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Abstract

An excitation wave in nerve or cardiac tissue may fail to propagate if the temporal gradient
of the transmembrane voltage at the front becomes too small to excite the tissue ahead of
it. A simplified mathematical model is suggested, that reproduces this phenomenon and has
exact travelling front solutions. The spectrum of possible propagation speeds is bounded from
below. This causes a front to dissipate if it is not allowed to propagate quickly enough. A
crucial role is played by the Na inactivation gates, even if their dynamics are by an order of
magnitude slower than the dynamics of the voltage.

1 Introduction.

The last decades have seen an exponential explosion in the quantitative electrophysiology of cardiac
cells and detailed mathematical models of propagation of excitation in heart. These mathemati-
cal models are rather complicated and mostly studied numerically. The disadvantages of purely
numerical simulations are well known: limited insight into the mechanisms of the studied phe-
nomena, and generally unknown dependence on the numerous parameters of the models, not all
of which are known equally reliably. Thus, whatever the development of the detailed models, sim-
plified, caricature-type models that allow some degree of analytical treatment are always in great
demand. The suitability of such a simplified model to a particular purpose depends, of course,
on the phenomena under investigation and how the model captures their essential features; thus
different simplified models can be adequate for different phenomena.

The most popular simplified model of excitable media is the FitzHugh-Nagumo (FHN) system
(FitzHugh 1961, Nagumo, Arimoto & Yoshizawa 1962):
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originally proposed as a simplified analogue of the Hodgkin & Huxley (1952) system of equations
that gave the first complete and quantitative description of the electric action of a biological
excitable system, the giant squid axon. In , FE corresponds to the transmembrane voltage and
v represents all other, slow variables. FitzHugh has shown that an appropriate 2-dimensional
projection of the “phase portrait” of the point system of the Hodgkin & Huxley (HH) model looks
“similar” to that of , and Nagumo et al. have demonstrated that it describes propagating pulses
similar to those in HH. This system is much simpler than the HH model and its descendants, and
allows a great deal of analytical and qualitative study, especially in the asymptotics €,/eg — +0.
Note that FHN system (1)) was not in any way derived from the HH system. Although it is possible,



under certain rather arbitrary assumptions, to reduce point (spatially independent) HH model to
a system of two ordinary differential equations “resembling” FHN (Krinsky & Kokoz 1973), the
asymptotic structure, i.e. dependence on the small parameters, is then very different from the
FHN system .

Throughout the last forty years, the FitzHugh-Nagumo system and its numerous modifications
have served well as very simple but qualitatively reasonable models of the complicated processes
of excitation and propagation in nerve fibre, heart muscle and other biological spatially-extended
excitable systems. It appears, however, that while successfully describing successful propagation of
excitation, FHN-type systems fail to adequately describe propagation failure. Yet it is propagation
failure that is most important for many applications of these models, e.g. in relation with onset and
persistence of fibrillation of heart muscle and sudden cardiac death. As an example of a recent
study, oriented to a clinical audience, see (Weiss, Chen, Qu, Karagueuzian & Garfinkel 2000),
which argues that the question of “what causes ventricular fibrillation” in fact reduces to the
question of “what causes wavebreak”.

In this paper we discuss a particular mechanism of the block of excitation wave propagation,
which we call dissipation of the excitation waves. We show that this mechanism is typical for
realistic excitation propagation models but can not be adequately reproduced in any FHN-type
system. This type of propagation failure is characterised by a loss of the sharp gradient charac-
teristic of the normal excitation front, followed by purely diffusive spread of the voltage. This is
in contrast with the failure of propagation in FHN-type systems, in which the structured front
persists, but its velocity slows down to zero or even reverses, so the wavefront turns into the
waveback. The dissipation of the front is caused by the inactivation of the Na current, and as
such would look intuitively agreeable to physiologists and researchers working with detailed mod-
els. However, we should stress that the predominant view on the propagation failure is shaped
by FHN-type thinking. An illustration of that can be found e.g. in the same paper mentioned
above (Weiss et al. 2000), which states that “for a wave to break, its wavelength must become zero
at a discrete point somewhere along the wave”. We will show here that although this picture is
perfectly compatible with the behaviour of FHN-type systems, this is not what actually happens
in realistic models.

Typically, if anything deviating from the FHN-type behaviour is observed in simulations of
detailed models, this is usually understood as an inevitable consequence of the difference between
simplified and detailed models. In this paper, we show that dissipation of excitation fronts can be
understood and described in terms of simplified models, including analytical solutions.

The dissatisfaction with FHN-type systems for description of cardiac excitation has been felt
for some time, and many alternative simplified models were suggested, either phenomenologically,
or based on the structure of the detailed models, (Aliev & Panfilov 1996, Fenton & Karma 1998,
Duckett & Barkley 2000, Bernus, Wilders, Zemlin, Verschelde & Panfilov 2002, Hinch 2002) to
name a few. We did not find any of those simplified models sufficient for the purpose of this paper.
However, the technique used by Hinch (2002) is rather close. For the convenience of the reader, we
present our method in full, mentioning the difference in technique with Hinch (2002) in footnotes
in relevant places in Section [3] and comparing the results in the Discussion.

The structure of the paper is as follows. Section [2|introduces the phenomenon of the wavefront
dissipation by presenting results of numeric simulation of a selected detailed model of cardiac
excitation, and explains why it is not possible in FHN-type systems. Section [3] presents in detail
the construction of the new simplified model, which includes two steps, one asymptotic and one
non-asymptotic. Section [4] presents exact wavefront solutions in the new simplified model and
discusses their properties and implications. Section [5| presents results of numeric simulations of
the new simplified model. Section [f] discusses the obtained results.



