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An excitation wave in cardiac tissue will fail to propagate if the transmembrane voltage at its front rises too
slow and does not excite the tissue ahead of it. Then the sharp voltage profile of the front will dissipate, and
subsequent spread of voltage will be purely diffusive. This mechanism is impossible in FitzHugh-Nagumo type
systems. Here a simplified mathematical model for this mechanism is suggested. The model has exact traveling
front solutions, and gives conditions for the front dissipation. In particular, a front will dissipate if it is not
allowed to propagate faster than a certain nonzero speed. This critical speed depends only on the properties of
the fast sodium channels. The inactivation gates of these channels play a crucial role in the front dissipation,
even if their dynamics are by an order of magnitude slower than those of the voltage.

PACS numbers: 87.10.+e

Introduction. Fifty years ago, Hodgkin and Huxley have
proposed a mathematical model of the electric action of the
giant squid axon [2]. It spawned a large family of models
describing other biophysically related phenomena, e.g. ex-
citability of heart muscle. Hodgkin-Huxley (HH) system of
equations and its descendants are rather complicated (see (4)),
do not admit exact solution, and mostly treated numerically.

FitzHugh [3] and Nagumo et al. [4] suggested a simplified
analogue of the Hodgkin and Huxley equations:
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where
�

corresponds to the transmembrane voltage [5] and
�

represents all other, slow variables. FitzHugh has shown that
an appropriate 2-dimensional projection of the “phase por-
trait” of the point system of the HH model looks “similar”
to that of (1), and Nagumo et al. have demonstrated that it de-
scribes propagating pulses similar to those in HH. This model
is much simpler than the HH-type systems, and allows a great
deal of analytical and qualitative study.

Throughout these 40 years, the FitzHugh-Nagumo (FHN)
system and its modifications served well as simple but reason-
able models of excitation propagation in nerve, heart muscle
and other biological excitable media.

In this paper, we discuss a phenomenon in biophysically de-
tailed models, which cannot be adequately reproduced in any
FHN-type system. This is dissipation of the excitation wave-
fronts, a specific mechanism of propagation block when the
sharp gradient of the transmembrane voltage at the wavefront
smears out and spread of voltage becomes diffusive, as the
main excitation current gets inactivated. This phenomenon,
although seen by physiologists and researchers working with
detailed models, has not been identified so far as deserving
a special attention and understandable in terms of simpli-
fied models. Understanding the mechanisms of propagation
blocks in heart tissue is of enormous practical importance, as
it is thought to be a major factor of cardiac arrhythmias (see
[6] as an example of a recent study).

Two different mechanisms of propagation block. A typi-
cal scenario of propagation block in heart is that an excitation
propagates where the tissue that has not fully recovered after
the previous wave, and a recovery wave moves before the new
excitation wave. If the recovery wave is slower than the ex-
citation wave, the latter runs into more and more unfavorable
condition and may eventually fail to propagate at all. This
happens differently in realistic models and in FHN-type car-
icatures. Fig. 1 illustrates this using an ultimate idealization
of the excitability completely but temporarily suppressed in
a part of the medium. The illustrations are for two models,
the detailed model of human atrial tissue by Courtemanche
et al. [7] (CRN) and for the FHN system (1). In the CRN
model, when the propagation stops, the wavefronts dissipates.
When the conditions for propagation are restored, the excita-
tion wave does not resume, as the sharp increase in the volt-
age necessary to trigger such wave is not present. Subsequent
spread of the voltage is purely diffusive. In the FHN system,
the high voltage at the front itself is enough to excite new
cells if other conditions are right again; so the excitation front
can propagate with arbitrarily slow speed or even stop, with-
out dissipation. When propagation conditions are restored,
the excitation wave resumes the propagation, even though the
voltage profile in the inexcitable region has been smeared out.

The FHN wave will not resume propagating only if the
block lasts longer than the action potential, so the back of the
wave reaches the block site. In contrast, the CRN wave looses
the ability to propagate within milliseconds, long before the
end of the action potential.

