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Abstract

Analysis of optically recorded irregular electrical wave activity on the surface
of the heart during experimentally induced fibrillation reveals a strong local tem-
poral periodicity. The spatial distribution of the dominant temporal frequencies of
excitation has a domain organization. The domains are large (= 1cm?) and they
persist for minutes. We demonstrate that these data can be reproduced in a two-
dimensional excitable medium governed by the FitzHugh-Nagumo equations with a
spatial inhomogeneity. We identified two potential mechanisms that may contribute
to the observed experimental dynamics: coexistence of stable spiral waves with non-
commensurate frequencies of rotation, and Wenckebach-like frequency division from
a single spiral source due to inhomogeneity. The number of domains is not an index of
the number of wave sources. Both mechanisms reproduce the uniformity of the dom-
inant frequency within individual domains and sharp boundaries between domains.
The possibility of distinguishing between different mechanisms using Lissajous figures
is discussed.



1 Introduction

It is now possible to map optically, using voltage sensitive dyes, the electrical activity on
the surfaces of cardiac muscle with a high spatial and temporal resolution. Such mapping
has advanced significantly the experimental study of fibrillation. This has revealed a high
degree of spatio-temporal organisation of electrical activity during experimentally induced
fibrillation [Gray, Pertsov & Jalife 1998, Witkowski, Leon, Penkoske, Giles, Spano, Ditto &
Winfree 1998]. Quantitative analysis of the excitation patterns has led to the observation
that the dominant frequency of oscillations has a domain structure, the dominant frequency
being approximately uniform within one domain but different in different domains, and the
boundaries between the domains being quite sharp, with the domains persisting over tens
of seconds i.e. hundreds of times longer than the approximate periodicity of the local
oscillations [Biktashev, Holden, Mironov, Zaitsev & Pertsov 19995, Zaitsev, Berenfeld,
Jalife, Mironov & Pertsov 2000]. Interpretation of fibrillation as re-entry breakup cascades,
be it due to two-dimensional [Panfilov & Holden 1990] or three-dimensional [Biktashev
1998, Fenton & Karma 1998] mechanisms, implies mobility of the reentry blocks, spiral
cores or scroll filaments. This is hardly consistent with the observed persistence of the
frequency domain structure in these experiments. Thus, the newer evidence of order in
fibrillation, based on statistical analysis of high-resolution data, seemingly contradicts the
traditional picture of the disorder of fibrillation, based on low-resolution maps, single site
electrograms or the ECG. This contradiction requires a theoretical explanation.

In this paper, we explore possible mechanisms of the domain structure. Our basic
assumption is that fibrillation is caused by pinned re-entrant vortices[Winfree 1994, Zaitsev
et al. 2000]. As a single spiral wave would only produce a periodic (monomorphic) pattern,
some modification is required to explain the polymorphic behaviour. We consider two
hypothesis:

M: There are two (or more) different re-entry vortices with different periods, and the
domains of influence of the vortices are the dominant frequency domains.

W: There is essentially only one re-entry vortex, but its period is shorter than the min-
imal propagation period in some parts of the tissue, so in those parts intermittent
conduction causing simple rational frequency division is observed. In cardiology this
is described as Wenckebach frequency division.

Note that the hypothesis M is not quite trivial. It is a widespread belief that two or
more periodic sources of waves in an excitable medium cannot coexist for a long time, as
the fastest source should entrain all others. The mechanism of such entrainment is based on
the observation that the excitation waves, in the head-on collisions, annihilate in the ratio
1:1. The entrainment of slower sources has been discussed theoretically [Gelfand & Tsetlin
1960, Pertsov & Ermakova 19885, Winfree 1991, Biktashev 1997, Vinson 1998, Xie, Qu,
Weiss & Garfinkel 1999] and demonstrated experimentally in the Belousov-Zhabotinsky
reaction medium [Krinsky & Agladze 1983]. This sometimes leads to a natural but hastily
drawn conclusion that coexistence of sources of different frequencies in the same medium is



impossible [Xie et al. 1999]. Entrainmentby the fastes source, however, assumes a relative
homogeneity of the medium. If the medium is strongly nonhomogeneous, then it is con-
ceivable that the waves of the faster source may be simply unable to penetrate the more
refractory part of the medium where the slower source is located. As a result, some exci-
tation waves annihilate by themselves without colliding with other waves, and no entrain-
ment will occur. Note that different frequencies of spiral waves implies an inhomogeneity
of properties, in particularl the refractoriness.

