ve,wy), (15)
Gwy = hlug,ve,w),

where the signs in the last two equations are either all + or —.

In writing this system, we have taken into account the main properties of L and I listed in the
previous section. The constant « of the dimensionality of conductivity in (15) should be positive;
it is the effective conductivity of the cell in this two-compartment approximation. I.;:(t) is the
current produced by the external source and crossing the cell.



5 Quasi-Stationary Approximation

The system (15) contains a singular small parameter, the ratio of the characteristic times of the
intracellular conductivity «, 7o, and of the membrane excitability, 7;. Biophysical data [Weid-
mann, 1952] give the intracellular resistivity of the order of 250 Ohm-cm, which for the cell size of
10-80 pm gives o of the order of several uS, so 7o ~ 10—100pus, which is much less than 7 ~ 1 ms.
Numerical calculations of the simplified two-compartment model (15) would require time steps not
greater than 7., while if we can get rid of the small parameter, times steps of around 7; would be
adequate.

We exclude the small parameter o by “quasi-stationary” arguments. Rewrite the first two
equations of (15) as

1
coU = §(f (U+évy,wp)+ f(U=bv_,w)) (16)
Cos = (7 (U + 80, w4) = FU = 6,0, 00)) = 206 + Lon(1) (1)
where
1
U= g(uy +u),
and
1
5= §(u+ —u_).

Now, in (17) the term —2aé dominates over %(f() —f()), and omitting the nonlinear term %(f() -
fO) , (17) becomes a linear equation. If the characteristic time of I.;; change is bigger than 4,

then this equation describes the fast approach of é to its quasi-stationary value,

1

8oo (1) = %Iem(t),

and we can substitute this value into (16), which yields

OOl = LU (U +ee (1), v w03) - F(U = b (1) 0 ) (18)

Equations (18) and the last pair of (15) form a closed system, which depends only on the ratio
I.p¢/c. If we assume that the duration of pulses I, is shorter than the characteristic time 75, of
the slow variables then wy ~ w_ ~ W. This final simplification gives:

1 1 1
CatU = §(f(U+ %Iext (t),U+,W)—|—f(U - %Iext (t),v_,W)),
1
atvzl: = g(Ui %Iext (t)av:taW)a (19)
aw = W, %,W).

This model is almost as simple as the original (1) ordinary differential equation (e.g. , it has
three equations more than the 17 variable Noble et al. [1990] ordinary differential system we use
for ventricular excitation), but describes the effect of external current. This has been obtained
from (15) assuming the characteristic time of the external curent pulses, 77, is

01lms ~7, K17 ~1p ~ 7y L 75 ~ 10 ms.

In practice 77, 7¢ and 7, are all of the order of 1 ms.



The general model (14) can be simplified by quasi-stationary arguments to

CoU = /f(U+ﬁ—1fE(t),v,W) dM, (20)
M

with separate ordinary differential equations for v at each point of the membrane. If the external
field E is fixed in direction and varies only in magnitude, then the surface integral in (20) can be
reduced, in a Lebesgue style, to an ordinary integral

CoU = /f(U—I—sE (t),v, W) K(s) ds, (21)

where the kernel K(s) is determined by the cell geometry, the conductivities, and the direction of
the external field, and because of electroneutrality of the cell

/K(s) ds=1.

The simple model (19) corresponds to evaluation of the integral in (21) at two points s = :I:%.

Below we explore numerically some properties of the model (19) and its generalisation to
spatially extended media. To validate the two-point approximation of the integral (21), we compare
the two-point results with those of a five-point evaluation of (21), in the form

1 J
C@tU = 3];2 f(U + 3_aIext(t)a V5, W)a
6ﬂ}j = g(U + ;_ajext(t)a Vs, W)a .7 = _2a R 2 (22)
2

1
HW = h(U,g’Z vj, W).

6 Action onto a Single Cell

First we verify the quasi-stationary exclusion of the small parameter in transforming from (15)
to (19) by studying the excitation processes in these two systems, and accuracy of the two-point
approximation in (21) by comparision with the results of the five-compartment model (22). The
kinetics f(), g() and k() were described by guinea pig ventricle myocyte model of Noble et al.
[1990], that has 17 kinetic variables. o was 10p S, which is consistent with data of Plonsey & and
Barr [1986]. In the vector v we included the three fastest gating variables ‘h’; ‘d” and ‘f’; gate ‘m’
was not a dynamic variable but a fixed function of w. Thus, model (19) contained 20 ODEs, as
opposed to 34 ODEs and large values of the parameters o and I, in (15), and 29 ODEs in the
five-compartment version (22).

