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Abstract

Dynamics of spiral waves in perturbed, e.g. slightly inhomogeneous or subject to a small
periodic external force, two-dimensional autowave media can be described asymptotically in
terms of Aristotelean dynamics, so that the velocities of the spiral wave drift in space and
time are proportional to the forces caused by the perturbation. The forces are defined as a
convolution of the perturbation with the spirals Response Functions, which are eigenfunctions
of the adjoint linearised problem. In this paper we find numerically the Response Functions
of a spiral wave solution in the classic excitable FitzHugh-Nagumo model, and show that they
are effectively localised in the vicinity of the spiral core.
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1 Introduction

Autowaves are nonlinear waves observed in spatially distributed media of physical, chemical, and
biological nature, where wave propagation is supported by a source of energy stored in the medium.
In a two-dimensional autowave medium there may exist autowave vortices appearing as rotating
spiral waves and thus acting as sources of periodic waves. Their existence is not due to singularities
in the medium but is determined only by development from initial conditions. In a slightly
perturbed medium, e.g. spatially inhomogeneous or subject to time-dependent external forcing, a
spiral wave drifts, i.e. its core location and frequency change with time (Biktashev 2005, Biktasheva
2000, Biktasheva, Elkin & Biktashev 1999, Fast & Pertsov 1990, Pertsov & Ermakova 1988).

While the hypothesis of re-entry of excitation underlying cardiac arrhythmias belongs to the
beginning of the twentieth century, e.g. (Mines 1913), the first direct experimental observation of
spiral waves was reported in 1960s in a chemical oscillatory medium, the Belousov-Zhabotinsky
(BZ) reaction (Zhabotinsky & Zaikin 1971). That triggered a huge amount of interest and activity
in the area. Soon after that spiral waves were observed in a rabbit ventricular tissue (Allessie, Bonk
& Schopman 1973), and later in a variety of other spatially distributed active systems: in chick
retina (Gorelova & Bures 1983), colonies of social amoebae (Alcantara & Monk 1974), cytoplasm of
single oöcytes (Lechleiter, Girard, Peralta & Clapham 1991), in the reaction of catalytic oxidation
of carbon oxide (Jakubith, Rotermund, Engel, von Oertzen & Ertl 1990), rusting of the steel
surface in acid with the air (Agladze & Steinbock 2000), in liquid crystal (Frisch, Rica, Coullet
& Gilli 1994) and laser (Yu, Lu & Harrison 1999) systems. On a larger scale, there are waves of
infectious diseases travelling through biological populations (Carey, Giles & Mclean 1978, Murray,
Stanley & Brown 1986), and spiral galaxies (Madore & Freedman 1987, Schulman & Seiden 1986).
Yet for experimental studies of spiral waves dynamics the BZ reaction medium remains the most
favourite.

A common feature of all these phenomena is that they can be mathematically approximated
by “reaction-diffusion” partial differential equations,

∂tu = f(u) + D∇2u, u, f ∈ R`, D ∈ R`×`, ` ≥ 2, (1)

where u(~r, t) is a column-vector of the reagent concentrations, f(u) of the reaction rates, D is
the matrix of diffusion coefficients, and ~r ∈ R2 is the vector of coordinates on the plane. Since
these equations are essentially nonlinear, their spiral wave solutions in general case are studied
numerically. Thus, given the complexity of the problem, the current understanding of spiral waves
is mostly empirical and gives neither possibility for systematic quantitative predictions of the drift,
nor general understanding on how to control the smooth dynamics of autowave vortices, which is
important for many practical applications. Effective control of re-entry in excitable cardiac tissue
will provide a solution to dangerous arrhythmias and fatal fibrillation.