2 Preliminary observations

2.1 Initiation of an excitation wave and its failure

We start with a phenomenon well familiar to electrophysiologists, but not always so well to math-
ematical modellers dealing with simplified models: a local raise of the transmembrane voltage
can initiate an excitation wave only if it is fast enough; a slow local increase does not trigger an
excitation wave, even if the voltage rises to very high values. This is illustrated on fig. Il where
a model of the human atrial tissue suggested by Courtemanche, Ramirez & Nattel (1998) (CRN)
was used, in which the equation for the voltage, analogous to the first equation of , was supplied
with the following boundary conditions:
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where E,; was the steady-state value of the voltage, Fy.x was chosen close to the upper end
of the physiological range, and the parameter k varied in different numeric experiments. As the
results shown in fig. [ suggest, the initiation of the excitation wave depends on the value of k,
and the threshold value of k is between 0.19 and 0.20 mV /ms. The other pair of panels on fig.
demonstrates results of similar experiments with the FitzHugh-Nagumo system. Initiation of the
excitation wave in the detailed model has a sharp threshold in terms of the rate of increase of the
stimulating voltage. Whereas in the FHN system, it mainly depends on the absolute value of that
voltage rather than its rate, and a 10-fold decrease of the rate only causes a 10-fold delay of the
the wave initiation. This illustrates a qualitative difference between the real systems and their
FHN caricature.
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Figure 1: Initiation of an excitation wave in the biophysically detailed model (Courtemanche
et al. 1998) (CRN) and FitzHugh-Nagumo model (FHN), by raising the voltage on the right
end of the cable with different speeds k = (dF/dt), . Solutions are represented by shades of
gray: black is the smallest value of E' and white is the largest value of F within the solution. In
CRN model: time range 103 ms, space range 250s.u., Ey; = —81.18 mV, Ey.x = 20mV; all the
kinetic parameters are as in (Courtemanche et al. 1998). In FHN model: time range 50, space
range 20, § = 1.3125, v = 0.5, eg = 0.3, €, = 0.03, Fst = —1.5, Epax = 1.91.

2.2 Two different mechanisms of propagation block.

This upstroke rate threshold for initiation of excitation waves in realistic models, being itself a well
known fact, has a consequence that is less known and a lot less understood: a specific mechanism of
termination of excitation wave, through a block of propagation. A typical scenario of propagation
block in heart is that an excitation wave propagates where the tissue has not fully recovered after
the previous wave, which may be because the wave is premature, or the tissue at that site has an
abnormally long recovery period at that site. In that situation, a recovery wave moves before the



new excitation wave. If the recovery wave is slower than the excitation wave, the latter runs into
more and more unfavourable condition and may eventually fail to propagate at all. This happens
differently in realistic models and in FHN-type caricatures. This is illustrated on fig. [2] using an
ultimate idealization of the excitability completely but temporarily suppressed in a part of the
medium. This was done for the CRN model and the FHN system . In reality, the excitability
is modulated by various slow variables such as the ionic concentrations, determining the reversal
potentials of the ionic currents, and the slow gates, among which the most important is gate j
which modulates the largest current, the fast Na current. However, simulation of the temporal
block by j is complicated by the fact that its evolution is actually governed by a differential
equation. Therefore, we have simulated the temporal excitability block in the CRN model by a
change of the maximal conductivity of the Na channels, gn,, which is a multiplier of j. In the
FHN system, we have simulated the block of excitability by reducing to zero of the parameter eg
which is the closest analogue of gy, in that system of equations.

In the CRN model, when the conditions for propagation are restored, the excitation wave does
not resume, as the sharp increase in the voltage necessary to trigger such wave is not present.
Subsequent spread of the voltage is purely diffusive. In the FHN system, the high voltage at the
front itself is enough to excite new cells if other conditions are right again; so the excitation front
can propagate with arbitrarily slow speed or even stop, without dissipation. When propagation
conditions are restored, the excitation wave resumes, even if the front near the edge of the inex-
citable border has been smeared out by diffusion. The FHN wave will not resume only if the block
lasts longer than the action potential, so the back of the wave reaches the block site and the whole
excitation wave decays. On the contrary, the CRN wave looses the ability to propagate within
milliseconds, long before the end of the action potential.

CRN FHN
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Figure 2: Temporary local block of the excitation front: the excitability of the medium is sup-
pressed for (z,t) € B = (0,23) x (0,5), where z3 and ¢, are the middles of the space and time
intervals (shown by the white dots). Here and below, solutions are represented by shades of gray:
black is the smallest value of E and white is the largest value of E within the solution. In CRN
model: time range 80 ms, space range 50 s.u. (space units, chosen so that D = 1su?ms™1), all the
kinetic parameters are as in (Courtemanche et al. 1998). In FHN model: time range 50, space
range 50, 8 = 0.75, v = 0.5, €, = 0.03.

2.3 Excitation fronts in FHN-type systems do not dissipate.
If €, < €, system belongs to a class of systems
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(v € R™, m > 1), which we will call here FHN-type systems. For this class of systems, the
asymptotic theory developed in 1970-1980s, see e.g. (Casten, Cohen & Lagerstrom 1975, Fife 1976,
Rinzel & Terman 1982, Tyson & Keener 1988), can be applied. It is assumed that in a region of
v, function f(E,v) has three simple roots in E, E_(v) (recovery) < E,(v) (threshold) < E(v)
(excitation), where recovery and excitation are stable, %(Ei (v),v) < 0, and the threshold is
unstable, %(E*(v)m) > 0. Propagation of fronts and backs of excitation waves in the limit
€ — +0 is described by trigger waves in the with v = const. If the positive direction of
propagation is to the left, the profile of a stationary trigger wave E(xz + ct) is a solution of the
boundary-value problem

E" 4+ cE' + f(E,v) = 0; E(+0) = E4(v). (4)