To substantiate the two hypotheses of frequency domain formation, we reproduce the
phenomenon by numerical simulations, using the simple FitzHugh-Nagumo caricature of
the excitable tissue. The reason for choosing this model rather than a more realistic
biophysically detailed model, is that currently it is not known which particular parameter
inhomogeneities are most important. Using the simulations, we identify the key features of
the excitation patterns corresponding to each of the two mechanisms, and apply this to the
patterns observed in the isolated tissue experiments. The result is that both hypotheses
are consistent with the experimental data. Moreover, both mechanisms may be involved,
either simultaneously, or one mechanism may switch to the other. In all cases a small
number of re-entrant sources in an inhomogeneous medium is sufficient to reproduce the
characteristics of the experimentally observed domains.

2 Methods

Numerical model Both hypotheses require a macroscopic inhomogeneity of the tissue.
It is well known that in an inhomogeneous medium re-entrant vortices tend to drift [Pertsov
& Ermakova 1988a, Fast & Pertsov 1990, Biktashev & Holden 1995]. To prevent this drift
and so produce numerical simulations of stationary rotating vortices in an inhomogeneous
medium, we exploited the effect of pinning to localised inhomogeneities [Vinson, Pertsov
& Jalife 1994, Pertsov, Cabo, Baxter, Gray, Davidenko & Jalife 1994, Xie et al. 1999]. We
used the following inhomogeneous variant of the FitzHugh-Nagumo system:
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in a rectangular region r € [0, X] x [0,Y], X = 30, Y = 12, with impermeable bound-
aries, for 8 = 0.68 and v = 0.5. Parameters ¢,, depended on r, to represent spatial
inhomogeneities (see Fig. 1):
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The function x(r) provided a macroscopical inhomogeneity, namely, a non-specific k-fold
slowdown of all dynamic variables in the right hand part of the medium compared to the
left, and the terms K exp() in ¢, provided a localised suppression of excitability in two
‘holes’, the regions with radii of the order \;. Figure 1 illustrates the distribution of ¢, and
€, in the medium, for two different parameter sets used in the numerics. These sets were
different in parameters k and w: k = (14 v/5)/2 ~ 1.618 and w = 3 (producing a stronger
but smoother inhomogeneity) and k& = v/2 ~ 1.414 and w = 0 (producing a slighter but
sharper, stepwise inhomogeneity). Other parameters were ¢ = 0.3, K = 100, A\; = 0.6,
A =Mk, 1, = (0.15X,0.5Y), r, = (0.8X,0.5Y), and z;, = 0.4X.

The initial conditions were established as follows. A spiral wave was initiated in a
homogeneous medium (k = 1, K = 0). The dynamical variables U(¢) = u(r, 2nt/T),
V(¢) = v(r,2nt/T) were recorded at a point r far from the core of the spiral, for one
rotation period, ¢ € [0,7]. This recording was used to create initial conditions for the
inhomogeneous medium, u(r,0) = U(¢), v(r,0) = V(¢), where the distribution of the
phase ¢ was specified to provide either one spiral wave,

¢ = |r —r|/A — arg(r — 1), (3)
or two spiral waves,
¢ = max {|r —r;|/A; — arg(r — 1), —[r — 1, [/A, +arg(r —1,)}, (4)

around the inexcitable holes r;, r,. Here A; = 3, A, = Al\/E, and arg(r) is defined as the
angle made by vector r with the z-axis (counter-clockwise being positive).

