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Resonant drift has been proposed as a means of controlling car-
diac arrhythmias. We study resonant drift in circular and annular
media in which it is induced by (1) forcing at a fixed frequency
(2) feedback controlled by the orientation of the tip of the spiral
wave and (3) feedback controlled via monitoring the arrival of the
wavefront at a recording point. Trapping resonantly drifting spirals
by the holes, their freezing at a fixed site at the outer boundary
or in contrast their detaching from the outer boundary produced
by the interaction between the resonantly drifting spiral and holes
and boundaries are described and explained.

1 Introduction

Re-entrant cardiac arrhythmias can be idealized as spiral wave or scroll wave
solutions of reaction-diffusion equations of excitable media, see Holden, Markus
and Othmer [17]; Panfilov and Holden [21]. The elimination of such arrhyth-
mias, or the defibrillation of heart muscle, is a vitally important problem, as
re-entrant activity in ventricular muscle can be lethal. Biktashev and Holden
[5]-[7], Biktashev [4] have proposed exploiting resonant drift of spiral wave po-
sition, produced by low amplitude forcing under feedback control (to overcome
effects of boundaries and inhomogeneities) to defibrillate cardiac tissue by gen-
tly pushing out re-entrant sources. The feasibility of this approach has been
illustrated by numerical computations within Cartesian coordinates, using bio-
physically derived excitation equations for mammalian atrial and ventricular

tissue, Biktashev and Holden [8], [9].
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The heart has a complicated, anisotropic and moving geometry [17], and as a
step to modelling the endocardial surface of the atrium as a spherical surface
we examine induced resonant drift of rigidly rotating spiral waves in circular
and annular domains. A circular domain also provides a natural model for
experiments on chemical excitable media in a thin film in a Petri dish e.g., see
Grill et al [16], Miiller et al [20], and Gémez-Gesteira et al [15].

2 Model formulation
2.1 Mathematical model

We use the FitzHugh-Nagumo excitable media model in the form, Winfree

[25],
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where D is a diffusion coefficient, V? is the Laplacian, F'(¢) is an external
forcing, and the non-linear terms are

flu,v) =u—— —v, g(u,v) =u+ g —~yo. (2)

In polar coordinates r and ¢ the Laplacian reads
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The first equation in (1) describes the fast process of formation and propa-
gation of the wave front; the second equation describes the local recovery of
the properties of the medium. In the context of biological excitable tissues the
variables v and v are commonly interpreted as the membrane potential of the
cell, and the slow repolarizing currents through the membrane; the F(¢) can
be interpreted as, for instance, an external electric current.



2.2 Boundary conditions

For a disk with radius R the nonflux boundary condition is posed
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In the case of an annulus, r, < r < R, r, is the hole radius, the nonflux
boundary conditions are posed on both boundaries
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2.3 Computational model

The system (1)-(5) was integrated, using a semi-implicit Euler method. A
uniform rectangular grid with radial and angular steps (Ar, Ap) in a rectangle
G = {ro, <r < R0 < ¢ < 21,1, > 0} was used. The derivatives with
respect to r and ¢ were approximated by central differences, except for the
radial derivative du/dr at the boundaries, where the one-sided second order
differences were used

ou 1

™ A K(Su(R,@) —du(R — Ar, ) + u(R — 2Ar, ¢)), (6)
7 (R,(,o) r
Ou L Bu(ra )+ du(rs + Arg) — ulry 4 2Ar,0)). (1)
— ~ ——(—3u(ry, ¢ u(ry r,o) —u(ry r,e)).
or () 2AT

To provide convergence at small r, the simplest implicit finite difference ap-
proximation of the angular part of the Laplacian was used. Both the radial
part of the Laplacian and the non-linear terms were integrated explicitly. To
resolve the resultant linear system a cyclic elimination method was imple-
mented [24]. The Laplacian at r=0 was computed by formula (8) resulting
from the mean value theorem for a disk [11], [22], [23],

V2u(0) = lim i?(% [ utr, o) — u(0)) (8)
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More precisely, the non-local boundary condition at r = 0 has been set
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Here uij are the values of u at the circumference with radius Ar, M is the
number of angular segments, and u} is the value of v at r = 0.