We obtained the strength-duration curve — the threshold external current I.,; as a function
of stimulus duration (Fig. 1). The results obtained for the three models (15), (19) and (22)
coincide with a good precision. Thus « is large enough for the quasi-stationary approximation
to be valid, and two-point evaluation of the surface integral gives reasonable accuracy, and in all
other numerical experiments we used only model (19).

The threshold current was also determined at a stimulus duration of 2 ms and different intervals
after a preceding action potential. The excitability of the biophysical excitation equations for
cardiac tissue i1s highly dependent on the history of the cell activity. Intervals between action
potentials as short as those in Fig. 2 cannot be achieved by a pair of stimuli applied to a resting
cell, as they are less than the standard (from rest) action potential duration. Since we are specially
interested in the defibrillation threshold, the cell has been preconditioned by an excitation sequence
identical to that of a point in a developing spiral wave during first 14 rotations; in this model, the
average period of the spiral wave is around 102 ms.
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Figure 1: Strength-duration curve for a single isolated cell excited by an extracellular current
pulse. & @ computed with two-point evaluation of integral, model (15). + : quasi-stationary model
(19), O : computed with five-point evaluation of integral, model (22).
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Figure 2: Excitation threshold of a single cell excited by an extracellular current pulse of 2 ms
duration computed using model (19), as a function of time since the beginning of the last con-
ditioning action potential, in model (19). To ensure that the state variables were close to those
found during re-entry, the cell was conditioned by a train of action potentials obtained from a
re-entrant spiral solution; the inter-wave interval is the interval between the minimum of u of the
previous excitable gap, to the start of the current pulse.



7 Action onto an Excitable Fibre

The generalization of equations (19) for spatially extended tissue is straightforward as the deviation
of each individual cell from an isopotential state takes place only during the short time periods of
external stimulation, and outside these periods cable theory gives

1 1 1 )
8tU = 20(f(U+ 20[I€xt (t),v+,W)—|—f(U— 20[I€xt (t),v_,W))—i—D@xU
1
atvzl: = g(U :l: %Iext (t) y U4, W) (23)
aw = kU, % W),

where U, vy and V are now functions not only of time ¢, but also of distance along the fibre
z, and the diffusion coefficient for voltage, D, is proportional to the intercellular conductivity.
D = 31.25 mm?/s gives a conduction velocity of about 350 mm/s for a solitary wave through
resting tissue. The value of D is necessary only for the interpretation of spatial scales as equations
(23) are invariant under simultaneous change of spatial scales and coefficient D.

8 On the Asymptotic Theory of Defibrillation

We now apply this approach to evaluate the defibrillation threshold for a tissue, i.e. the amplitude
of an externally applied current pulse necessary to abolish all propagating waves, and compare
it with the prediction of the asymptotic theory of defibrillation for our model. The theory was
described by Pumir & Krinsky [1996] and is based on separate consideration of the slow and fast
processes during the process of propagation [Fife, 1976, Tyson & Keener, 1988]. During re-entrant
activity and fibrillation, propagation in the whole heart is an irregular and changing pattern of
waves and wavelets [Gray & Jalife, 1996]. The asymptotic theory of defibrillation assumes that
on the fast time scale the medium has two alternative stable equilibria, which depend on the slow
variables. The propagation of the wavefront, in the fast time scale, is a trigger wave between the
equilibria that is either “antegrade”, when the excited region grows, or “retrograde” propagation,
when the excited region shrinks. The wavefront of a propagating pulse is an antegrade trigger
wave, and its back a retrograde wave. In a resting medium, the upper, “excited” equilibrium is
more stable, so a suprathreshold perturbation produces an antegrade trigger wave, and the excited
region expands. During the excited state, the evolution of the slow variables lowers the stability of
the excited state while the stability of the resting state increases, until a retrograde trigger wave
can propagate.