Excitation fronts in FHN-type systems do not dissipate. If
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, >@? 8 ), for which the asymptotic theory devel-
oped in 1970-1980s (see e.g. [9–12]) can be applied. In
a relevant region of
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three simple roots in
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FIG. 1: Temporary local block of the excitation front: the excitabil-
ity of the medium is suppressed for
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where
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and
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are the middles of the space and time intervals
(shown by the white dots). Here and below, solutions are represented
by shades of gray: black is the smallest value of . and white is the
largest value of . within the solution. In CRN model: time range/ �

ms, space range 50 s.u. [5], all the kinetic parameters are as in [7].
In FHN model: time range 50, space range 50, 0 
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stable, 79874:<;>=�?@;BADCFE*AGCIHKJ , and the threshold is unstable,79874: ;>=MLN;(AGCOE*AGCQPRJ . Propagation of fronts and backs of excita-
tion waves in the limit SMTVU J is described by trigger waves
in the first of the equations (2) with AXWZYF[N\^]�_ between =a`b;(AGCand =�c�;BADC with a speed which is a function of A , d W d ;(AGC .
The sign of d ;(AGC coincides with the sign of e :gfihkjOl:nm$hojOlbp ;>=qE*AGCGrs=and thus may change as A changes, i.e. a wavefront may stop
and reverse to become a waveback. The motion of the wave-
front/waveback on the large scale is described by an ODE

rstrGu Wwv d ;(Ai;(t�E*u*C*C�Wxv�yX;(t�E*u*COz (3)

In any case, as long as the excitability stays, the sharp struc-
ture of the front is preserved, i.e. it does not dissipate.

Constructing the simplified model of the excitation front.
The realistic models descendants of Hodgkin-Huxley model
are all fairly similar in the part that interests us; for definite-
ness, we refer to the original model [2],{ ={ u W

{i| ={$} | U�~"�Q� ;>= ��� v�=�C��-�9�U�~"� ;>= � v�=�C��g� U�~�� ;>= � v�=�COE{ �{ u W�; ��;B=�C�v!��C �
����;B=�CFE{ �{ u W�; �n;B=�C�v��$C �
����;B=�CFE{ �{ u W�; ��;>=�C�v���C �
���g;B=�CFE (4)

where = is the transmembrane voltage [5], ~i���4� � � � are maxi-
mal integral specific conductivities per membrane capacitance
of Na, K and “leakage” currents respectively, = �Q�9� � � � are cor-
responding reversal potentials, � , � and � are probability den-
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FIG. 2: Dependence of �<�9�B�M� and  $�B��� for the Hodgkin-Huxley
(HH) (4) [2] and Courtemanche et al. (CRN) [7] detailed models and
for the proposed simplified model (5).

sities of the channel gates being open, ¡�¢ £�¢ ¤ are their instant
equilibrium values, and ¥"¦�§ ¨"§ © corresponding time scales.

On the front of an excitation wave, ª grows rapidly, due to
the large magnitude of the Na current and/or the intercellular
current described by the diffusion term. Elsewhere, evolution
of ª is influenced also by the smaller currents. To describe the
front separately from other phases of the wave, we consider a
limit «"¬�­¯®±°³² , in which all ionic currents other than Na
are disregarded. Thus, only ¡ and £ which are responsible for
the Na current remain, while variable ¤ , as well as many other
variables in more complicated models, become irrelevant.

Values of ¥ ¦�´ ª�µ at the front are very small compared to
other characteristic time scales of the problem. Thus ¡ is
always close to its quasi-stationary value ¡ ´ ª�µ . The differ-
ential equation for ¡ is therefore eliminated.

Thus we get a system of two equations,¶ ª¶$·¹¸ ¶iº ª¶$» º °½¼F¬�­ ´ ª�µ ¡-¾ ´ ª�µ*£�¢¶ £¶�· ¸ ¿¥�¨ ´ ª�µ�À £ ´ ª�µ�Á�£$Â�¢ (5)

where ¼ ¬Q­s´ ª�µ ¸ « ¬�­D´ ª ¬�­ ÁÃª�µ . This system is intended
to describe the propagation of the excitation front (the fast
process) only, leaving all other processes, such as action po-
tential and recovery (the slow processes), out of the scope.
Compared to the FHN model, this system plays the same role
as the first equation in (2), but here we do not assume £ to be
much slower than ª , thus two fast equations in place of one.