2.4 Paramelers

The model parameters D = 1, g = 0.75, v = 0.5, and ¢ = 0.3 were fixed
to correspond to an excitable medium with a stable spatially uniform steady
state that can support stable rigidly rotating spiral waves in the plane [25].
With the parameters chosen, the propagation velocity of a solitary plane wave
is approximately 1.8 su/tu, where su = ‘space units’ and tu = ‘time units’.
The wavelength of the spiral wave is 36.4 su, with the core radius of ~ 3.2 su,
and its period is about 21.4 tu. Since we are interested in re-entrant cardiac
arrhythmia the size of the circular domain, ® = 30, has been chosen of the
same order as the spiral wavelength. The hole radius was varied within 0 <
rp < 3.5. In most of the computations the time step At = 0.01 and both
space and angular steps Ar = 0.2, and Ay = 27/600 were fixed. To verify the
robustness of the numerical results smaller time and space steps At = 0.005
and Ar = 0.12 were sometimes used.

2.5 Tip position, phase, and instantaneous frequency of wavetip rotation

The wave tip was found as the intersection of two isolines v = v = 0, by linear
interpolation between their crossings of the mesh ribs. The phase ® of the
spiral wave was computed as ® = arctan (g—: g—;) at the wavetip, according
to the definition given in Biktashev et al [10]. This was obtained via the
derivatives dv/dr and dv/dyp computed by central differences at the corners
of the mesh cell containing the tip and then bilinearly interpolated to the tip
point. The instantaneous frequency of wavetip rotation at time ¢ was accepted
as the value of w = 27 /T with the least T > 0 satisfying the condition
O(t)y=0(t+T) + 2x.

2.6 FExternal time forcing

The function F(t), 0 < F(t) < A, was a series of rectangular pulses of a fixed
duration Aty = 0.1 tu with amplitude A, 0 < A < 10, varying in different
numerical experiments. The time moments ¢;, k = 0,1,..., at which the per-
turbation of amplitude A and duration At.; was applied were determined by
one of the following procedures:



— (i) ty = kT.+ 7, where T, was the constant period of F'(t) = F(t+ T.) and
T was a time delay;

— (i) ty = tyr + 7, where t,; was the k-th moment in time ¢ when the
condition ®(0) = ®(¢, ) (mod 27) had been fulfilled, ®(0) was the phase
at t =0;

— (iii) ty, = tyer + 7; here t,. was the k-th moment in ¢ when the excita-
tion wavefront, the isoline u = 0, reached a control point interpreted as a
recording electrode.

2.7 Initiation of spiral wave

To initiate a spiral wave rotating near the centre of a circular medium, as
seen in Figure 1(a), an annulus with a small hole was used. Two thin adjacent
radial slices of a width about 6° were set, one corresponding to an excitation
state with v = 2.0 and v = —0.65; the other corresponding to a recovering
state with u = —2.0 and v = 0.67; and the remainder of the annulus was set
to the quiescent state, v = —1.125 and v = —0.65. These initial conditions
gave rise to a rigidly rotating wave attached to the hole, with the direction
of rotation determined by the order of the two slices. Setting the hole radius
to r, = 0 resulted in a spiral wave rigidly rotating around a point close to
the centre of the medium. To obtain a spiral wave with the wave tip close to
the boundary, as shown in Figure 1(b), external time forcing with a frequency
equal to the instantaneous rotation frequency of the wave was used, see (i7) in
Sect.2.6. The technique allowed us to place the core anywhere in the medium
by choosing different a number of stimuli, delay 7 and forcing amplitude A.
An alternative way of spiral wave initiation can be found in, e.g. Zykov and
Miiller [26]. In all the numerical experiments described below spiral waves
were rotating in the counter-clockwise direction.