This is a trigger wave from the lower (recovery) stable equilibrium E_(v) to the higher (excitation)
stable equilibrium F., (v) propagating with a speed which is a function of v, ¢ = ¢(v). The sign
of ¢(v) coincides with the sign of [ ff(%)
wavefront may stop and reverse to become a waveback. E.g., if f(E,v) = a(v)(E — E_(v))(E —
E.(v))(E4(v) — E), then ¢ = (a/2)"/? (B4 + E_ — 2E,) (Zel’dovich & Frank-Kamenetsky 1938,
McKean 1970, Murray 1989)E|, orif f(E,v) = —E+6(FE — E.(v)), where 6() is the Heaviside step
function, then ¢ = (1 — 2E,) [E.(1 — E*)]_l/2 (McKean 1970). A solution to represents the
front of the excitation wave if ¢(v) > 0 and the back of the excitation wave if ¢(v) < 0. Between
these trigger waves, E remains close to one of the two stable equilibria corresponding to the local
value of the slow variables, E(x,t) ~ Ei(v(z,t)), and the evolution of these slow variables is
therefore described by

f(E,v)dE and thus may change as v changes, i.e. a

v =€Gi(v),  Gi(v) =g(Ex(v),0). (5)
For a given evolution of the slow variables v(z,t), the motion of the wavefront/waveback X (¢) on
the large scale is described by an ordinary differential equation,

dXx
X eo(x) = —0(x.0) )
By this equation, the front propagation speed ¢(t) = ¢(v(X(t),t)) changes according to
de 0C oC
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If we consider the front of the excitation wave, i.e. ¢ > 0, then typically, whatever the history,
the medium ahead of the front “restores the excitability”, i.e. 9C/90t > 0. This means that for
any spatial profile of C(xz,t) at the moment when ¢ = 0, we have de/dt > 0, thus ¢ can not become
negative. Note that if v(z,t) evolves according to (which is guaranteed is € is very small) and
is a one-component vector (as in the original FHN system), then the time-dependence of v(x,t)
at each = is monotonic in the intervals between fronts and backs. Thus, we have the following

Proposition 1 In a FitzHugh-Nagumo-type system with a normal recovery process, the excitation
wave front never stops completely. When approaching a region unfavorable for propagation, it slows
down until the propagation conditions recover, and then proceeds further.

If 0C /0t < 0 does happen, which is possible if € is not too small or the variable v is a vector
rather than scalar, then ¢ may become negative. In that case we will observe turning of the
excitation wavefront into the waveback, moving in the opposite direction. This is also absolutely
different from the dissipation of the front as shown in fig. [2| for the cardiac tissue model.

Proposition 2 In a FitzHugh-Nagumo-type system with an abnormal recovery process, the wors-
ening of propagation condition ahead of the front may cause it to stop, turn into wave back and
move in the opposite direction.

I McKean (1970) ascribed this solution to Huxley, but did not provide exact reference. Zel’dovich & Frank-
Kamenetsky (1938) did not present the front solution itself, but gave the correct expression for the speed, which
could only be obtained from the correct solution.



In any case, as long as v evolves so that the system remains excitable, i.e. f(F,v) has its three
roots in E, the sharp structure of the front given by is preserved. This means that the front
dissipation as seen in the realistic heart tissue models does not happen in FHN-type systems. A
possible exception is that for m = dim(v) > 2 the branch of E = E(v) may be connected to the
branch of F = E_(v) via an unexcitable, ‘monostable’ region of v where f(E,v) has only one root
in E. This is possible if the projection of the manifold f(E,v) = 0 to the {v} space has a cusp
singularity (Zeeman 1972). The analysis from this viewpoint of the Hodgkin & Huxley system has
shown that although such singularity may be possible at some parameters, it is not likely to affect
the behaviour of the system in realistic situations (Suckley & Biktashev 2003). So, although this
possibility deserves a theoretical consideration, answers that are more practical can be obtained
by considering real structure of realistic models. We do this in the rest of the paper, using one of
the recent cardiac excitability models as an example.

3 Constructing the simplified model of the excitation front.

The difference in the behaviour of the realistic models and the FHN-type systems is not very
surprising, since as we have mentioned neither the FHN system (1]) nor any of its modifications ([2|i3)
were obtained from the realistic models but were invented to simulate selected phenomenology.
Thus, to derive a simplified model retaining the needed qualitative features, in our case, the front
dissipation property, we start from a real system and make clearly defined simplifications with a
view to retain this feature.

As an example of a realistic model we consider the CRN model (Courtemanche et al. 1998),
the spatially one-dimensional form of which is
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where F is the transmembrane voltage, D is its diffusion coefficent, equal to intercellular con-

ductivity per membrane capacitance, gy, is the maximal specific conductivity per membrane

capacitance of the fast Na current, Fy, is the reversal potential of that current, m, h and j are

probability densities of the channel gates being open, 7, h, j are their instant equilibrium values,

Tm,h,; corresponding time scales, and )" Ij, represents all other, smaller currents. Our purpose
k

here is to derive a simplified model that would adequately describe the propagation not of the
whole excitation wave, but only of its front. We need to develop a more realistic replacement of
the fast (the first) equation in , leaving aside all other, slow dynamics corresponding to the
dynamics of v in .

An immediate technical problem is that any asymptotic procedure, strictly speaking, applies
not to a given system of equations, but to a family of systems depending on at least one pa-
rameter, to allow the limit when this parameter tends to zero or to infinity. However, the CRN
model (8) does not depend on any parameters, but only contains constants, which have been
measured experimentally and have certain values, even if not always known with a good precision.
Of course, we might consider physiologically feasible variations of the experiment and/or of the
tissue conditions, so that some of the constants of become parameters that can vary from
one experiment to another. However, this would only provide parameters varying in certain finite
ranges, and none of them can be reasonably assumed tending to zero or to infinity. Thus, to apply
the singular perturbation technique to our problem we need to introduce the small parameters



artificially. This is of course a standard practice in principle, but the particular way we do it here
is not quite usual, so we are going to formalise this procedure, to avoid confusion.

Definition We will call a dynamical system
& = F(x;€), reX,

in a phase space X, depending on a parameter €, a 1-parametric embedding of a dynamical system
in the same space but without parameters,

= f(x), r e X,

if f(z) = F(z,1) for all z € X. We define a k-parametric embedding by induction as a 1-parametric
embedding of a system which itself is a (k—1)-parametric embedding of the original system without
parameters. If the parameter(s) e are considered in a limit, say € — 0, we call it an asymptotic
embedding.

