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NL3451 Vortex dynamics in excitable media

Statics Vortices in excitable media (see Excitability) are spiral waves (see) in two

spatial dimensions and scroll waves in three spatial dimensions. They are described by

reaction diffusion systems of equations,

∂tu = f(u) + D∇2u + εh, u, f ,h ∈ R`, D ∈ R`×`, ` ≥ 2. (1)

where u(~r, t) = (u1, u2, . . .)
T is a column-vector of the reagent concentrations, f(u) of

the reaction rates, D is the matrix of diffusion coefficients, εh(u, ~r, t) is some small

perturbation and ~r ∈ R2 or R3 is the vector of coordinates on the plane or in space.

In the unbounded two-dimensional medium with εh = 0, a spiral wave solution

rotating with angular velocity ω has the form

u = U(~r, t) = U(ρ(~r), ϑ(~r) + ωt) ≈ P(ρ(~r)− λ

2π
(ϑ(~r) + ωt))

∣∣∣∣
ρ→+∞

, (2)

where ρ(~r) and ϑ(~r) are the polar coordinates corresponding to the Cartesian coordinates

~r. P(ξ;ω, λ) is a periodic wave solution with frequency ω and spatial period λ, so the

ρ → +∞ asymptotic means that isolines are approximately Archimedian spirals with

pitch λ. Solutions (2) are typically possible for isolated, most often unique, values of ω

and corresponding λ.

Most of the facts in this article apply not only to excitable systems, but also to

self-oscillatory (see Complex Ginzburg Landau equation, Oregonator) media.

Note that system (1) with εh = 0 is invariant with respect to the Euclidean group

of motions of the plane {~r}. Solution (2) is a “relative equilibrium”, i.e. the states of

the wave at all moments of time are equivalent to each other up to a Euclidean motion,

namely, a rotation around the origin. Due to the symmetry, if (2) is a solution, then

Ũ = U(ρ(~r − ~R�), ϑ(~r − ~R�) + ωt− Φ�), (3)

is another solution for any constant displacement vector ~R� = (X�, Y�)T and initial

rotation phase Φ�. Thus we have a three-dimensional manifold, parametrised by

coordinates X�, Y�,Φ�, of spiral wave solutions neutrally stable with respect to each

other.

In this article, by “dynamics” of the vortices we understand any deviation of the

solutions from the stationary rotation (2).

Meander is a non-stationary rotation of a spiral wave, accompanied by constant change

of its shape. It is convenient to describe in terms of the spiral tip, which can be defined

e.g. as an intersection of selected isolines of two components of the nonlinear field u,

uj1(X•, Y•, t) = v1, uj2(X•, Y•, t) = v2, Φ• = arg(∂x+i∂y)uj3(X•, Y•, t),(4)

j1 6= j2, where X•(t), Y•(t) are the coordinates of the tip and Φ•(t) is its orientation

angle. Typically, a spiral wave in a given system develops the same kind of meander
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Figure 1. Typical meander patterns. Shown are snapshots of the excitation field with
pieces of preceding tip paths superimposed. (a) Stationary (rigid) rotation: equilibrium
in the base system (5). (b) Classical biperiodic “flower” meander: limit cycle in the
base system (5). (c) Quasi-periodic hypermeander: invariant torus in the base system
(5). (d) Pseudo-random walk hypermeander: chaotic attractor in the base system (5)
(only the tip path shown).

pattern X•(t), Y•(t) independent on the initial conditions. Change of parameters in

the same system cause change of the meander pattern, and types of patterns can be

qualitatively similar in very different excitable media models.

Possible types of meander can be classified using an orbit manifold decomposition

of (1) by the Euclidean group. Evolution of the shape of the wave can be described in

coordinates (ξ, η) in a moving frame of reference attached to the spiral tip,

∂tu = D(∂2
ξ + ∂2

η)u + [C1(t)∂ξ + C2(t)∂η + ω(t) (ξ∂η − η∂ξ)] u + f(u)

uj1,2(0, 0) = 0, ∂ηuj3 = 0, (5)

and the movement of the tip is described by ordinary differential equations

dΦ•
dt

= ω(t),
dX•
dt

+ i
dY•
dt

= (C1(t) + iC2(t))eiΦ• . (6)

Equations (5) define a dynamic system with the phase space {(u(ξ, η), C1, C2, ω)},
devoid of the Euclidean symmetry of the original system (1). Knowing the attractor

in (5), one can deduce the properties of the meander patterns by integrating the ODE

system (6) (Figure 1)

Forced drift Another kind of deviation from (2) is drift of spirals due to perturbations

εh 6= 0, “forces”. As solutions of the family (3) are neutrally stable with respect to each

other, a small perturbation of a spiral wave caused by an εh limited in time, will die

out, but will typically result in a small change in the spiral wave coordinates X�, Y�
and Φ�.