2.8 Grid anisotropy

The grid spacing and time step were chosen to reliably create spiral waves
with appropriately smooth profiles and propagation speeds. A criterion of
numerical accuracy was that small changes in the grid or time step should not
give rise to large differences in the solution. With numerical parameters chosen
as in Sect.2.4 neither reducing the steps Ar or Ae by 20% nor reducing the
time step by 50% changed the wave period by more than 2%. Nevertheless,
even in the absence of any forcing, a radial drift of spiral waves away from
the centre was observed. The radial drift velocity v, ~ 2.4 107% su/tu was
less than 0.2% of the plane wave velocity. Numerical experiments evidenced
that the mentioned radial drift velocity decreased as the Ar became smaller,



(a)

Fig. 1. (a) Colour visualization of the excitatory process u in a rigidly
counter-clockwise rotating spiral wave with the core of radius ~ 3.2 space units
in a circular domain of radius R = 30 space units. (b) Biperiodic motion, produced
by boundary interactions. Shown is the tip trajectory of a counter-clockwise rotating
spiral wave which drifts along the boundary in the clockwise direction.

vy, ~ 4.8 1072 su/tu for Ar = 0.4; v, ~ 2.4 1072 su/tu for Ar = 0.3; v, ~
1.2 1073 su/tu for Ar = 0.2; and v, ~ 3.5 107* su/tu for Ar = 0.1. In these
test computations the time step Ar = 0.001 was used to satisfy the stability
criterion for the case of the smallest Ar = 0.1. The very slow radial drift should
probably be attributed to the grid anisotropy produced by the summation of
local errors of approximation in integrating the discrete analog of equations
(1)-(5) in polar coordinates. In numerical experiments described below, this
numerical artefact was always much smaller than the resonant drift.

3 Results

3.1 Constant frequency resonant drift

It has been long known that spatially uniform, periodic time forcing leads to
the motion of a rigidly rotating spiral wave. If the frequency of forcing is close
to the rotation frequency of the spiral wave, a circular, large radius “Larmor”-
type drift results (motion equations of the rotation center are similar to those
of a charged particle in a magnetic field); if the frequency is equal to the
rotation frequency a linear, directed resonant drift in a direction determined
by the phase of the forcing results, Agladze et al. [1]; Davydov et al. [13];
Biktashev and Holden [7]; Mantel and Barkley [18]. Figure 2 illustrates the



boundary interactions of a resonantly drifting spiral. The closer the resonantly
drifting spiral wave approaches the boundary the faster the core rotates (see
2(b) and (d)), hence the greater the changes in the phase at which the constant
frequency forcing is applied, and the greater the changes in the direction of the
drift. Fig. 2a shows that the tip positions at which the forcing is applied move
along a hypocycloid near the boundary. In Fig. 2(a) the rotation of the core
and the boundary induced drift are opposite to each other while in (¢) these
coincide. Figures 2(e) and (f) illustrate the effects of internal boundaries, or
holes in the medium. In (e) the resonantly drifting spiral is repelled by the
hole of a similar size to the core of the wave, and in 2(f) is captured by the
smaller hole.
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Fig. 2. Tip trajectory of a spiral wave with drift induced by spatially uniform pe-
riodic stimulation at a constant frequency. In (a), (c), (e), and (f) the * marks the
position of the wavetip at the time when the perturbation is applied. (a) and (b)
Stimulation with amplitude A = 0.6. (¢)-(f) A = 2.5. (b) and (d) Dependencies
of the instantaneous frequency of the spiral’s wavetip rotation on time. ”Squares”
indicate the values of the instantaneous frequency of the spiral, and the * indicate
the stimulation frequency; (b) corresponds to (a); (d) corresponds to (c). (e) Re-
pulsion of the drifting spiral wave by an obstacle in the medium, a hole with radius
rn, = 3.5. (f) Capture of the resonantly drifting spiral wave by a small hole of radius
ry = 1.



3.2 Feedback resonant drift monitored by wavetip orientation

An ideal way to avoid the resonant repulsion from the boundaries is to monitor
the instantaneous frequencies of the rotation of the wave tip, as described in
Sect.2.6, and thereby to apply the resonant forcing at exactly the same phase
of resonantly drifting spiral each rotation [7]. Figure 3 illustrates the spiral
wave response to a spatially uniform perturbation applied at the same phases
of the rotating wave. In 3(a) the amplitude of the perturbation is insufficient
to overcome the non-resonant interaction with the boundary, and the counter-
clockwise rotating spiral drifts clockwise around the boundary, slowing down
and finally freezing in position with its tip’s trajectory approaching a cycle
that does not move, where the effects of resonant forcing and the interaction
with the boundary cancel each other. In 3(b) the amplitude of the perturba-
tion is larger, the linear drift velocity is larger, and the spiral collides and is
extinguished at the boundary. In 3(¢) and (d) interactions with an interior ob-
stacle, an inexcitable hole, are illustrated; in (c¢) the spiral is trapped around a
small hole (whose diameter is less than the core diameter) and finally breaks
free, and is extinguished at the boundary, while in 3(d) the spiral is trapped
and bound by a hole that has a diameter larger than the spiral core diameter.