The typical use of asymptotic embedding has the form of a replacement of a small constant
with a small parameter. If a system contains a dimensionless constant a which is “much smaller
than 1”7, then replacement of a with ea constitutes a 1-parametric embedding, and then the limit
€ — 0 can be considered. In practice, constant a would more often be replaced with parameter
€, but technically speaking the limits € — 0 and ea — 0 are of course equivalent. A given system
can have infinitely many asymptotic embeddings, and which of them is better depends on the
qualitative features of the original system that need to be represented, or classes of solutions that
need to be approximated by the asymptotics. In this paper, we suggest a parametric embedding
of the realistic models of cardiac excitation, using the CRN model as an example, with the aim to
reproduce the solutions for the fronts, without paying attention to any other features (say, shape
of the action potential etc). In realistic models, the front of an excitation wave is characterised
by a rapid growth of E, due to the large magnitude of the Na current. Bearing this in mind, we
identify the following features in the model, which will provide us with the possibility of introducing
artificial small parameters:

e The maximal value of all the small currents > I put together is much smaller than the
k

typical value of the Na current for the solutions of interest. That gives one small parameter,
€1.

e Functions m(E) and h(E) are nearly stepwise functions. In particular, m(E) is small (not
exceeding a small constant ) for E below a certain E°  and h(FE) is small (not exceeding a
0) for E above a certain E}f This makes two more small parameters, €5 and e3.

e The typical values of 7,,(F) are much smaller, and 7;(E) are much larger than 7,(F) and
g&}l. This makes two more small parameters, ¢, and 5.

The corresponding parametric embedding can be taken in the form

%3 = D% +gNa(ENa_E)m3hj+elzk:Ik7

%:L = [(1 = ed)mg(E) + e20m](E) — m] / (eamin(E)),

%ZL = [(1— es0)h}(B) + es0h}(E) — h] / ma(E),

% = & [§(E)—j] /m(E), o

where

m{(E) =6 ' min(d,m(E)), m(E)=(1-08) "0 (E—ES) (m(E)-25), m(E,) =24,



so that
inf(mg 1 (E)) =0, sup(mgy(E)) =1, (1-0)m} (E)+émi (E)=m(E), mo(E > E,,)=0,
and, similarly,
h}(B) =6~ min(6,h(E)), hy(E) = (1-26)"" (B} - E) (h(E) —0). h(Ep) =04,
and
inf(hf 1 (E)) =0, sup(h,(E)) =1, (1—20)hd (E)+dhS (E)=h(E), h(E<E})=0.

Of all the five limits ¢, — 0, only €4 — 0 is singular. In the leading term, it means that m
gate is a fast variable and should be adiabatically excluded by replacing it with its quasistationary
value, m = mM(E). The other four limits are regular, in the sense that the leading order can be
obtained by simply replacing ¢; by zeros. EI This, in particular, changes the quasistationary value
of m =m(E) to

m = mi(E). (10)

At e5 = 0, the right-hand side of the equation for j vanishes, and we have
j = const (11)
throughout the front. The remaining two equations become
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where Ing = gnaj(Enq— E). System of two equations is the fast subsystem corresponding
to the full system , and describing the front of the wave, leaving the slow processes, such as
action potential plateau and recovery, out of the scopeE| In this capacity, it is similar to , one
fast equation with respect to the whole system. But there is another significant difference, apart
from two equations vs one. The limits e — 0 and €3 — 0, despite being formally regular, make a
dramatic change to the properties of the system, because of the special character of the functions
m$(E) and h(F). Namely, the spatially homogenous steady states in are not isolated,
as in (2), but form two continua: {(E,h)|E € (—oo, Ej] U [EJ, +00),h = h§(E)}. These two
continua correspond to complete closure of either m or h gates. This complete closure is possible
due to mg and hg being exactly zero in the corresponding intervals of E.

The equilibria with E € (—oo, E}] correspond to the possible state of the medium before the
front, when all m gates are still closed, and equilibria with E € [E,,, +00) to possible state after
the front, where all h gates are already closed. Thus, we are interested in front solutions where one
asymptotic state belongs to one continuum, and the opposite asymptotic state belongs to the other.
This poses a problem of selection of the states. It is natural to assume that the pre-front voltage
is determined by the state of the medium through which the front propagatesﬁ Which, if any,
post-front voltages may correspond to a given pre-front voltage, and what may be corresponding
front speed(s), are questions that can be answered by studying appropriate solutions of .

2 Hinch (2002), although considering 3~ I small, retained it in the simplified model, i.e. did not put €; to
zero. The small currents, which in the detailed model are described by a system of 17 differential equations, he
represented phenomenologically, in terms of linear active resistance with respect to the resting potential.

3 Hinch (2002) has retained the process of slow recovery in the simplified model, through the phenomenologic
small current with the reversal potential of the resting potential.

41In (Hinch 2002), the pre-front voltage is always the resting potential, i.e. a single point instead of the continuum
(—o0, Ei), despite the fact that the gates are assumed perfect switches, too. This is because of the retained small
currents of the resting potential. Thus, propagation through a not completely recovered tissue or in models where
there is no resting potential (e.g. Purkinje fibres) are out of the scope of that model.



This, normally, would be done numerically. But before attempting that, it would be helpful to
know at least some qualitative answers, e.g. how many different front solutions might exist at a
given pre-front voltage. The classical theory of excitable media, developed for FHN-type systems
is useless in this case, but provides encouraging examples in the form of exact front solutions
for special ‘caricature’ form of nonlinearities, cubic (Zel’dovich & Frank-Kamenetsky 1938) and
piecewise linear (McKean 1970). Cubic, or any analytical form of nonlinearities for is
clearly impossible, so in this paper, we build a piece-wise linear variant of this system, and find
the exact front solution.