As a model self-organizing structure, spiral wave demonstrates a remarkable stability, just
changing its rotational frequency and core location, i.e. drifting, in response to small pertur-
bations of the medium. As experiments with BZ reaction medium (Agladze 2000) and computer
simulations showed spiral waves insensitivity to distant events, it was conjectured (Biktashev 1989)
that the RFs must decay quickly with distance from the spiral wave core, i.e. spiral waves look
like essentially non-localized regimes but behave as effectively localized particles (Biktasheva &
Biktashev 2003). The asymptotical theory of the spiral wave drift, proposed in (Keener 1988, Bik-
tashev & Holden 1995) and shortly described below, is based on the idea of summation of elemen-
tary responses of the spiral wave core position and rotation phase to elementary perturbations of
different modalities and at different times and places. This is mathematically expressed in terms
of the spiral wave response functions (RFs) equal to zero in the region where the spiral wave is
insensitive to small perturbations.

The response functions have been explicitly found with good quantitative accuracy for spi-
ral waves in oscillatory medium described by the Complex Ginzburg–Landau Equation (CGLE)
(Biktasheva, Elkin & Biktashev 1998, Biktasheva & Biktashev 2001, Biktasheva & Biktashev
2003). It was shown that the response functions of vortices in the CGLE medium are essentially
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nonzero only in the vicinity of the core for all sets of model parameters stable spiral wave solu-
tion exists for (Biktasheva & Biktashev 2001, Biktasheva & Biktashev 2003), which explains the
localised sensitivity of spiral waves to small perturbations. Most important is the RFs ability to
make quantitative prediction of spiral wave drift velocity due to small perturbations of any nature.

Thus, a spiral wave organise the medium dividing it into two unequal parts, the core, events
in which are translated throughout the medium, and the periphery, obeying the signals from the
core. It creates a macroscopic wave-particle dualism as an emergent property of the nonlinear
field, when the regime appears as a non-localized object filling up all available space, but behaves
as a localized object, only sensitive to perturbations affecting its core.

Another class of media supporting spiral waves are excitable media. These are even of more
interest than the oscillatory ones, due to their role in the cardiac, smooth muscle research and
neuroscience. In order to check localisation properties of the response functions of vortices in
excitable media, the RFs need to be found explicitly for a particular excitable model. Hamm
(Hamm 1997) tried to find the response functions for the Barkley model of an excitable system.
The obtained response functions were effectively localised in the vicinity of the spiral wave core,
but the accuracy of the solution was not sufficient to allow it to be used for prediction of the
velocity of the spiral wave drift. A better accuracy for the same model has been achieved later
by Henry and Hakim (Henry & Hakim 2002), who used the response functions for the analysis of
scroll wave dynamics.

In this paper we suggest a new algorithm of calculating response functions, and use it find the
response functions for a spiral wave solution in the FitzHugh-Nagumo (FHN) model (FitzHugh
1961, Nagumo, Arimoto & Yoshizawa 1962) and show that the RFs are effectively localized in
the vicinity of the spiral wave core. The model parameters were selected to produce an excitable
medium with a rigidly rotating spiral wave. The method of computation is based on the idea of
a moving frame of reference, whose movement is controlled by the spiral wave solution calculated
in that frame (Biktashev, Holden & Nikolaev 1996).

The FitzHugh-Nagumo model is historically the first simplified model of biological excitation.
It has been studied and used as a classic model for computer simulation of spiral wave dynamics
for decades, for it captures the key phenomena of the excitable media while consisting of just two
partial differential equations, which makes the FHN model easy to study both numerically and
analytically,

∂tu1 = ε−1
(
u1 − u3

1/3− u2

)
+ D1∇2u1

∂tu2 = ε (u1 + β − γu2) (2)

where β, γ, ε and D1 are parameters.
In the FHN model the variable u1 is the fast variable, corresponding to the voltage in biophysi-

cally realistic models of membrane action potential, and u2 does not have any specific physiological
interpretation, just plays the role of the slow “recovery” variable. The cubic nonlinearity of the
system results in the simple N-shape nullcline on the phase portrait and explains the key aspects
of excitability.

Existence of spiral wave solutions in the FHN model, their characteristics and behaviour de-
pending on the model parameters have been extensively studied by many authors. The classic
review on the subject is the Winfree article (Winfree 1991).