Simulations were performed with spatial step 0.2 space units (s.u.) of (1) and output
data were sampled with interval 0.64 time units of (1). The value of the variable u in
the solutions to (1) was taken as an equivalent of the optical signal in the experimental
procedure described below. The time unit of (1) was assumed to correspond to 13 ms.,
as if the numerical data were sampled with the frequency 120 Hz; this provides a rough
correspondence of the oscillations frequencies observed in experiment and in numerics.

Experimental procedures The numerical simulations were compared with experimen-
tal results. Experimental visualisations of electrical activity were from the endo- and
epicardial surfaces of pieces of fibrillating sheep ventricular wall (5-11 mm thick) that had
been excised and perfused via the coronary arteries, and superfused with oxygenated phys-
iological saline containing a drug (diacetyl monoxime), that blocked contraction, and a
potential-sensitive dye (di-4-ANEPPS). The video images were obtained with a spatial
resolution of 0.2 to 0.5 mm and a temporal resolution of 2.5 to 8.3 ms and stored with a
8-bit precision. The length of time series was from 2 to 10s, and the size of preparation
was about 3cm. More technical details can be found in [Pertsov, Davidenko, Salomonsz,
Baxter & Jalife 1993, Biktashev, Holden, Mironov, Pertsov & Zaitsev 1999a, Zaitsev et
al. 2000]. Irregular, self-sustained re-entrant propagation, which we assumed as an exper-
imental model of fibrillation, was induced in a resting tissue preparation by rapid electric
pacing.



2.1 Data processing

The processing included calculation of pseudo-ECG, and finding pointwise Fourier spectra
with subsequent pointwise bandpass filtering of the signals and calculating the spatial
distribution of powers of the frequency bands.

Pseudo-ECG The pseudo-ECG signals were calculated from the experimental and sim-
ulation data, u(z,y,t), by simple summation,

B(t) = / / w(z,y, t) dady. (5)

Both the real ECG and the calculated E(t) are integral characteristics of electrical activity;
E(t) has an advantage that it can be easily obtained directly from optical mapping data,
and from the results of numerical simulations, thus providing a uniform approach to both
types of datasets.

Fourier spectra We performed a pointwise discrete Fourier transform on both the sim-
ulation and tissue experimental data,

u(z,y, ) = Flu(z,y,1)] (6)
to obtain the cumulative power spectra,
P(H) = [ i@y 1Py @

Note that a cumulative power spectrum obtained by (7) is a spectrum of the whole
signal, not a power spectrum of the pseudo-ECG (5).

Filtering Given the frequencies of the main peaks and peak widths, the signals were
then filtered to one of the two or three windows,

W;(f) =exp (-Q;(1 = f/f;)"), (8)
where f;, j = 1,2(,3) are the central frequencies of the windows, and @), are coefficients
representing filtering quality. Parameters f; and (); were chosen based on the visual
analysis of frequency spectra of the experimental or numerical data, so that each window
is reasonably wide but covers only one frequency peak.

Frequency band power distributions The distribution of the power of the frequency
band j was computed as

By(a,y) = [ lae,. DPWi() s ©)

and these distributions were then visualised using colour-coding, so that value of B;(z,y)
was represented by intensity of j-th (red, green or blue) colour component of the hue at
the point with coordinates (x,y).



3 Results

3.1 Frequency domains in experimental fibrillatory patterns

Figures 2 and 3 illustrate the frequency domain structure in experimental fibrillatory pat-
terns. These are relatively simple patterns, with only two different dominant frequencies;
usually more complicated patterns are observed, as in Fig. 4.

On Figs. 2, 3 and 4, the top two plots are the pseudo-ECG E(t) and cumulative power
spectrum P(f). Experimental data demonstrated a smooth shape of the recorded action
potential, which produced virtually no higher harmonics, and the main peaks were easily
identifiable, though often partially overlapping, as in Fig. 2. The large colour panel is
the frequency domain map: the spatial distribution of the frequency bands power over
the preparation Bj(xz,y), with higher frequency represented by blue and lower frequency
by red, and the medium frequency on Fig. 4 green. The frequency windows W;(f) and
power spectra of the whole preparation after bandpass filtering P(f)W,(f) are shown to
the right of the domain map. Lower panels show individual signals from different points
of the preparation, together with their power spectra.