Thus, from now on expecting only qualitative but not necessarily quantitative agreement with
reality, we do further two simplifications:

e We note that md(E) and h}(E) are step-like functions, taking values strictly equal to 0 in
one limit and fastly approaching 1 in the opposite limit. We replace them with

mi(E) = 0(F — En) = (m)(E))’  hi(E) = 0(Ey — E),

were 6() is the Heaviside step function. This “approximation” can be done to the original
functions m(E) and h(E), say by choosing E,, and Ej, so that (m(En))° = h(E,) = 0.5
(see fig. [3). For CRN model, this gives E,, ~ —33mV and Ej, ~ —67mV. [

CRN The simplified model
1 . L - 1
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Figure 3: Dependence of m?>(V) and h(V) for the Courtemanche et al. (CRN) (Courtemanche
et al. 1998) detailed model and for the proposed simplified model .

e Further, we replace functions 7, (E) and In.(F) by constants as their dependence on F is
not essential for the purpose of the present qualitative analysis. This step may be least ob-
vious for In,(FE). One objection that many would put forward is that In,(E) has a root at
FE = En,, which, in particular, means that the transmembrane voltage never exceeds Epng;
so replacing this function with a constant changes the properties of the system qualitatively.
Our justification for such replacement is based on the observation that in reality, the trans-
membrane voltage FE hardly ever reaches values really close to Ey,, because growth of F
stops when gates m or h close down, which happens long before Iy, vanishes. Thus, the
maximum of the transmembrane voltage at the front is usually significantly lower than Fy,.
For example, maximal E for fronts in the CRN model propagating through a completely re-
covered medium is F,.x = +5mV which is by more than 60mV lower than En, ~ +67mV.
This, by the way, is a compelling reason to consider the dynamics of h as equally fast to
those of E: if say E was considered as a faster variable, then the post-front voltage would
be fixed to Eng, i.e. much higher than it is in reality. Dependence of Iy, on E is through
the factor En, — E. And the relevant range of voltages is from F,,, the minimal voltage at
which Na current becomes possible, to Ei,.x, above which the voltage never rises. Within
this range, the factor En, — F changes only by about 1.6 times. E| In contrast, function

5 Hinch (2002) has taken the threshold voltages Ep, and Ej, equal to each other. We believe that while slightly
simplifying the solution, this assumption is not very realistic and leads to a significant difference in the results, see
below.

6 Hinch (2002) did not replace function Iy, with a constant but kept in the form Inq = gnaj(Ena — E). The
front solutions still can be found analytically, but require modified Bessel functions. Considering that variation
7 E is much larger that Iy, (E), this complication does not seem to be worthwhile.



71 (E) within the relevant region from Ej to Fyax changes between 28 ms and 0.16 ms, so
replacement of this function with a constant is more likely to cause numerical discrepancy
with the accurate model. []

Having done these simplifications, we obtain the following piecewise-linear system of equations,

oF 0’E

E = DW +INa9(E—Em)h,,

oh 1

5 = o OB B -n), (14)

which after change of variables E = Ej, + (E,, — Eh)E, t= Ig,}lf, T = D1/2I]§(1l/25c, T = INoTh,
and omitting the tildes, becomes finally

OE OE

E = w + G(E — ].)h,

oh 1

5 = FO=E)—h), (15)

depending on one dimensionless parameter, 7. The two continua of steady states in this model
are (E, h) € (—00,0] x {1} U[0,400) x {0}, which provide a variety of possible pre-front voltages
—a, a variety of post-front voltages w, and a variety of corresponding speeds c.

4 The analytical results

4.1 The travelling front solutions

We will now analyse the newly proposed model . First of all, we consider solutions in the form
of fronts propagating with constant speed and shape. A front propagating leftwards with speed
c is represented by a solution depending only on the combination £ = x + ¢t and satisfying the
automodel (“wave”) system of ordinary differential equations,

1

¢E'=EB"+6(E—Dh, i =~ (6(~E) —h). (16)

This is supplied by auxiliary conditions:

E(—x)=-a<0; E(+x)=w>1;
h(—o00) =1; h(+o0) =0.

We choose the phase of the front so that E(0) = 0, denote & > 0 the point where E(&;) = 1, and
require that E(£) has a continuous derivative and h(€) is continuous. This is in agreement with
the fact that the right-hand sides of are discontinuous, and implies corresponding internal
boundary conditions at £ = 0 and £ = &;. As is piecewise linear, the solutions are found
analytically. With the set auxiliary conditions, the problem has a family of solutions, in which
one of the parameters («,w,c) can be chosen arbitrarily. A natural choice is «, as the voltage
ahead of the front must be considered as given, when studying the front propagation. The family
of solutions is

—a+ oz2e)§p(c§) (€ <&),
EE) = w— 1:_%exp <fc> (&> &),
1 (£<0),
"= e (<L) 20, 7

7 In (Hinch 2002), 7 has different values below the threshold E,, = Ej and above it. Still, the range of values
of 7, (F) in CRN is very large, even if only in the interval from E, to Emax-
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where w = 1+ 7c*(a+ 1), & = ¢ 'In(1+a™') and speed c is an implicit function of 7 and «,

defined by
2
2 n (mo‘)(”m)> +In (O‘;rl) -0, (18)

T

which we will call the speed equation.

0 X X

Figure 4: A propagating front solution ((17)18) to (r=8,a=1, c~0.444).

Note that here the post-front voltage w depends on 7, a parameter in the equation for h; this
is another differentce from the FHN-type systems where it only depends on the right-hand sides
of the equation for F.

So, the front selection problem has the following solution: for every pre-front voltage —«, the
speed equation defines a discrete set of post-front voltages and corresponding speeds. How big is
this discrete set we find out in the next section.