2 Asymptotic theory of spiral waves dynamics

2.1 Initial definitions

Consider a slightly perturbed “reaction-diffusion” system (1) in two spatial dimensions,

∂tu = f(u) + D∇2u + εh, u, f ,h ∈ R`, D ∈ R`×`, ` ≥ 2, (3)

where εh(u, ~r, t) is a small perturbation, and ~r ∈ R2.
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We assume that unperturbed system (1) has solutions in the form of steadily rotating spiral
waves,

u = U(~r, t) = Ũ(ρ(~r), ϑ(~r) + ωt). (4)

Here
θ = ϑ(~r) + ωt

is a polar angle in the “corotating” frame of reference, which is rigidly rotating with the angular
velocity ω, while ρ(~r) and ϑ(~r) are the polar coordinates in the original (laboratory) frame of
reference.

The unperturbed reaction-diffusion system (1), or (3) with εh = 0, has an obvious but impor-
tant symmetry: it is invariant with respect to the Euclidean group of motions of the plane {~r}.
Since solution (4) at any fixed t is not invariant against this group, the group “multiplies” this
solution. That is,

U′(~r, t) = Ũ(ρ(~r − ~R), ϑ(~r − ~R) + Θ), (5)

where Θ = ωt − Φ, is another solution for any constant displacement vector ~R = (X, Y )† and
initial rotation phase Φ.

Thus, if the unperturbed system has one spiral wave solution, then it has a whole three-
dimensional manifold of such solutions, that are relatively stable with respect to the shift along
the manifold.

2.2 Finite-dimensional analogy

The asymptotic theory of drift of spiral waves (Biktashev & Holden 1995) was proposed based on
the analogy with finite-dimension problem of perturbation of an invariant manifold (see Fig. 1).
If a vector field f(u) in an n-dimensional phase space has an invariant m-dimensional manifold
U(a), m < n, stable as a whole, then small perturbation of this vector field will, under certain
conditions, preserve the invariant manifold, just slightly displacing it, U 7→ U′. Another effect
of the perturbation is that the vector field on the shifted manifold A′(a) will be slightly different
from the original one, A(a). In practice, the existence of the original invariant manifold U(a)
could be due to a symmetry group. In that case, the flow on that manifold could be in some sense
degenerate, and then the perturbation will remove this degeneracy.

To compare the two vector fields, on the original manifold and on the perturbed, we need to
relate their coordinate systems {a}. A natural way is to require that the vector connecting two
corresponding points U(a) and U′(a), would not have a component along the manifold, i.e. along
any of the tangent vectors Vj(a) = ∂U/∂aj . In other words, it should be orthogonal,

〈Wj(a),U′(a)−U(a)〉 = 0, j = 1 . . .m, (6)

to the projectors Wj(a) onto the tangent vectors Vj(a):

〈Wj(a),Vk(a)〉 = δj,k. (7)

These projectors are eigenvectors of the adjoint linearized matrix (∂f/∂u)T (a). The two effects of
the perturbation are produced by its two components, along and across the manifold, as determined
by the projectors Wj .

Thus, if the manifold comprises only non-moving points, the tangent component will determine
the slow drift along the manifold.

If this finite-dimensional scheme can be applied to spiral waves, the role of the vector field is
played by the reaction-diffusion system, so the phase space is a functional space. The invariant
manifold is the three-dimensional manifold of spiral waves and is due to a symmetry group, the
Euclidean group of the plane. The coordinates on the manifold are ~R ∈ R2, the centre of rotation
of the spiral wave, and Θ, its rotation angle. The flow on the manifold is degenerate, as it consists
of relatively stable periodic orbits, which correspond to steady rotation of spiral waves around
fixed centres:

Θ = ωt− Φ, Φ = const; ~R = const. (8)
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Figure 1: Perturbation of an invariant manifold. Vector field f(u) in phase space with coordinates
u has an invariant manifold U with coordinates a, and vector field A on the manifold. Perturbed
vector field f ′(u) has a slightly different invariant manifold, U′, and a slightly different vector field
A′ on it. Original objects are shown by solid lines, and perturbed objects by dashed lines.
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The perturbation removes this degeneracy, and we observe the drift of the spirals. By analogy
with the finite-dimensional case, we expect that the flow on the manifold of spiral waves will be
described by