If similar perturbations are applied repeatedly with a period equal to the period

of the spiral, then small shifts of X� and Y� accumulate, which is the resonant drift.

Another type of slow drift is inhomogeneity-induced drift occurring when εh depends

explicitly on spatial coordinates, i.e. medium properties are slightly inhomogeneous

(Figure 2(b)). In the first order of perturbation theory, this is equivalent to a time-

dependent perturbation synchronised with the spiral rotation and is therefore always
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Figure 2. Different drifts of spiral waves. Shown are snapshots of the excitation
field with pieces of preceding tip paths superimposed. The right half of the medium is
slightly “stronger” than the left half; (a)(c) are consecutive stages of the same numeric
experiment. (a) Two close oppositely charged spirals attract with each other and form
a pair drifting in SE direction. (b) The spirals have reached the inhomogeneity and
are being driven apart by it. (c) The spirals have reached the medium boundary and
now drift along it. (d) In a bigger medium: the right spiral has subdued the left spiral
into an induced drift.

resonant. A third type of drift occurs if the medium is bounded, and the boundary

influence on the spiral wave is not negligible. Although a boundary is not a slight

perturbation, if the boundary conditions are passive e.g. non-flux, then their effect

on the spiral wave can be small and similar to that of small spatial inhomogeneity

(Figure 2(c)). Other kinds of perturbations breaking the Euclidean symmetry of (1)

can also cause drift.

Being a first-order effect, the slow drift of a spiral due to small forces of different

types obeys a superposition principle. It leads to motion equations

∂t(X�+iY�) = C(X�, Y�)+v(X�, Y�)eiΘ, ∂tΘ = Ω(t)−ω(X�, Y�),(7)

where C(X�, Y�) is the velocity of the inhomogeneity and boundary induced drift,

v(X�, Y�) the velocity of the resonant drift, Θ is the phase difference between the spiral

and the resonant forcing, Ω(t) is the perturbation frequency and ω(X�, Y�) is the own

spiral angular frequency possibly depending on the current spiral location.

These are motion equation for rigidly rotating spirals, and X� and Y� are sliding

period averages of X•, Y•. Dynamics of forced meandering spirals are more complicated

because of possible resonances.

Spiral waves as particles Motion equation (7) are obtained by summation of the

effects of elementary perturbations of different modalities localised in different sites

and occurring at different moments of time, onto the spiral’s location and phase.

These elementary responses are described by response functions, which are critical

eigenfunctions of the adjoint linearised operator. A remarkable property of the response

function is their localisation in the vicinity of the spiral core (see Figure 3). The spiral

will only drift if the perturbation is applied not too far from its core.

Thus a paradox: although a spiral wave appears as a significantly non-local process,
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Figure 3. A spiral wave solution (a) and its temporal (b) and spatial (c,d) response
functions, as density plots. Monotone gray periphery on (b–d) corresponds to zero.
Thus the spiral wave is a non-local process, but its response functions are well localized.

involving in its rhythm all available excitable medium, it behaves as a localised, particle-

like object in its response to perturbations.

A spatial response function, defining the proportionality between drift velocity and

inhomogeneity magnitude, typically has a scalar (drift along the parameter gradient or

towards the boundary) and pseudo-scalar (across the parameter gradient or along the

boundary) components; the sign of the latter depends on the direction of the spiral

rotation.

Bending and twisting of scroll waves As a scroll wave is a three-dimensional

analogue of a spiral wave, all comments about spiral wave dynamics remain valid for

the scrolls. However, there are new aspects due to the third dimension. The simplest

3D vortex is the straight scroll wave, a spiral wave continued unchanged in the third

dimension. The spiral tip, a point in the plane, becomes the edge of the scroll, a line

in space, and the spiral core, a circle in the plane, becomes the scroll filament, a tube.

The term filament sometimes also denotes the centre line of the tube filament.

More nontrivial regimes are scrolls with bended filaments (Figure 4(a)), and with

rotation phase varying the filament, i.e. twisted scrolls Figure 4(b)). Both bending and

twist of scrolls are factors of their dynamics. A vortex ring will collapse or expand, and

at the same time drift along its symmetry axis; and twisted vortex will usually spread

the twist evenly along its filament, or if possible untwist.