So far we exploited small parameters available in the
model, and (5) can be expected to be in a reasonable quanti-
tative agreement with the full system. Further simplifications
are based on qualitative considerations, and do not claim to
produce quantitative results. We note that ¡ ´ ª�µ and £ ´ ª�µ
are step-like functions, taking values either close to 0 or close
to 1 (see fig. 2). Thus we replace them with

¡ ´ ª�µ ¸ZÄ ´ ªxÁ�ª ¦ µ ¸ ¡ ¾Å´ ª�µF¢ £ ´ ª�µ ¸RÄ ´ ª ¨ Á�ª�µF¢
were Ä ´>Æ µ is the Heaviside step function.

Further, we replace ¥�¨ ´ ª�µ and ¼�¬�­ ´ ª�µ by constants as their
dependence on ª is not essential here. So, growth of ª stops
when £ or ¡ close down, not when ª reaches ª�¬Q­ , and the
maximal voltage in a front is usually significantly lower thanª�¬Q­ (e.g. in CRN, by more than 60mV).

After appropriate nondimensionalization, by choosing the
scale of ª so that ªÇ¨ ¸ÉÈ , ª�¦ ¸ ¿ and scale of

·
so that
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FIG. 3: A propagating front solution (8,9) to (7) ( ��� �
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depending on one dimensionless parameter, � .
Spatially homogeneous equilibria here are not isolated, but

form two continua, $ �4 ���( 9 $ ���  �5 (! #" 8%$'& $ 5  � ��(! #" 5 $ .
This is due to the idealizations that ionic currents other than
Na only produce slow dynamics and therefore disregarded in
considering fronts, and that Na gates work as perfect switches.
This means that

�
will remain constant (in reality, slowly

vary) at any value as long as the Na channels are closed.
The traveling front solutions. A front propagating left-

wards with speed ( satisfies( �#) � �#) ) �*� $ ��� 8 (��  ( �!) � 8� $+� $ � �7(.����( (7)

with auxiliary conditions:� $ ����( � �-,&6 5/. � $ � ��( �1032 8 .� $ ��� ( � 8 .4� $ � ��( � 5 *
We choose the phase of the front so that

� $ 5 ( � 5
, denote	�5 2 5 the point where

� $ 	65�( � 8 , and require that
� $ 	�( 97 5

and
� $ 	�(F9 798 , which implies obvious internal boundary

conditions at
	 � 5 and

	 � 	65 .
This problem has a family of solutions depending on one

parameter, the pre-front voltage
,

:
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where 0 � 8 � � ( � $ , � 8 ( , 	J5 � 5 KMLON � 5 E6PP �
and ( is an

implicit function of � and
,

,� ( � LQNBR $ 8 � ,.( $ 8 � � ( ��(� S � LQNBR , � 8, S � 5 * (9)

Note that here the post-front voltage 0 depends on � ; this
is different from the FHN-type systems where it only depends
on the right-hand sides of the equation for

�
.
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Properties of the speed equation. Equation (9) is equiv-
alent to the equation of level curves

LON � � 23$ %  �g ( of the
function 23$ %  �g (
h LQN $ 8 � g (.� LON $ 8 � % ( �ig A 5 LON %  whereg � � ( � , % � ,.� $ , � 8 ( , $ %  �g ( 91j � $ 5  8 (k $ 5  � � ( .
It can be seen that (i) For every fixed % ,

� 2 � ��g changes sign
once as

g
runs through $ 5  � ��( . (ii) 2�$ %  �g ( has a local min-

imum
g C#l 8 *nm �popm%q *�*�* , % C#l 5 * �pq%rIs � * *�* , 2 C#l s * 5 �ut%v *�* *

,
which is its only critical point in

j
. (iii) Function 2�$ %  �g ( has

the following lower bounds

23$ %  �g ( 2 LQN#w LON $ 8 � % (yx  2�$ %  �g ( 2 LQN $ 8 � $ 8 � % ( (1 
23$ %  �g ( 2 LQN $ 8 �%g (1 2�$ %  �g ( 2 LQN g� {z $ %  �g ( 9Bj.*

Using [13], we deduce from here that for every
7 2 2 C , the

set 23$ %  �g ( � 7
is a simple closed curve, crossing each line% �}|�~ N'��� at most twice, and $ % C  �g C ( is a global minimum inj