The pseudo-ECG signals show polymorphic or fibrillatory activity, especially Figs. 3
and 4. Yet, the power spectra P(f) clearly show two dominant frequencies for Figs. 2
and 3 and three for Fig. 4. The feature of the total power spectrum in Fig. 2 is that the
two bands overlap, and so it is not obvious that they correspond to different processes.
Yet, in all three examples, on the frequency distribution B,(z,y) panel one can clearly see
the large regions of pure colours, as well as narrower regions of mixed colours, where two-
or three-frequency oscillations occur. The different frequencies of oscillations are spatially
separated, in domains. This is confirmed by the analysis of time series recorded at different
points. The power spectra of the signals from pure-colour domains hardly overlap, the
signal from the lower-frequency domains often having a slight high-frequency component,
and that the signal from the border zones, as (B) on Figs. 3 and 4, has both components.
The ratio of the frequencies in Fig. 2 was 15:12.5=6:5,in Fig. 3,17: 13~ 131~ 4:3
and in Fig. 4 approximately 4 : 3 : 2.

3.2 Simulation: mechanisms of the frequency domain formation

Mechanism M: multiple independent spiral waves. Figure 5 illustrates coexistence
of two spiral waves in a model with the stronger inhomogeneity £ = 1.618. The period of
the spiral wave in the right half of the medium is longer than the period in the left half, but
no entrainments occur because the waves from the left spiral cannot penetrate the right
half as they either come in the excited/refractory phase, or just slightly advance the phase
of the right spiral if they come during the excitable gap.

Despite the fact that there are only two stable spiral waves, the pseudo-ECG appears
complicated, due to incommensurability of their periods. In order to compare the simula-
tion results with the experiments, we processed the solution u(z,y,t) in the same way as
signals from the real experiments. The results are shown on Fig. 6. In this example, as well



as in all other numerical data, the frequency peaks were well separated, but higher harmon-
ics present. Often, the second harmonic was more powerful than a main frequency peak.
For this reason, visual pre-analysis of spectra was necessary to determine the dominant
frequencies.

In the case of Fig. 6, the frequency bands are well separated, both in the frequency
domain and in space. There is only a narrow border zone with mixed frequencies. The
ratio of the frequencies here was close to the ratio of two small integers, 19.5: 15 ~ 4 : 3.
Note, however, that the electrograms show no entrainment of one spiral by the other. This
is because their cores are sufficiently far from the border separating their domains. In
our computation, this independent rotation of spiral waves lasted a very long time. The
stability of the spirals was enhanced by presence of inexcitable holes, to which the spiral
cores were ‘anchored’ and did not drift (see [Vinson et al. 1994] for more about anchoring).

Another such example is shown on Figs. 7 and 8, where the ratio of the time constants
was less, £ =~ 1.414. In this case of the lower inhomogeneity, the two spiral waves persisted
only for a limited time, about 22 revolutions of the slower spiral and 30 of the faster. After
that an excitation wave from the left spiral propagated into the excitable gap of the right
spiral, reached its core and pushed it onto the inexcitable boundary. Thereafter, the right
part of the medium simply conducted two out of every three excitation waves, i.e. the
frequency domains were due to the Wenckebach mechanism.

Mechanism W: one spiral wave and Wenckebach frequency division . This
mechanism was observed in each of the models described above, by specifying one spiral
wave in the faster part of the medium as initial condition. As the period of the spiral
in the faster part in both cases is shorter than the refractory period of the slower part,
Wenckebach frequency division occured. For model of Fig. 8, that was 2:3, i.e. two out of
three waves propagated and every third wave was blocked.