∂tΘ = ω + εH0(~R,Θ), ∂t
~R = ε ~H1(~R,Θ), (9)

where H0 and ~H1 are “projections” of the perturbation onto the tangent space of the manifold
U(a). The right-hand sides of (9) depend on the phase Θ. On the time scale ε−1 this phase
oscillates fast; averaging over these oscillations gives motion equations of the spiral waves,

∂tΘ = ω + εH0(~R) + O
(
ε2

)
, ∂t

~R = ε ~H1(~R) + O
(
ε2

)
. (10)

2.3 Response functions

Thus, the finite-dimensional analogy suggests that the dynamics of spiral waves (perhaps like that
of many other dissipative structures) is described by “Aristotelean” mechanics, when the velocity
of motion is proportional to the applied perturbation. The right-hand sides in the equations,
the “forces”, are projections of the perturbation onto the corresponding tangent space of the
invariant manifold U(a). This tangent space is a linear space, the span of the Goldstone modes,
corresponding to the translations along the symmetry group, at ~R = 0 and Θ = 0,

V0 = −ω−1∂tU(~r, t)|t=0 = −∂θŨ(ρ(~r), θ(~r)),

V±1 = −1
2
e∓iωt (∂x ∓ i∂y)U(~r, t)|t=0 = −1

2
(∂x̃ ∓ i∂ỹ) Ũ(~r, t) = −1

2
e∓iθ

(
∂ρ ∓ iρ−1∂θ

)
Ũ(ρ(~r), θ(~r)).

(11)

Here mode V0 corresponds to the shift in time (or to what is the same, rotation in space), and
V1 corresponds to the shift in space. Tildes in (11) designate the corotating frame of reference,
so x̃, ỹ are Cartesian coordinates there and Ũ is the unperturbed spiral wave solution, which is
stationary in that frame of reference. We omit the tildes henceforth for brevity.

The Goldstone modes are critical eigenfunctions

L̃Vn = iωnVn, n = 0,±1 (12)

of the linearized operator L̃:

L̃ = D∇2 − ω∂θ +
(

∂f
∂u

)∣∣∣∣
u=U(~r)

. (13)

Here again the tilde at L̃ reminds that the linearized operator is considered in the co-rotating
frame of reference where it does not depend on time. The additive “−ω∂θ” appears here due to
rotation with respect to the original system of coordinates.

Thus, for each particular point at the manifold, the projection operators map the functional
space of the perturbations into the three-dimensional tangent space, and are thus just three func-
tionals. Since all points of our manifold are equivalent to each other up to a Euclidean transfor-
mation of the plane, it is enough to know the projection functionals at one point, i.e. just for one
location of the spiral wave. This symmetry consideration shows that if the functionals Hn are
written as integrals, they should have the form:

Hn(t) = einΦ

t+π/ω∮
t−π/ω

ωdτ

2π

∫∫
R2

d2~r e−inωτ
〈
Wn

(
ρ(~r − ~R), ϑ(~r − ~R) + ωτ − Φ

)
,h

〉
, (14)

where

h = h(U(~r, τ), ~r, τ),
~R = ~R(t),
Φ = Φ(t),

H1 = ( ~H1)x + i( ~H1)y. (15)
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The kernels Wn of the integrals (14) are eigenfunctions

L̃+Wn = −iωnWn, n = 0,±1. (16)

of the adjoint linearized operator considered in the co-rotating frame of reference:

L̃+ = D∇2 + ω∂θ +
(

∂f
∂u

)+
∣∣∣∣∣
u=U(~r)

. (17)

As in the finite dimensional example, we assume here that W are normalized in such a way that
(7) is satisfied.

The functions Wn are called the response functions (RFs) of the spiral wave. Folloring the
analogy with the Goldstone modes, W0 defines the shift in time (or the turning in space), and
W1 defines the shift in space. So W0 is called the temporal or rotation RF, and W1 is called the
spatial or shift RF.