The asymptotic motion equation for the scroll waves can be derived using response

functions. If the twist is not too strong, then the dynamics of the scroll due to bending

and due to twist are decoupled. The motion equation of the filament is

∂t ~Rf = b2∂
2
s
~Rf + c3

[
∂s ~Rf × ∂2

s
~Rf

]
, (8)

where ~Rf = ~Rf (p, t) ∈ R3 is position of the filament as function of a length parameter

p and time, and ∂s is arclength differentiation, ∂s ≡
∣∣∣∂p ~Rf

∣∣∣−1

∂p. At b2 = 0, equation

(8) is completely integrable, in particular, the total length of the filament is conserved.

Otherwise, the total filament length decreases if b2 > 0 and increases if b2 < 0; in the

latter case a straight filament is unstable.
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Figure 4. Scroll waves. (a) Scroll with a curved filament. (b) Twisted scroll with
straight filament. (c) Scroll with a knotted filament. (d) “Turbulent regime”: many
scrolls developed from one via negative filament tension multiplication mechanism. On
panels (c) and (d), part of the wavefronts is cut out, to make the filaments (white lines)
visible.

If twist is high, it changes the filament tension, and may make it negative. This

causes an instability of the straight filament shape, leading to “sproing”, a sudden

transition from a strongly twisted scroll with straight filament to a less twisted scroll

with a helical filament.

Competition and interaction: Divide et impera Normally, two colliding

excitation waves completely annihilate each other. Thus, if there are many periodic

sources of waves, e.g. vortices, then the medium splits to domains, or regions of

influence, each domain receiving waves from its source. The domains are separated by

“shock structures” where the waves collide (see Figure 2(a–c)).

The domain boundaries work like non-flux boundaries. Thus, two spiral waves can

be said to interact with each other, i.e. cause each other’s drift and frequency shift,

whereas each of them actually interacts with the boundary between their domains. Such

interaction between spirals may lead to formation of linked pairs (see Figure 2(a)).

Different scroll filaments or different parts of the same filament also can interact

with each other. If this interaction is repulsive, it may compensate positive tension

normally causing closed filaments to contract and collapse; that may lead to stable

“particle-like” 3D scrolls with compact filaments (see Figure 4(c)).

Induced drift If colliding waves annihilate 1:1, continuity of phase applies. If two

vortices have different frequencies, e.g. because of a spatial inhomogeneity of the

medium, then by continuity of phase, the domain boundary between them moves towards

the slower vortex. When it reaches its core, the slower vortex looses its identity as

such and turns into a dislocation in the wave field emitted by the faster vortex. This

dislocation, appearing as a free end of an excitation wave, periodically re-joins from one

wave to another with some overall drift, depending on the frequency and direction of

the incident waves (see Figure 2(d)). If the incident wave packet ceases, the dislocation

can develop back into a vortex.
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As a dislocation is very different from a vortex, this induced drift is an example of

hard, non-perturbative dynamics.

Hard dynamics: births, deaths and multiplication of vortices Another kind

of hard dynamics is complete elimination of a vortex. This may happen if the wave

propagation around the vortex becomes impossible, e.g. if the vortex has been

driven too close to a medium boundary. Alternatively, two spiral waves with opposite

topological charges may annihilate if driven too close to each other. For a scroll wave,

annihilation may happen to a piece of its filament, which then appears as splitting of a

scroll wave into two.

Birth of a vortex may happen as a result of a temporary local block of excitation

propagation. Unless this happens near the medium boundary, this means birth of a

pair of oppositely rotating spirals in the plane, or a scroll with a closed filament around

the perimeter of the propagation block. The block may happen as a result of external

forcing or special initial conditions, or develop as a result of an instability of an existing

vortex. Such instability this can underlie a chain reaction of the vortex multiplication,

which may lead to a “turbulence” of excitation vortices, a spatio-temporal chaotic state

where generation of new vortices is balanced by their annihilation when they get close

to each other due to overcrowding.

There have been identified quite a few mechanisms of such instabilities, include

mechanisms working in two or three dimensions, such as Eckhaus instability/alternans,

zigzag/lateral instability (see Wave stability and instability) or imposed mechanical

movement of the medium, and those only possible in three dimensions, e.g. instability

due to the negative “tension” b2 of the vortex filament (see Figure 4(d)), or caused

by spatially inhomogeneous anisotropy of the medium such as that observed heart

ventricular muscle. Some of these types of instabilities may be responsible for the

phenomenon of fibrillation of the heart (see Cardiac arrhythmias).

Vadim N. Biktashev

See also Reaction diffusion systems; Spiral waves; Scroll waves.
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