Similar behaviour was observed in the numerical experiment with two spiral waves and
k = 1.414, after the slower spiral terminated. Selected snapshots of the u field are shown
on Fig. 9 and corresponding data analysis is given on Fig. 10. It can be seen that the
influence of the higher frequency is present in the low-frequency zone, but it diminishes
with the distance.

Transition from M to W. Figures 7, 8 and Figs. 9, 10 represent two different mech-
anisms during different stages of the same numerical experiment. This illustrates the
possibility of transition from one mechanism to the other, M to W, and raises the question
when such transition can happen. A simple phenomenological criterium can be suggested
in the assumption that the core of the slower spiral wave is sufficiently far from the site
where the Wenckebach blocks occur. Further into the slower part of the medium from
this site, the faster source would appear as a source of modified frequency, i.e. frequency
divided by the Wenckebach ratio. It is this frequency that will compete with the slower
spiral in the slower part of the medium. Therefore, a sufficient condition of the instability
of the mechanism M with respect to transition to W is: the Wenckebach-divided frequency



Figure 6 8 10 |2 3
Frequency ratio 1.58 | 1.36 | 1.50 | 1.20 | 1.31
Sharp domain margins present yes | yes |yes |yes |yes
Broad mixed frequency regions present | no | no |yes | yes |yes
Domains overlap coefficient 0.06 | 0.11 | 0.23 | 0.34 | 0.21
Recurrence seen in the Lissajous curve | no | no |yes |no | may be
Mechanism M M \WY% M? | W?

Table 1: Diagnostic features of the two mechanisms

of the fast source should be higher than the frequency of the slower source. In other words,
the Wenckebach ratio should be lower than the frequency ratio of the two spirals.

As applied to our two numerical experiments, this criterium predicts stability of the
slow spirals in both cases. Indeed, in the stronger inhomogeneity of Figs. 5, 6 the spirals’
frequency ratio was 1.58 whereas the Wenckebach ratio was found to be 2; and in the weaker
inhomogeneity of Figs. 7-10 the spirals’s frequency ratio was 1.36 with Wenckebach ratio
1.5.

However, in the second case, Figs. 7 and 9, the slower spiral has been annihilated.
This happened because its core was too close to the domain boundary. Thus, in effective
prediction of the stability is more difficult, as the above criterium of stability is only
necessary but not sufficient. If mechanism M is metastable, its duration may vary greatly.

3.3 Comparative phenomenology of the two mechanisms.

Experimental fibrillation is obviously more complicated process than the numerical mech-
anisms considered above. This is, in particular, due to such factors as inhomogeneity,
anisotropy and three-dimensionality of the real cardiac muscle. This makes the spiral
waves invisible or at least unrecognizable on the surface excitation patterns in the major-
ity of cases, and so direct comparison with the two mechanisms is impossible.

There are some robust features of the excitation patterns, however, which would be
preserved despite the above mentioned factors; such as e.g. the periods of the re-entry
sources. Is it possible to use such features to establish which of the two mechanisms, if
any, is responsible for a particular excitation pattern?

In this section, we study some of these features, to see which of them can distinguish
between the two mechanisms. These are summarised in the Table 1.

Frequency ratio. This is a would-be obvious criterium as for the mechanism W, this
ratio must be equal to a ratio of two small integer numbers, whereas for the mechanism M it
may be any real number, and therefore if a particular ratio happens to be that of two small
integer, it is a strong indication of the Wenckebach mechanism. In practice, however, life
is a bit more complicated as the precision with which the frequencies can be determined,
is limited by the time length of the signal. For experimental data it is even more difficult



as the widths of the frequency peaks are broader and the precision of the main frequencies
is less. In the examples considered, frequency ratios of numerical experiments Figures
6 and 8 are significantly different from nearest small-integer ratios, and for Fig. 10 it is
exactly 3:2, so in theory this criterium works well. For real experimental data, the ratios
are exactly 6:5 for Fig. 2 and very close to 4:3 for Fig. 3. This might mean that in both
cases mechanism W takes place, or may be a result of a simple coincidence: one can see
on these figures that the frequency bands are quite wide for these signals.