4.2 Properties of the speed equation.

Equation can be rewritten in the form of an equation of level curves
InT = g(B,0) (19)

of the function
g(ﬂaa) = hl(l + 0) - 11’1(1 - ﬁ) - 0_1 hlﬁ)

where 0 = 7¢%, B = a/(a+ 1), (3,0) € S = (0,1) x (0, +0c0).
It can be seen that

e For every fixed 8, 0g/0c changes sign once as o runs through (0, 400).

e Function g(3,0) has a local minimum o, ~ 1.53659..., 8, ~ 0.39423..., g, ~ 2.0378...,
where 02 = (0, + 1)In(o. + 1), B = (04« + 1)7! and g. = g(B«,0). This minimum has a

*

non-degenerate quadratic form, and is the only critical point of g in S.

e Function ¢(f3, o) has the following lower bounds

9(B,0) > In[In(1/B)], ¢(B,0)>In(1/(1- 7)),
9(8,0) >In(l/o), ¢g(B,0)>1no, V(B,0)€S.

These observations are sufficient to describe qualitatively the behaviour of solutions of for
all 7. In the vicinity of the generic minimum (8., o.) the isolines of g are simple closed (approx-
imately elliptic) curves. From the lower bounds, it can be seen that for any C' > g, the isoline
g HC) = {(B,0)}g(B,0) = C} is bounded within the rectangle (3,0) € (exp(—e9),1 —e79) x
(e79,e9) C S. By Theorem 3.1 from (Milnor 1963), as (B, 0,) is the only critical point in S,
isolines for all C' > g, are homotopically equivalent to the isolines in the vicinity of (8, 0.), i.e.
are simple closed curves surrounding (5., 0,). Furthermore, by the same theorem, if C; < C5 then
isoline g~*(C}) lies within isoline g=!(Cy). Therefore, if there existed a point in S with g < g,
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it would have to lie inside every isoline g=1(C), C > g., i.e. coincide with (3., 0.), which is im-
possible. Thus, (0., 0x) is a global minimum in S. Since dg/0c changes sign only once, equation
9(8,0) = C can have at most two solutions o for every fixed 8. Thus we have the following

Lemma 1 Solutions of (19) are: (i) none for 7 < 7, = €9 ~ 7.6740..., (ii) one point (B.,0.)
for T = 7, (i11) a single closed curve surrounding (B.,04) and crossing each line 3 = const at
most twice, for every T > Ty.

A selection of level curves is presented on fig.

o
5¢F =10 T=11
4T 0.6
3 L
2t 0.4
1k
0 L L ! LB 02 o
0 (1) n4 06 0R 005 1 15 2 25 3 358

Figure 5: Pre-front voltage vs front speed for a selection of values of 7 (labels on the curves), in
(8, 0) coordinates, and in the original («, ¢) coordinates. e: exact solution 5= 0.5, 0 =1, 7 = 8.
*: the minimum of 7: 8, ~ 0.394, o, ~ 1.537, 7. =~ 7.67.

Thus, for every 7 > 7, there exists a range of pre-front voltages 0 < amin(7) < @ < Qmax(7) <
400, for each of which there are two propagating front solutions with different speeds, and
all propagation speeds possible at various pre-front voltages, span an interval 0 < ¢pin(7) < ¢ <
Cmax (T) < +00.

Explicit estimates can be obtained in the limit of large 7, e.g.

2
Qumin = €17 7/€ <1 + % 140 (7'2)) , c(Omin) = e 1/2 <1 - % 240 (7'3)> , (20)

=7 (12207240 (Y) . dame) =¥ (1457106 ) @)
a(Cmin) =€~ '7 (1 - 322 140 (ﬂ)) ; Cmin = €271 (1 + % 140 (ﬂ)) . (22)
a(Cmax) =7 (1 + 7 +2 +0(772In” T)) , Comax = 1 — ln;:— 2 +0(r72In’71), (23)
cla) = (a+1)721+0 (77 (= 0(1)). (24)

The boundedness of possible propagation speeds from below has a special significance. If the
excitation front propagates through medium that is in the process of recovery, it can not propagate
faster than medium ahead of it recovers. And if the speed of medium recovery is slower than cpyip
this means that propagation of the front becomes impossible (actually the minimal speed is even
higher than that, see below), and in this case the front dissipation becomes inevitable.

5 Numerical results

5.1 Fast and slow waves

For every admissible pair of 7 and «, with the exception of the marginal values of «, equation
gives two different values of the speed c. This means possibility of propagation of two different
kinds of excitation fronts through the same pre-front state of the medium, differing from each
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other by their speed and post-front voltages. This is very different from FHN-type systems, where
the front solution in is unique for every set of values of the slow variables.

So, there is a question, which of the two front solutions will realise in a particular propagating
wave. Numerical experiment suggests that it is always the faster solution, with the higher post-
front voltage. Fig. [f] shows results of numerical simulations of the simplified model with
initial conditions specified by where speed ¢ was taken as either of the two solutions of the
speed equation . Simulations shown in panels (a) and (b) correspond to two approximations
the slower solution, and simulation of panel (c) corresponds to the faster solution. The values of
¢ in (a) and (b) differ from each other in the fourth significant figure. Both simulations (a) and
(b) show propagation of the excitation front described by for some time, but eventually it is
destroyed. On panel (a), the front has dissipated. On panel (b), it has developed into a stronger
and faster front. This stronger and faster front corresponds to the faster solution of and is
identical, up to the initial phase, to the solution shown on panel (c).

Numerical simulations with selected other values of 7 and « showed similar results. Thus,
the numerical experiment suggests that the slow front solutions are always unstable. This can be
verified by the linear stability analysis; we leave this question for future study. If this conjecture
is true, then in every level curve of function g(3, o) in fig. |5, only its upper half corresponds to
stable fronts. The locus of marginal points in the (5, o) plane, where the fast and slow solutions
join, is given by condition d¢(3,0)/do = 0. In terms of the original variables «, ¢, this gives the
following stability condition,

?t+ (1+7)Imn(1+a™t) >0, (25)

in addition to the speed equation . The minimal propagation speed at a given value of 7 is
then given not by cpin = O (7*1) which is unattainable as the corresponding front is unstable,
but by ¢(@max) = O (7_3/4).