In this approximation a wavefront cannot spontaneously change direction of propagation.
When a defibrillating shock is applied to the whole medium, if the intensity of the shock is high
enough, then all the cells of the medium can be thrown into the excited state, and thereafter only
retrograde waves will occur throughout the medium and these will trigger all the medium into the
resting state. Driving all the medium into the excited state provides a simple understanding of
defibrillation. However it 1s not necessarily exact. First, not all the cells may be excitable, i.e.
have the alternative “upper equilibrium” at the moment of shock delivery. Second, the require-
ment of all the excitable cells to be triggered into the excited state is excessive. Defibrillation
requires that only retrograde waves are generated after it. To ensure this, it is only necessary to
excite all those cells which have the resting state as the more stable state, and it is not necessary
to excite those which have the excited state as the more stable.

The boundary between these classes of cells is in the state space of the slow variables, and
corresponds to the values of these variables when the two equilibria are equally stable. If u 1s
much faster than both v and w, this “equal stability” is represented by a “Maxwell rule”, for the
right-hand side of the fast excitability equation:

Uepcited(V,W)
/ flu,v,w)du = 0. (24)

restzng(vyw)
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Figure 3: (a) Subthreshold (600 nA, 2 ms) and (b) suprathreshold (800 nA, 2 ms) response of a
re-entrant wave in one-dimensional ring to a defibrillating shock. In both cases the wavefront is
initially advanced, in the suprathreshold case the wavefront collapses back to its position at the
time the pulse was applied, and meets its waveback. The circumference of the ring is 60 mm, and
the membrane potential is displayed every 2 ms, i.e. the conduction velocity of the wave before
defibrillation was 300 mm/s.



When there is only one slow variable w, as in the FitzHugh-Nagumo system considered by
Pumir & Krinsky [1996], this equality has a unique solution at the “critical value” w,,, and the
defibrillation condition is then reduced to the requirement, that all cells with w < w., should be
excited. However,the “Maxwell point” falls exactly at the centre of symmetry of the excitability
model used by Pumir & Krinsky [1996], f(u,v,w) = F(u) — w with a cubic F', and for this
model, in the style of (14), a cell at the critical point cannot be excited by a uniform field of any
magnitude.
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Figure 4: Velocities of forward fronts of excitation waves, mm/s, as functions of interwave intervals,
ms.

In biophysical excitation equations there is no such symmetry and so the theory is applicable
as long as the realistic “slow processes” v and w are slow enough for the asymptotic approach to
be valid. The margin (24) between preferably-excited and preferably-resting cells is a manifold of
codimension 1, and so finding the exact defibrillation condition would imply finding the points with
the highest threshold on this manifold. We do not need to search the whole space, only in a subset,
corresponding to states of cells present in the tissue in the moment of defibrillation. Estimation of
the defibrillation threshold requires a model of fibrillation, as well as a model for the defibrillation
process. We estimated the velocities of propagation of wavefronts of excitation pulses driven at
the highest possible frequencies, provided by a spiral wave solution. Since, as it was mentioned
in Section 7, the excitation properties are strongly influenced by the pre-history of excitations,
we used here exactly the same pre-conditioning procedure as for Fig. 2. The dependence of
premature pulse propagation velocity on the coupling interval is shown in Fig. 4. A 1.5 mm long
one-dimensional model governed by (23) without external current was integrated with boundary
conditions u(#g,t) = U(t) at one end, and non-flux condition on the other, where U(t) was the
transmembrane voltage profile of a developing spiral wave solution recorded at a point far from the
core (see Fig. 2(b) in [Biktashev & Holden 1996], point ‘D’). Thus, pulses propagated through the
fibre in the same sequence as they typically do in 2D during development of a spiral wave. After
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14 such pulses, the 15th one was initiated prematurely with a controlled advance in time, and its
velocity was measured via crossing times at points distant 0.5 and 1.0 mm from the boundary. The
smallest coupling interval we could obtain was 97 ms. Comparison with the threshold-interval plot
(Fig. 2), gives the excitation threshold corresponding to this interval of 840 nA, and this provides
the estimate of the defibrillation threshold. This theoretical estimate has been obtained from
the threshold-interval relation for the ODE models including the models of external action (15),
(19) and (22), and from the velocity-period relation for one-dimensional experiments without any
external action, connected by the asymptotic theory of defibrillation. An independent “direct”
estimation of this threshold was made in experiments with model (23), which is both spatially
extended and involves external stimulation. For a one-dimensional fibre with periodic boundary
conditions a uniform external field can extinguish a recirculating wave; the stimulus pulse forces the
wavefront forward, and the wavefront then decays back to its position at the time of stimulation,
while waveback continues to propagate (Fig. 3). All activity is extinguished when the waveback
meets the wavefront. The resulting defibrillation threshold for these computations is 740 nA,
which is similar to the “theoretical” estimation of 840 nA.