Domain boundaries. Figures 8 and 10 are convenient for comparative study of the two
mechanisms, as both mechanisms take place in the same ‘numerical preparation’. In the
two-spiral regime Fig. 8 there is only a thin strip of mixed frequency on the border. In
the one-spiral regime, the mixed frequency occupies the major part of the slow half of the
medium. This is because the excitation waves propagating through the right part retain the
“two passed — one missed” frequency division structure and thus the frequency component
of their original source, and the inhomogeneity of their train is only slowly damped down
by phase diffusion [Biktashev 1989]. Note that in both experimental patterns, Fig. 2 and
3, thin borders as well as large regions of mixed frequency were observed, but in Fig. 3(a),
the penetration of high frequency (blue) into the predominantly low-frequency region (red)
is less than in Fig. 2(a).

The location and sharpness of the domain borders does not coincide with the borders
of the distribution of tissue parameters, which is clearly seen in the numerical experiments
(see Fig. 11). In all four cases, the width of the domain boundary is approximately the
same, i.e. about 3 space units, whereas the border of the medium parameters was 3 space
units wide in one series and 0.2 space units (one computational step) wide in the other
series. And in all four cases, the location of the domain borders was significantly displaced
with respect to that of medium parameters, into the slower region, so that the domain
border and the step in the medium parameters hardly overlap.

To measure the degree of overlap between the domain distributions, we calculated the
overlap coefficient defined as the cosine between these distributions considered as vectors
of Ly, i.e.

Tk :/Bj(w,y)Bk(x,y) dz dy (/ Bj(iv,y)dedy/Bk(m,y)dedy> o (10)

The values of this coefficient are presented int the Table; these agree with the results of
visual analysis, i.e. it is larger for the maps where overlap is evident. Its values for the two
real experiments are close to each other and are larger than those in numerical experiments.
Thus, whereas the overlap coefficient might be a useful diagnostic quantity in principle, it
is hardly suitable to reliably distinguish between the two mechanisms.

Lissajous figures. As we already mentioned, closeness of the ratio of the domain fre-
quencies to that of two small integers could be a sign of frequency division, but is not very
practical due to the limited length of experimental series and instability of experimental



frequencies, seen as large width of the experimental spectra. A classical way to distinguish
between commensurate and incommensurate frequency ratios is the Lissajous curve, i.e.
the graph of the two signals where the x coordinate is one signal and y coordinate is the
other signal. This method, unlike simple numerical comparison of mean frequencies, has
the additional advantage that it allows for variations in the signals frequencies as long as
these are synchronous. Such variations may widen up the spectra. But the Lissajous fig-
ure only monitors the dependence of one signal on the other, and if the frequencies change
synchronously then, ideally, the Lissajous figure does not change at all, or realistically,
changes only slightly.

Lissajous curves for the numerical experiments described above are presented in Fig. 12.

This was done with filtered signals, computed using forward and inverse Fourier trans-
forms as

us(a,y,0) = Re (fl [( v.1) ij(ﬁ]) . (1)

where u(z,u, f) is the time-Fourier image (6) of the original signal u(z,y,t), and Wj,
j = 1,2 are the frequency windows (8).

These Lissajous figures show a clear distinction between the commensurate, (b,d) and
incommensurate, (a,c) cases. Disregarding a few loops corresponding to the transient in
the beginning of the numerical experiment, panel (b) shows a bold figure which makes
2 up/down motions, e.g. two tops and two bottoms, per one horizontal motion, thus
showing 2:1 commensurate frequencies. On panel (d), the transient is more pronounced,
so we emphasise the main Lissajous figure showing one complete loop of it with filled
circles. This figure has three maxima and minima in the vertical direction vs two maxima
and minima in the horizontal direction, thus demonstrating frequency ration 3:2. The
panels (a) and (c) do not have such structures and thus demonstrate independent signals.

The Lissajous figures for the tissue experiments shown on Figs. 2 and 3 could not be
interpreted with such certainty, as their shapes were apparently smeared out by experimen-
tal noise and/or some non-stationary processes in the preparation, which was impossible
to establish due to the shortness of the experimental series.