Note that existence of two solutions with different speeds, with the slower solution unstable
and faster solution stable, is a well-known property of pulses in FHN-type systems. The difference
is that in the new simplified model, the two solutions have not only different speeds and shapes,
but, unlike pulses in FHN-type systems, have different ¢ — +o0o asymptotic states.

t t t

A

¢ = 0.2498 ¢ =0.2500 c = 0.5436

Figure 6: Solutions of with initial conditions , for 7 = 10, a = 1 and ¢ close to the two
solutions of . Space range is 100, time range is 200. Depending on minute details, the slow
front either dissipates or develops into the faster front, corresponding to ¢ = 0.5436.

5.2 Temporary block of excitability

To verify that the new simplified model reproduces the phenomenon of wavefront dissipation for
which it was designed, we have performed simulations of in conditions similar to those shown
in fig. i.e. temporarily suppressed excitability in a part of the medium. The analogue of
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parameters gy, and eg in the simplified model is 7. According to the analytical results obtained,
the excitability is observed for 7 > 7, ~ 7.674.... To make the effect more prominent, we choose
the excitable part of the medium with 7 slightly above the threshold, 7 = 8, and the suppressed
excitability slightly below the threshold, 7 = 7. The results are shown on fig. The front
dissipated soon after it reached the blocked region; the short period of decaying propagation is
due to the fact that the excitability is only slightly below the threshold. After that, the front
disappears and further spread of the voltage is purely diffusive. When excitability in that region
was restored, the front did not resume but continued to spread diffusively. So, the new model
describes the wavefront dissipation, similarly to the detailed equations and different from the FHN
model. The prediction of the analytical theory about the excitability threshold 7, is confirmed by
direct numerical simulation.

T

[ 7T<T, (x,t)€B,
~ | 8>, otherwise.

Figure 7: Temporary local block (B, white dots) of the excitation front in the simplified model
(15), as in fig. 2} Front propagation did not resume after the excitability has been restored. Initial
conditions with 7 =8, a = 1, ¢ = 0.444. Time range 1000, space range 300.

6 Discussion

Excitation fronts in realistic models of biological excitable media can not be stopped or reversed.
If they are not allowed to propagate, they dissipate. This makes them different from the FHN-type
caricatures, where fronts can slow down indefinitely or reverse and turn into the wavebacks. Local
propagation blocks can break excitation waves and are essential in fibrillation. An established
belief, based on FHN-type models and expressed e.g. by Weiss et al. (2000), is that a wavebreak
happens when the waveback catches up with the wavefront and the length of the excitation wave
becomes zero. As we now see, in realistic models the wavelength is irrelevant and whether or not
the wave breaks is decided exclusively (in the asymptotical sense) by events in its front.

The key process responsible for dissipation of the front is the closure of the slow Na gate h.
Thus any asymptotic approach intended to describe adequately front propagation at slow speed
or its failure, must take the dynamics of h into account, alongside with the dynamics of the
transmembrane voltage E. Our simplified model shows that this is necessary even if the ratio of
characteristic time scales of F and h is rather high, say around 8.

The proposed simplified model captures the main features of realistic models responsible
for the propagation and dissipation of the excitation fronts. This model provides exact analytic
solution for the front shape and speed (18)). This solution provides description of a number
of qualitative features:

1. Front parameters, including propagation speed, are determined by the pre-front value of the
transmembrane voltage E through the dimensionless parameter «, and by the local value
of the sodium reversal potential Ey, and slow sodium inactivation gate j, through the
dimensionless excitability parameter 7.
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2. The range of pre-front voltages —a, at which propagation is possible at a given 7, is bounded
from below and from above.

3. The range of values of excitability parameter 7, at which propagation is possible at a given
«, is bounded from below.

4. There is a minimal value 7, of the excitability parameter 7, at which propagation is possible
at any « at all.

5. For every admissible pair of a and 7 except the marginal values, there exist two front
solutions with different speeds. Numerical experiment suggests that the faster front solution
is stable and the slower front solution is unstable.

6. At a given 7, dependence of the faster (stable) front speed on the pre-front voltage —a« is
non-monotonic: it is maximal at an intermediate value of a and decreases as a approaches
its limits.

7. The range of possible propagations speeds, as well as the range of speeds of stable fronts, at
a given 7 and variable a are bounded from below and from above.

8. The range of possible propagations speeds at a given « and variable 7 is bounded from below
and from above in dimensionless units. In the original dimensional units, however, there is
no upper limit of speed and it grows as 7/2 at large 7.

Some of these features are well known, other can be easily compared with numerical simula-
tions of the detailed models. Direct comparison with experiments is, as always, more difficult.
Feature [0} i.e. non-monotonic dependence of propagating speed on the pre-front voltage, agrees
with experimental observations of propagation speed dependence on the resting potential in guinea
pig ventricle (Kagiyama, Hill & Gettes 1982). Recent experimental observation by Aliev, Bau-
denbacher, Baudenbacher & Wikswo (2002) of slow and low-amplitude excitation waves that
are initiated by special stimulation protocol and then either dissipate or develop into fast large-
amplitude waves, although admitting different explanations, are consistent with feature [5] and
numerical simulations shown on fig. @ As Hinch (2002) comments, feature |8 does not agree with
the experimental dependence of maximal speed less steep than O (7’1/ 2), which is probably an
artifact of the singular limit ¢4 — 0.