3 Mathematical formulation of the problem for the FitzHugh-
Nagumo model

The problems (1), (4) and (16)–(17) for the FitzHugh-Nagumo system (2) take the form

ε−1
(
U1 − U3

1 /3− U2

)
+ (D1∇2 − ω∂θ)U1 = 0,

ε (U1 + β − γU2)− ω∂θ)U2 = 0, (18)(
ε−1(1− U2

1 ) + ω(in + ∂θ) + D1∇2
)
Wn

1 + εWn
2 = 0,

−ε−1Wn
1 + (−εγ + ω(in + ∂θ))Wn

2 = 0, n = 0, 1 (19)

for the unperturbed solution Uj , its angular velocity ω and the RFs Wn
j , n = 0, 1, j = 1, 2,

W 0
1,2 ∈ R, W 1

1,2 ∈ C . System (18)–(19) should be supplied with normalisation and boundary
conditions, and discretized. For discretisation we used rectangular grids in Cartesian coordinates.

3.1 Spiral wave problem

Since the Response Functions are the solution of the adjoint linearized problem in the system of
reference that is rotating with the angular velocity of the spiral itself, we need first to find the
spiral wave solution in this system of reference, i.e. we need to find the spiral wave solution together
with its rotation angular velocity. So we have a nonlinear eigenvalue together with a boundary
value problem.

We solved this problem numerically on a square domain (x, y) ∈ S = [−L/2, L/2]×[−L/2, L/2],
for different L from 25 to 50. First, the spiral wave was initiated by solving a Cauchy problem
for (2) for initial conditions u(x, y, 0) = 0.7 sign(x), v(x, y, 0) = 0.6 sign(y). When a stationary
rotating spiral wave was established, typically within time interval t ∈ [0, T ], T ∼ 40, the resulting
distribution u(x, y, T ), v(x, y, T ) was used as an initial condition for the following system:

∂tu1 = ε−1
(
u1 − u3

1/3− u2

)
+ D1∇2u1 +

∑
j=x,y,θ

Cj∂ju1,

∂tu2 = ε (u1 + β − γu2) +
∑

j=x,y,θ

Cj∂ju2,

Ċj = −qjCj −
pj

A

∫
D

(∂tu1∂ju1 + ∂tu2∂ju2) dxdy, j = x, y, θ, (20)

where ∂θ = x∂y − y∂x, D = {(x, y) : x2 + y2 ≤ (L/2)2}, A = π(L/2)2, qθ = 0, and positive
coefficients px,y,θ and qx,y have been selected by experimentation. Informally, the idea of this
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system, adopted with appropriate modification from (Biktashev et al. 1996), is that the first two
equations are system (2) in a frame of reference moving with speeds −Cx,y,θ in the x, y and θ
directions, and the integrals in the evolution equations for Cx,y,θ are “detectors of movement” in
those directions. So the movement of the frame of reference is adjusted in such a way so as to make
the solution in this frame of reference is stationary. On the formal level, it is straightforward to see
that if solution of (20) converges to a stationary state, then u1,2 will satisfy (18) with ω = −Cθ,
neglecting the boundary conditions.

We considered the problem (20) for the following set of parameters: D1 = 1.0, ε = 0.30,
β = 0.75, γ = 0.50, which correspond to a rigidly rotating spiral wave solution (Winfree 1991).
Calculations were performed using the explicit Euler method in time, central differences in space,
with fixed time step from ∆t = 3 · 10−3 down to ∆t = 5 · 10−4 and space step ∆x = 0.5, with
Neuman boundary conditions on a rectangular grid in Cartesian coordinates: ∂xu1(±L/2, y) =
∂yu1(x,±L/2) = 0. The frame of reference adjustment parameters were chosen qx,y = 1, px,y = 7
and pθ = 5.

The result is a stable, stationary spiral (demonstrated on Fig. 2) in the system of reference,
which rotates with the angular velocity ω ≈ 0.32 clockwise. Having this angular velocity and the
spiral wave solution, it is possible to find the corresponding response functions.