This approach, however, can be quite useful if the experimental data are obtained for
a considerably longer time. This is illustrated for the experiment shown on Fig. 4. Figure
13 shows Lissajous figures of signals recorded at the three points A, B, and C in Fig. 4
chosen in three different domains. In this case, the synchronous character of these signals
is evident. This figure also illustrates the necessity of the filtering the electrograms, as
described in section 2: without such filtering, the synchrony would not be seen. To ensure
that this synchrony is not an artifact of the filtering, we plotted similar figures for signals
of exactly the same spectra but with randomised phases of the Fourier coefficients. These
randomised Lissajous figures are also shown on Fig. 13. They look quite erratic. This
proves that the true filtered data show genuine dependence, not reducible to their spectral
properties only, and therefore, not due to the filtering. Thus, we can conclude that in this
particular experiment, there probably was only one source, with frequency of 9.6 Hz, which
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was divided in the ratio 2 : 3 and 1 : 2 in different parts of the preparation.

4 Discussion

Ventricular fibrillation is believed to be produced by re-entrant wave sources, where a single
re-entrant source that generates spiral waves in thin, effectively two dimensional tissue, and
scroll waves in thicker, three dimensional tissue, breaks down to generate new re-entrant
sources. The observed surface patterns of excitation have been interpreted in qualitative
terms as the surface manifestations of three-dimensional scroll waves within the ventricular
wall [Biktashev, Holden, Mironov, Pertsov & Zaitsev 1998, Biktashev et al. 1999q]. During
the course of fibrillation, the number of re-entrant sources increases with time, to fluctuate
about some mean. In [Biktashev et al. 1998, Biktashev et al. 1999a] we have shown that the
observed surface patterns of excitation in this preparation can be interpreted in qualitative
terms as the surface manifestations of three-dimensional scroll waves within the ventricular
wall, with the axis of the scroll filaments lying roughly parallel to the heart surfaces.

The domain structure seen in Figures 1, 2 and 9 is only apparent after Fourier trans-
formation of the signals, and illustrates a local spatial order in the surface activity. The
frequency resolution of the Discrete Fourier Transform is limited by the length of the time
series analysed, and since fibrillation n vivo is a short-lived process the ratio of frequen-
cies obtained from different points will always be between integers. However, the common
occurence of simple integer ratios between the dominant frequencies of different domains is
highly suggestive of a frequency division mechanism for the domains. The features of most
of the tissue experiments can be reproduced by a single re-entrant source, with intermit-
tent conduction through regions of spatial inhomogeneity producing frequency division; the
features of all the tissue experiments can be reproduced by a small number of re-entrant
sources and such frequency division. Thus the surface patterns of activity can be repro-
duced by one, or a few, re-entrant sources, combined with heterogeneity. In the tissue
experiments the re-entrant sources will be within the ventricular wall. The ventricular
wall has a laminar structure [LeGrice, Smaill, Chai, Edgar, Gavin & Hunter 1995], and the
connections between neighbouring sheets of ventricular tissue might form the anatomical
sites for the heterogeneity that produces the frequency division.