As we discussed in Section [3] there are infinitely many embeddings, i.e. ways in which arti-
ficial small parameters may be introduced, for a given detailed model. It is therefore interesting
to compare the features of solutions obtained in different embeddings of the same class of mod-
els. Hinch (2002), addressing the problem of propagation block, mainly in the context of critical
curvature for modelling the WPW syndrome, has considered a series of semi-phenomenological
simplified models one of which in many aspects is similar to the one considered here. One signifi-
cant difference was that Hinch restricted consideration only to fronts propagating through a fully
recovered medium, so the pre-front voltage always corresponded to the resting state, and thus is a
parameter of the model not of the solution. Therefore, feature [1| looks different in his model and
features [6] [7] simply cannot be compared as they are beyond the scope of Hinch’s approach.
Another significant difference in the results is that the minimal propagation speed in the Hinch’s
simplified model depends on the small sub-threshold currents (i.e. all currents but the fast sodium
current), in such a way that in the limit that these currents vanish, i.e. the very limit we consider
here, this minimal propagation speed vanishes, too. More accurately, the minimal speed is gi/ 4
as the conductivity of the subthreshold current g. — +0, i.e. can be noticeable even for rather
small g.. Still, formally the difference with our model is essential, and it would be interesting to
investigate which of the differences in the two approaches has caused this difference in the results.
Our guess is that it is Hinch’s assumption that E,, = Ej,. If that is so, it poses a question of what
may be the evolutionary advantages of the inequality of E,, > E}, as one disadvantage is already
apparent: this inequality is a pre-requisite of the existence of the macroscopic minimal speed of
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the excitation front, and is therefore responsible for the excitation wave being less robust than it
would be at E,,, = Ej,.

The main qualitative results of the analysis of the simplified model are the conditions of
existence of propagating front solutions, as their violation implies propagation block and front
dissipation. This violation may be caused by interaction of the spatio-temporal variation of the
distribution of relevant tissue parameters contributing to model parameters « and 7, and the
front movement through medium with these distribution. A simple sufficient criterion of front
dissipation can be given in terms of the front propagation speed. In the scenario described in
Section [2.2] if the recovery wave before the excitation front moves slower than the slowest speed
with which the front may move, the front will dissipate. The estimate of the critical speed may
be ¢min or, if the conjecture about front stability is correct, ¢(amax). The condition on speed is
a sufficient, but not a necessary condition of the front dissipation. Other causes of dissipation
may be if the existence conditions of front solution are violated in any other way, or if the front
solution exists but the initial/boundary condition are not appropriate to initiate it, as results of
numerical simulations on figs. [6] and [7] show.

The model or its dimensional version can not produce quantitatively accurate results,
particularly because of the simplifications made in transition from to (14). The crudest of
those is the replacement of 75, (E) with a constant despite its variation in the relevant range of E
by about two orders of magnitude. Yet, it may be interesting to consider at least some estimates.
Taking for the CRN model E;, = —67mV, E,, = —33mV, Ey, = +67mV, and estimating
Ino(E) and 7,,(E) by their value at Epax = +5mV, we get I, ~ 630ms™ !, 75, ~ 0.16 ms, and,
assuming j = 1, the excitability parameter 7 = In,7, =~ 100. Thus in normal fully recovered
tissue, the excitability parameter exceeds the propagation threshold by an impressive safety factor
of 7/7. ~ 13. The pre-front parameter, corresponding to the resting state Fy ~ —81mV is
a = (Eyn — Eg)/(E, — En) ~ 1.44, so the estimate of the dimensionless speed is then ¢ =
(a+1)7Y/2 ~ 0.64. The dimensional speed is ¢ = &(DIng)/? which for D = 3 - 107> mm?/ms
gives ¢ = 0.13mm/ms against 0.26 mm/ms provided by direct numerical simulation of the full
CRN model with this D. The absolute minimal propagation speed is émin &~ €'/2771 ~ 0.016,
i.e. roughly 10 times slower than the normal speed, and the minimal stable propagation speed
is ¢(aumax) ~ 773/% ~ 0.031, i.e. roughly 4 times slower than the normal speed. These estimates
are for j = 1, i.e. fully recovered medium; in case of j < 1, e.g. in a re-entrant arrhythmia
where waves closely follow one another, these safety margins drop down correspondingly, so the
propagation block by front dissipation becomes increasingly feasible.

When a quantitative description is required, a less simplified model can be used instead.
The travelling front solutions may then need to be studied numerically, with a possible exception
of qualitative questions like boundedness of the speed spectrum. We expect that the main features
displayed by will be preserved in such more accurate models, but this question needs further
investigation.

Another direction for future study is development of the full singular perturbation theory for
cardiac excitation propagation, similar to the classical theory developed for the FHN-type system,
e.g. (Tyson & Keener 1988). In such theory, would play the role of the fast subsystem,
which needs to be supplemented by the slow subsystem, that would describe the evolution of the
tissue outside the front, together with matching conditions. In such theory, the simplified model
or can play the same role as Zel’dovich & Frank-Kamenetsky (1938) and (McKean 1970)
solutions play for the asymptotic theory of FHN-type systems (Casten et al. 1975, Fife 1976, Tyson
& Keener 1988), i.e. simple example admitting exact solutions, allowing simple test of the results
of the general theory. One challenge for this asymptotic theory-to-be is the case of more than one
spatial dimension. In the classical FHN-type theory, the fronts and backs, at any given moment
of time, are located near lines separating two regions, excited region where E(z,t) =~ E4 (v(x,t))
and recovering region where E(x,t) =~ E_(v(z,t)). So, e.g. in two spatial dimensions, the fronts
and backs always form closed curves or curves ending on the medium boundaries, since E_(v) and
E, (v) for the considered class of systems are well separated from each other, and their connection
in space is by definition a front or a back. It is not so in the realistic models, since an excited and
a recovering regions can be connected without forming a front between them (which happens e.g.
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after a front has dissipated), and the back as such is not a well defined object. Thus, the fronts
would be represented by lines which are not necessarily closed or ending on medium boundaries,
but may end within the medium. These free front ends may result from localised propagation
blocks (wavebreaks) and serve as tips of the spiral waves. Under certain technical conditions, the
dynamics of such tips may be amenable to the asymptotic theory developed earlier for generic
non-FHN type systems (Elkin, Biktashev & Holden 1998).
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