. A selection of level curves is presented on fig. 4.
Thus, for every � 2 � C ������� l t)* outdr 5 *�* *

, there ex-
ists a range of pre-front voltages

5 6{,���� � $ � ( 6�, 6,6����� $ � ( 6 � � , for each of which there are two propagating
front solutions (8) with different speeds, and all propagation
speeds possible at various pre-front voltages, span an interval5�6 ( ��� � $ � (�A ( A ( ����� $ � (/6 � � . Explicit estimates of
critical parameters can be obtained in the limit of large � , e.g.( ��� � ��� 5�� � � A 5 � 8 *ns�m � � � � � A � ��� $ � A ��(1* (10)

Existence of a minimal propagation speed implies that the ex-
citation front can not be stopped or reversed, and is therefore
crucial for the phenomenon of front dissipation.

Some numerical results. For every admissible pair of �
and

,
, except the marginal values of

,
, equation (9) gives two

values of the speed ( . Numerical experiment suggests that the
faster fronts are stable, and the slower fronts are unstable and
either dissipate or develop into the faster solutions (see fig. 5).
This conjecture requires a further investigation.

Fig. 6 shows results of computations of (6) with a tem-
porary local excitability block as in fig. 1. As the only pa-
rameter in the model is � and front propagation is possible
if � 2 � C l t)* outer

, the block was simulated by a decrease
of � below this threshold. The front dissipated as soon as it
reached the blocked region. When excitability in that region
was restored, the front did not resume but continued to spread
diffusively. So, the new model behaves similar to the detailed
equations and different from the FHN model.
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and Y close to the low speed solution of (9). Space range is 100, time
range is 200. Depending on minute details, the slow front either
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FIG. 6: Temporary local block (
�

, white dots) of the excitation front
in the simplified model (6), as in fig. 1. Front propagation did not
resume after the excitability has been restored. Initial conditions (8)
with � � � , �D�3� , � � ��
 ����� . Time range 1000, space range 300.

Conclusions. Fronts of excitation waves in realistic mod-
els of cardiac tissues cannot be stopped or reversed. If they are
not allowed to propagate, they dissipate. This makes them dif-
ferent from the FHN-type caricatures, where fronts can slow
down and persist until the waveback catches up, or reverse
and turn into the wavebacks. Local propagation blocks lead to
breaks in the excitation waves and are essential in fibrillation.
An established belief, based on intuition gained in FHN-type
models and exemplified by [6], is that a wavebreak happens
when the waveback catches up with the wavefront and “the
length of the excitation wave becomes zero”. In the mech-
anism described here, based on realistic models, the wave-
length is irrelevant and whether or not the wave breaks is de-
cided exclusively by events in its front.

The proposed simplified model (6) captures the main fea-
tures of realistic models responsible for the propagation and
dissipation of the excitation fronts. Briefly, the main qualita-
tive predictions are: (i) Front parameters, including propaga-
tion speed, are determined by the pre-front voltage. (ii) The
range of pre-front voltages at which propagation is possible, is

bounded from above and from below. (iii) The range of pos-
sible propagations speeds is bounded from above and from
below. The boundedness of possible propagation speeds from
below implies that the excitation front can not be stopped or
reversed, and is therefore crucial for the front dissipation.

Model (6) provides exact analytic solution for the front
shape (8) and speed (9), wherefrom explicit conditions of
front dissipation can be obtained, e.g. (10). For an accu-
rate quantitative description, a less simplified model (5) can
be used instead [14]. The traveling front solutions may then
need to be studied numerically, with a possible exception of
qualitative questions like boundedness of the speed spectrum.
These models can serve as the fast subsystems in an asymp-
totic theory of the cardiac excitation waves, which is yet to
be developed and to replace, in applications to cardiology, the
asymptotic theory of FHN-type systems [9–12].

The key process responsible for dissipation of the front is
the closure of the slow Na gate

�
. Thus any asymptotic or sim-

plified model intended to describe front propagation at slow
speed or its failure, must take the dynamics of

�
into account,

alongside with the those of the transmembrane voltage
�

. Our
results show that this is necessary even if the ratio of charac-
teristic time scales of

�
and

�
is rather high, say around

v
.
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