3.3 Feedback resonant drift monitored by a recording electrode

Another method, that is more appropriate for applications, is to monitor ac-
tivity at a point in the medium, as if by a recording electrode. In this case
both the position of the recording electrode and the time delay 7 between
recording wave arrival and stimulation are all arbitrary, but in fact turn out
to be of great importance. Figure 4 illustrates the synchronization of the ro-
tations of the core of the spiral by the resonant forcing, when the wavetip
drifts around a stable limit cycle, a circle with a centre that coincides with
the location of the recording electrode point; in (a) the symmetry center is the
centre of the medium, in (b) the symmetry centre is shifted at the point with
the radius r,, = 10. An increase of amplitude A results in an increase of the
angular velocity of the drift along these circles, but does not influence their
radii. Changing the time delay, one can change the radius and/or reverse the
direction of the drift along the circle, in (a) the drift occurs in the counter-
clockwise direction while in (b) in the opposite direction. All this is consistent
with the phenomenological theory of the resonant drift described in [7]. In-
deed, the equations (63) therein, that describe the feedback-driven resonance
drift in the absence of interactions with the boundary, can be rewritten in the
form

p=ccos(¥(p)), ¢= %sin(\v(p», (10)
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Fig. 3. Feedback resonant drift produced by spatially uniform, repetitive stimula-
tion controlled by monitoring the wavetip orientation. Amplitude of perturbation
A =251n (a), and A = 3 in (b)-(d). The * marks the position of the wave’s tip
at which the perturbation is applied. (a) Stimulation amplitude is not large enough
to extinguish the resonantly drifting spiral wave, and the core moves around the
boundary, and is finally frozen at the boundary. (b) Resonantly drifting spiral wave
is extinguished at the boundary by the higher amplitude stimulation. (c¢) Reso-
nantly drifting spiral wave attaches to, and is detached from, a small hole with
radius r;, = 1, and finally collides with, and is extinguished at, the boundary. (d)
Resonantly drifting spiral wave becomes attached and bound to a hole with radius
r, = 3.5.



where (p, @) are polar coordinates of the spiral wave core, p = 0 corresponds
to the recording electrode; W(p) = 2x(p/A+7/T), A and T are the asymptotic
wavelength and the period of the wave respectively, and 7 is the stimulation
delay; ¢ is a constant determined by the forcing amplitude A. Equations (10)
admit a discrete family of limit cycles

p(t)=A((2m+1)/4+7/T), o(t) = (=1)"ct/p, m=0,1,2...(11)

Thus the feedback results in a synchronization of the tip motion by the external
stimuli so that, after some transient process, the wavetip approaches a closed
circular trajectory centered at the measuring point. This leads to an idea
of extinguishing the resonantly drifting spiral wave near the boundary by
resonant drift along a circular arc which would intersect the boundary. To do
this one could set the recording electrode at the boundary as proposed in [7].

(a) (b)

Fig. 4. Tip trajectories computed under feedback control by a recording electrode
sited at the centre, r,, = 0, of the medium in (a) and at r,, = 10 in (b). Am-
plitude of stimulation A = 3. In both (a) and (b) the spiral waves are rotating
counter-clockwise.

Figure 5 illustrates the process of extinguishing the spiral waves in the case
when the recording electrode is set at the boundary. Most of the core trajec-
tories do not resemble circular arcs because the core reaches the boundary
during the transient processes. Notice that the shape of these trajectories be-
fore touching the boundary is similar to those obtained in square media, see
Figure 14 in [7].