3.2 The response functions problem

The response functions W were calculated simultaneously with finding the spiral wave solution
for (20), by solving the adjoint linearized problems

∂tw1 = ε−1(1− u2
1)w1 + εw2 + D∇2w1 −

∑
j=x,y,θ

Cj∂jw1,

∂tw2 = −ε−1w1 − εγw2 −
∑

j=x,y,θ

Cj∂jw2. (21)

As (u1, u2, C1, C2, C3), solution of (20), converges to (U1, U2, 0, 0,−ω), solution of (19), then w =
(w1, w2)T , a typical solution of (21), is expected to converge to

w(x, y, t) ≈ c0W0(x, y) + Re
(
c1W1(x, y)e−iωt

)
, (22)

where c0 ∈ R and c1 ∈ C, ideally, are constants depending on initial conditions, but in real calcu-
lations can slowly change in time due to numerical approximation. To obtain W0,1, we calculate
three solutions w(m), m = 1, 2, 3, to (21) with three linearly independent initial conditions. As-
suming that, after a sufficiently long time, these satisfy (22), we can take their appropriate linear
combinations to satisfy (7). So for a given triplet w(m), m = 1, 2, 3, we are looking for constants
Pj,m, j = θ, x, y, m = 1, 2, 3, so that

Wj =
3∑

m=1

Pj,mw(m)

would satisfy biorthogonality condition (7) with respect to the set Vk = ∂kU, k = θ, x, y. This
requirement implies that

3∑
m=1

Pj,m〈w(m),Uk〉 = δj,k,

i.e. P = (Pj,m) is an inverse to the matrix B = (Bm,k), where Bm,k = 〈w(m),Uk〉 are obtained
by integrating the given solutions of (21) with the derivatives of the solution of the nonlinear
problem. Having thus found Wx,y,θ after integrating (21) for a time interval of certain τ , we used
these Wx,y,θ as three linearly independent initial conditions for (21) for a further time interval of
length τ .

Equation (21) was integrated on the disk (x, y) ∈ D ⊂ S with Dirichlet boundary conditions
w1(x, y) = w2(x, y) = 0, (x, y) ∈ ∂D, which were implemented by setting w1,2(x, y) = 0 for
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Figure 2: Spiral wave solution and the response functions. Parameters: L = 50, ∆x = 0.5,
∆t = 5 · 10−4, Neuman boundary conditions on ∂S for U and Dirichlet boundary conditions on
∂D for W.
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(x, y) ∈ S \ D. We tried τ = 1 and τ = 10 with identical results; the solution obtained by this
procedure converged within time scale of t ∼ 20. As Vk = ∂kU are related to the Goldstone
modes V0,±1 by (11), this gives relationship between functions Wx,y,θ found in this way, with
RFs, in the form W0 = −Wθ and W1 = −(Wx − iWy).

Figure 2 shows the components of the Response Functions obtained in this way. The most
important result is that all components are localized in a close vicinity of the tip of the spiral. It
can also be observed that the amplitude of the second components of the RFs is higher than that
of the first, so controlling movement of the spiral wave via the second component, the inhibitor,
if it is pratically feasible, could be more efficient than via the first component the activator.

The accuracy of the solution has been checked by varying the discretization steps ∆t and ∆x,
the domain size L, boundary conditions (Neuman vs Dirichlet, ∂D vs ∂S). Based on such checks,
we estimate that the accuracy of the solutions is within a few percent. Further improvement of ac-
curacy requires decrease of ∆x while keeping L same or increasing, and due to stability limitations
of the fully explicit Euler time stepping, such improvement is extremely costly if done within the
same numeric scheme, and requires a more advanced scheme, e.g. fully implicit/pseudospectral in
the θ direction.

4 Conclusion

Response functions are very important characteristics of the spiral wave, for they define the phe-
nomenology of the spiral behaviour. Experiments and computer simulations, demonstrating the
spirals insensitivity to distant events, implied that the RFs of vortices must decay quickly with
distance from the core. Such decay will guarantee the convergence of the integrals (14) even for
non-localized perturbations, for example caused by the simultaneous change of the properties of
the whole medium. But the mathematical peculiarity of the idea presuming qualitatively differ-
ent behaviour of eigenfunctions of the linear operator and its adjoint one resulted in a natural
scepticism.

The results obtained in this paper confirm the existence of effectively localized response func-
tions of a spiral wave solution in the classical excitable FitzHugh-Nagumo model, at least for the
particular set of the model parameters corresponding to a rigidly rotating spiral wave.
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