Figure 5: Snapshots from movies of suprathreshold (above, with 800 nA/cell) and subthreshold
(below, with 650 nA/cell) defibrillation by a spatially uniform 2 ms depolarising current pulse
of a spiral wave in a model of a 20 x 20 mm slice of ventricular tisue, with é¢ = 0.05 ms and
dx = 0.1 mm, and cellular excitability described by the Oxsoft guinea pig ventricular model

[Noble 1990, Biktashev & Holden 1996].

For a spiral wave solution of the two-dimensional analogue of (23), there is a narrow gap
between between waveback of the spiral wave and the following wavefront. The response of such
a counter-clockwise rotating re-entrant spiral (Fig. 5, 6) to a brief defibrillating pulse is similar
to that seen in the one-dimensional model: the wavefront is forced forward, and then relaxes
back to its position at the time the shock was applied, while the waveback continues to rotate
counter-clockwise. All activity is extinguished when the waveback reaches the wavefront. The
effect of the defibrillating pulse is mainly determined by the behaviour of the wavefront just after
its application: if it was strong enough to make the front jump ahead into a region of refractory
medium where it cannot propagate but instead retracts, then it continues to retract and so the
defibrillation is successful as all activity is extinguished. The predominance of the effect on the
wavefront follows naturally from the fact that the wavefront is determined by the fast processes,
with a time constant 7; close to the duration of the defibrillating shock. In this particular model,

the defibrillation threshold was found to be 750 nA.
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Figure 6: Wavefronts and wavebacks visualised as -10mV isolines every 10 ms during (left) the
suprathreshold and (right) subthreshold defibrillating shocks of Fig. 5. The red isoline is just
before the defibrillating pulse was applied; the spiral wave is rotating counterclockwise.

Since the external currents occurring in our calculations are in nA per cell, we cannot directly
compare these results with clinical or experimental data. However, the dimensionless ratio between
the excitation and defibrillation thresholds can be compared. In our model, this ratio has been
found to be about 1.5.

Real cardiac tissue is heterogeneous and so the experimental estimation of the excitation thresh-
old gives the threshold for the most excitable tissue, while the experimental estimation of the
defibrillation threshold gives the threshold for elimination of the activity in all the tissue. Thus
the exprimental ratio will always be more than this theoretical value, — e.g. , the ratio mentioned

by Dillon [1991] is about 10.

9 Discussion

In spite of its practical importance, the processes of defibrillation still remain obscure. Most
theoretical approaches have been based on linear models [Knisley et al. | 1994; Sepulveda et al.
, 1989; Krassowska et al. , 1990], while some numerics of nonlinear models [Cartee, 1992] and
theoretical studies with simplified models have been attempted [Pumir & Krinsky, 1996]. The
reason for this lack of progress is the combination of nonlinearity and the hierarchical multi-
timescale structure of biophysical excitation equation with the necessity for a representation of
the complicated spatial structure for every cell. We have overcome these problems by applying a
series of well known methods, to fullfill nonlinear averaging; the result is the simplified models of
(19) and (23). This reduction of an infinite dimensional system to an ordinary differential system
may be of value in a range of applications of nonlinear science.

These simplified models have been verified numerically and allow us to use biophysically de-
tailed excitation equations, and so we are now in a position to provide a quantitative, theoretical
explanation for the effects of changes in parameters in the excitation equations on the defibril-
lation threshold, and to design optimal defibrillation pulse parameters. Experimental techniques
now exist [Zhou et al. | 1995] for testing such quantitative descriptions of the mechanisms of

defibrillation.
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