Implications for defibrillation Understanding the detailed processes occuring during
actual examples of fibrillation is very important for the design of tools for defibrillation.
In particular, the feasibility and realisation of low-voltage defibrillation by feedback driven
resonant drift depends on there being only a small number of re-entrant sources [Biktashev
& Holden 1995]. If there is only one re-entrant source, the problem which of the sources
to control does not occur. If there are several apparent sources, but these are produced by
frequency division from one source, it is necessary to identify that source. For example,
for Fig. 4 it is clear that the feedback controlling its motion the should be based on the
frequency band of the highest frequency component, that of 9.6 Hz.
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Figure 1: Colour-coded spatial distribution of the parameters ¢, and ¢, in numerical ex-
periments. (a) Smooth inhomogeneity, & ~ 1.618, w = 3. Two localised defects seen as
the dark (green) spots are regions of reduced excitability, i.e. high value of €,. (b) Weaker
and sharp, stepwise inhomogeneity, £ ~ 1.414, w = 0. (¢) Colour coding of panels (a)
and (b): the red component is determined by the value of €, and the green component is
determined by the value of ¢,.
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Figure 2: Frequency domains in an experimental polymorphic tachycardia/fibrillation.
Top row: pseudo-ECG E(t) (5), and cumulative power spectrum P(f) (7). Below the
cumulative spectrum: the filtering windows W; (thin lines) and cumulative power spectra
of the filtered signals PW; (thick lines), lower frequency component (red) and higher
frequency component (blue). The colour panel: B;(z,y) (9), the distribution of the power
of the frequency bands through the preparation, blue component shows the power of the
higher frequency and red component shows the power of the lower frequency. The spatial
separation of the colours is the demonstration of the domain structure of the excitation
pattern. Below: records u(,t) and corresponding power spectra 4(, f) at points A, B and
C shown on the frequency domains map. Frequency is in Hz, time is in seconds, vertical
axes are in arbitrary units.
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Figure 3: Another experimental polymorphic tachycardia/fibrillation. Same data format
as in Fig. 2.
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Figure 4: Frequency domain structure in a long-time experimental series with a compli-
cated fibrillatory pattern. Here there are three frequency bands and correspondingly three
domains, shown by red, green and blue; otherwise data format is the same as in Fig. 2.
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Figure 5: Snapshots of a fibrillatory excitation pattern produced by two spiral waves with
incommensurate frequencies, in the numerical experiment. The fast spiral is in the left
part of the medium, the slow spiral is in the right part. Colour coding: the background
is the distribution of the parameters as on Fig. 1; the excitation wave is shown light-blue
upon it. The red arrows show the direction of propagation of the waves. Labels show time
in milliseconds. Parameters: k = 1.618, w = 3, corresponding to panel (a) of Fig. 1. The
thin wave that just entered into the slow right part on panel 1500ms will decay before it
meets the wave of the right spiral.
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Figure 6: Frequency domain organisation of the numerical fibrillatory pattern shown on
Fig. 5. Numerical data processed in the same way as the real experimental data of Figs. 2
and 3.
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Figure 7: Fibrillatory pattern in a numerical experiment with the weaker inhomogeneity,
corresponding to panel (b) of Fig. 1. There are two spiral waves. The faster waves from
the left spiral sometimes penetrate to the right part, perturbing the rotation of the slow
spiral, as shown on the selected sequence of snapshots; but as the right spiral is pinned to
the inhomogeneity, it persists. The slow spiral in the right half existed for 4.2 sec.
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Figure 8: Frequency domain organisation of the pattern of Fig. 5.
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Figure 9: Continuation of the numerical experiment of Fig. 7, 8, after the slow spiral
wave in the right part was annihilated. Now the right part is demonstrating 2:3 frequency
division. The chosen sequence shows one passed wave and one decayed wave. The time
labels are relative to the moment of annihilation of the slow spiral.
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Figure 10: Frequency domain organisation after the annihilation of the slow spiral, corre-
sponding to Fig. 9.
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Figure 11: Profiles of the medium inhomogeneity x(z), and of the amplitudes of frequency
bands along the lower edge, Bj(z,0), for the three numerical experiments.
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Figure 12: Lissajous curves of numerical experiments: (c) Fig. 6, two spirals, (d) 2:1
Wenckebach mechanism in the same model as Fig. 6, (e) Fig. 8, two spirals, and (f)
Fig. 10, 2:3 Wenckebach with a transient. On each graph, the abscissa is record A and
the ordinate is record C of the corresponding filtered experimental or numerical series.
The filled circles on panel (d) are to emphasise the main Lissajous figure compared to the
deviations from it due to the transient.
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Figure 13: Lissajous figures of the recordings A, B and C of Fig. 4. Left column: raw data.
Middle column: filtered data. Right column: filtered data with randomised phases.
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