We have seen that drift along a circular trajectory can occur in the absence

of interaction with boundaries due to the symmetry of drift motion equa-
tions. However, similar drift can occur even in case of strong interaction with
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(a) (b)

Fig. 5. Resonant drift under feedback control by a recording electrode, the pertur-
bation of amplitude A = 3 is applied at fixed time after the wavefront reaches the
recording site. The four wave’s core trajectories correspond to different initial wave’s
phases, 0, 7, m, and 37”, at which the first perturbation pulse was applied. Shown
are positions of the tip at the times the perturbations were applied. The solid circle
marks the recording site.

boundary. In Fig. 6(a), the resonantly drifting spiral wave is first pushed to
and then moves along a circular trajectory clockwise around the boundary, in-
creasing in drift velocity as it approaches the recording site. When the spiral
tip comes close to the recording site, the tip is detached from the boundary
and moves along a smaller circular trajectory inside the medium, this time
counter-clockwise, then attaches to the boundary and follows the boundary in
a circular clockwise motion and finally freezes. These nearly circular motions
along the boundary result from the small difference between the perturbation
frequency and the spiral wavetip frequency seen in Figures 6(b), which in turn
is related to the fact that in the absence of forcing, the drift due to interac-
tion with boundary is also circular, as shown in Fig. 1(b). This interpretation
is confirmed by the next numerical experiment shown in Fig. 6(c),(d), which
stimulated a similarly complicated shape of trajectory by varying the stim-
ulation protocol. First, the spiral wave was set to drift clockwise along the
boundary without external forcing (left half of medium in Fig. 6(c)). Then
a feedback-driven forcing was started (shown by asterisks), which led to de-
taching the spiral wave from the boundary and to its drift counterclockwise
through the interior of the medium, until reaching the boundary again, which
ended this time up with extinguishing the spiral wave.

Figure 7 illustrates interactions between resonant drift under feedback control
and an inexcitable hole; in (a) the tip trajectory is trapped by the small
hole, and breaks free, to be extinguished at the boundary; in (b) the spiral

11



] s
S
) %
e
/ i
. I

i

KRN

] PRV
(i

VA

<
i Y
oI

" h
IR el

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n [Nals] 100N 1RNAN 20NN 2RNN 2NNN - *RKBNN n 200 aAnN ANN ’NN 10NN 1200 140NN 1ANN

(b) (d)

Fig. 6. A complicated sequence of spiral wave boundary interactions, with resonant
drift under feedback control by a recording electrode, repetitive stimulation with
uniform amplitude A = 2.5in (a),(b)and A = 3in (c¢),(d). The * marks the positions
of the spiral’s wavetip at the time moments when the perturbation is applied; the
solid circle marks the recording site. (a) Tip trajectory of the resonantly drifting
wave, which is first driven towards the boundary, moves circumferentially around
the boundary, gradually speeding up, until it is repelled from the boundary and
undergoes a Larmor-type drift before returning to the boundary and finally being
frozen at the boundary. (b) Dependence of the instantaneous frequency of the spiral’s
wavetip (marked by the squares) and the frequency of stimulation (marked by the
*) on time. (c) Shown is the tip trajectory of a spiral wave drifting clockwise along
the boundary in the absence of any external forcing, the left part of the figure;
when external forcing is turned on, the trajectory executes a nearly circular motion
around the recording electrode site, the right part of the figure. (d) Dependence of
the instantaneous frequency of the rotation of the spiral’s wavetip motion of 6(c)

(marked by the squares) and the frequency of stimulation (marked by the *) on
time. 19



wave is trapped and is bound to the larger hole, while in (c¢) and (d) the tip
trajectory bypasses the hole and the spiral wave is extinguished. This confirms
the importance of the time delay parameter in the feedback controlled resonant
drift. An appropriately chosen time delay parameter allows the resonantly
drifting spiral waves to bypass the obstacle and reach the boundary where it
is finally extinguished.

4 Conclusion and discussion

We have presented numerical results on the resonant drift of rigidly rotating
spiral waves within a circular domain, and interaction of resonantly drifting
spiral waves with medium obstacles and boundaries. We have considered media
with a radius the same order of magnitude as the spiral wavelength, and the
simplest possible spiral wave motions, a periodic rigidly rotating wave and
a biperiodic one, drifting along the boundary. In the context of applications
to cardiac arrhythmia, the rigidly rotating wave corresponds to a re-entrant
propagation of the leading circle type, around a functional block (the core,
in spiral wave terminology), while the biperiodic motion corresponds to re-
entrant wave around an anatomical obstacle, such as the inferior vena cava in
a right atrial flutter. Both types of re-entry were subjected to both a constant
periodic and feedback controlled resonant external time forcing.

Although a circular domain provides a more natural model for cardiac tis-
sue than a rectangular domain, special care should be taken in carrying out
numerical experiments in polar coordinates to study the drift phenomenon.
As mentioned in Sect.2.8, integration in polar coordinates shows a very slow
radial drift of spiral waves even in the absence of external forcing. Such a slow
drift has been described in experiments with the Belousov-Zhabotinsky reac-
tion, Goémez-Gesteira et al [15], however, in the numerical experiments it is a
numerical artefact, as its velocity varies with the step size, and is due to grid
anisotropy caused by nonuniform errors of the finite difference approximation
of the original equations.

Earlier work on the effects of periodic forcing on spiral waves has been by a
kinematic approach Davydov et al [13] and Mikhailov et al [19], by numerical,
phenomenological and asymptotical studies by Biktashev and Holden [4]-[9],
and by the forcing of a model ODE system by Mantel and Barkley [18]. These
studies provide insight into the directed motion or resonant drift of spiral
waves, and in the context of cardiac defibrillation deal with moving the reen-
trant wave towards a boundary. Interactions with a boundary have not been
so intensively studied - however see Biktashev [3], Ermakova et al [14], Aran-
son et al [2] and Biktashev and Holden [7], and the implicit assumption is
that the spiral will either be reflected or extinguished at the boundary. For
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Fig. 7. Resonant drift under feedback control by a recording electrode in circular
media with circular obstacles and perturbations of amplitude A = 3. The * marks
the position of the spiral’s wavetip at the time when the perturbation is applied;
the solid circle marks the recording site. (a) Hole with radius 7, = 1 being less then
the wave’s core size. (b)-(d) Hole with radius r;, = 3.5 of the same order as the core
of the unperturbed spiral. Initial wave’s phases at which the first stimulation was
applied are 0 in (c), 5 in (b), and 7 in (d).

the purposes of efficient extinction of spiral wave at the medium boundary it
is of great importance to understand possible types of spiral wave behavior
near the boundary.

Biktashev and Holden [4]-]9] used resonant drift under feedback control to
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overcome boundary interactions, with the feedback triggered by a recording
electrode located in a corner of the medium. If the recording electrode is lo-
cated within the interior of the circular domain then, independently of however
far from the wavetip of a rigidly rotating wave it is located, synchronization
of the tip motion occurs and after a transient the wavetip approaches a closed
circular trajectory centered at the recording electrode point, Figure 4. An anal-
ogous synchronization phenomenon has been observed earlier in the case of
meandering spiral waves in Grill et al. [16]. Thus the recording electrode feed-
back stimulation produces a synchronized dynamical behavior for the cases of
rigidly rotating or meandering spiral waves, and the case of biperiodic motion
near the boundary within a circular medium. The recording electrode imposes
a centre of symmetry for the system. Motion is a circle around the recording
electrode. Since simple re-entry in the wall of a heart chamber occurs in an
anatomically defined, complicated three-dimensional structure some locations
for a recording electrode used to control re-entrant activity by resonant drift
will be more effective than others in driving re-entrant activity to a boundary
with inexcitable tissue.

When interaction between the drifting spiral wave and inexcitable obstacles in
the medium traps the spiral wave, as in the pinning described by Davidenko
et al [12], recording electrode feedback-controlled forcing can, in some (see
Fig. 7(a)), but not all cases (see Fig. 7(b)) , detach the spiral from the obstacle.
Even in the cases when the wavetip could not be detached from the obstacle
by recording electrode feedback-controlled forcing a properly chosen delay
allowed one to manage the drift in such a way to avoid the obstacle and finally
successfully extinguish the wave at the boundary, Fig. T¢,d. If the obstacle is
an anatomical obstacle in the heart, then choice of recording site and time
delay could, in principle, produce resonantly drifting trajectories that avoid
the obstacle.
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