Wavebreaks and self-termination of spiral waves
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Abstract. We describe numerical simulations of spiral waves dynamics
in the computational model of human atrial tissue with the Courtemanche-
Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field
stimulation protocol, with and without preliminary “fatigue” by rapid
stimulation of the model tissue for a long time. In all cases the spiral
wave has finite lifetime and self-terminates. However the mechanism of
self-termination appears to depend on the initiation procedure. Spiral
waves in the “fresh” tissue typically terminate after a few rotations via
dissipation of the excitation front along the whole of its length. The dy-
namics of spiral waves in “tired” tissue is characterized by breakups and
hypermeander, which also typically leads to self-termination but only
after a much longer interval of time. Some features of the observed be-
haviour can not be explained using existing simplified theories of dynamic
instabilities and alternanses.

1 Introduction.

In this paper we continue to investigate the behaviour of re-entrant waves of
excitation in a computational model of human atrial tissue, which we started
in [1]. The model showed spontaneous break-ups and self-termination of spiral
waves, which can have relationship to mechanisms underlying atrial fibrillation,
a condition that adversely affects quality of life and bears potential life threat.
So despite all the limitations coming from simplified geometry, homogeneity and
isotropy of our model, these results were suggestive and promising, and war-
ranted further investigation. The mechanisms of breakups and self-termination
of spirals in our computational model are far from understanding. In this pa-
per we extend the study to different types of initial conditions and to different
methods of analysis. The purpose of considering different initial conditions is to
assess their effect on the re-entry behaviour. In the analysis of results of simu-
lation, we assess, in particular, the feasibility of the “slope-one” theory, started
by Nolasco and Dahlen [2] and given much prominence recently [3-6]; we refer
to it as Nolasco-Dahlen (ND) theory for brevity. This theory has been tested



and confirmed on some simplified models and some experimental preparations,
although its universal applicability so far remains questionable [6]. In this paper
we deliberately avoid discussing the basis of the theory, but restrict ourselves to
purely phenomenological analysis of the results of simulations. Thus the struc-
ture of the paper is as of an experimental paper, with Section 2 dedicated to the
methods, Section 3 to the results, and Section 4 to their discussion.

2 Methods: 2D model of human atrial tissue.

Ezxcitation kinetics of cells. We used the human atrial action potential model
by Courtemanche et al. [7] (CRN model) incorporated into a two-dimensional
reaction-diffusion system of 21 partial differential equations.

Tissue model. We modelled the tissue as a continuous, homogeneous, isotropic,
monodomain syncytium, i.e. in terms of “reaction+diffusion” system of equa-
tions, with diffusion term only in the equation for the transmembrane voltage,

(ji—ltl = f(u) + DV?u

where u = (E,m,h, ... )T € R?! is the vector of the dynamic variables of the
model, and D = diag(D, 0,0, ...) is the matrix of diffusion coefficients, of which
only the diffusion coefficient of the transmembrane voltage E is nonzero. This
simplified description focuses on the excitation and propagation kinetics and al-
lows interpretation in terms of numerous theories applicable to this kind of equa-
tions, while ignoring the additional complications due to geometry, anisotropy
and heterogeneity of a real atrium. The diffusion coefficient of the transmem-
brane voltage D = 0.03125mm?/ms was set to give a plane wave velocity of
~ 0.265 mm/ms. Different D produce identical behaviour, only on a different
spatial scale. The problem was posed in a square 75 mm X 75 mm with no-flux
boundary conditions for F.

The numerical scheme. The partial differential equations were solved using ex-
plicit Euler scheme in time, with time step At = 0.1ms, and simplest second-
order approximation of the Laplacian space step Az = 0.2mm.

Initial conditions Spiral waves in this study were initiated by the cross-field
stimulation method. This is a widely used method for initiation of spiral
waves, as it is relatively easy to implement both in the experiments and in the
simulations.Our numerics used one or more of plane waves (conditioning waves)
initiated to propagate from right to left of the medium; then at a certain moment,
when the recovery tail of a wave is somewhere in the middle of the medium, we
excited the lower half of the medium by instantly raising the transmembrane
voltage by 100 mV in the lower part of the medium. This creates a new excitation
front in the right half of the medium where it has recovered but not in the left
which is still refractory. This broken excitation front quickly develops into a



spiral wave. This is different from the phase distribution method whereby
one-dimensional calculations are used to record values of all dynamical variables
in a plane periodic wave of a high frequency, U(¢), where U € R?! is the
vector of dynamic variables of the model and ¢ € R mod 27 is the phase within
the period, and then the initial conditions are set as u(z,y,0) = U(¢(z,1)),
where ¢(z,y) is the distribution of the phase, chosen by will, e.g. corresponding
to Archimedean spiral; thus the name of the method. The phase distribution
method was used in our previous work [1] as it allowed quick generation of a spiral
wave with the desired position of the core in the medium, and promised freedom
from artificial inhomogeneities introduced by initial conditions. In present work,
we used the cross-field stimulation as more realistic physiologically, and to see
to what extent the behaviour of the spiral waves depends on the details of the
initial conditions.

As in the case of phase-distribution method, the cross-field method can be
implemented not only with ‘fresh’” medium but also with a ‘tired” medium. The
fresh medium was where the function U(¢) and the conditioning waves are
obtained by propagating a single wave through the medium, which prior to that
was in the steady equilibrium ‘resting state’. For the tired medium, this wave
was the last wave in the series of a long (30s long) series of rapid (period 300 ms)
plane waves. There are ‘superslow’ variables in the model, which do not fully
recover within a 300 ms excitation cycle; these changes accumulate over time
which effectively amounts to change in the model parameters. Relevance of such
changes in a particular model to any physiological condition is debatable, see [8]
and references therein. Yet, these changes are relatively minor, and provide an
example of physiologically feasible parameter variations, perhaps the best of
what is achievable within the framework of this particular model and without
involving further experimental data.

Thus, we had two sets of numerical experiments, with two different types of
media, ‘fresh’ and ‘tired’. This can be compared to two sets of simulations with
similarly ‘fresh’ and ‘tired’ media but with phase-distribution initial conditions
described in [1].

Processing of results. We depict the front propagation patterns as snapshots of
the excitation field and by isochrone maps. Snapshots show distribution of the
fields of E(x,y,t), the transmembrane voltage, and o;(x,y,t), the inactivation
gate of the transient outward current, as functions of x,y at fixed selected val-
ues of time ¢. On each snapshot, the red component of the colour of a point
corresponds to the value of E, with zero corresponding to £ = —100mV and
maxium corresponding to £ = 50mV, and the green component of the colour
corresponds to the value of o;, with zero corresponding to o; = 0 and the maxi-
mum corresponding to o; = 1. By virtue of the excitation kinetics, the green and
red colours are almost complement of each other. In black and white printed
version, the regions with higher E (excited, systolic regions) are darker than
the regions with higher o; (unexcited, diastolic regions). Isochrone maps are
collections of isochrones, i.e. instant positions of wavefronts or wavebacks, de-
fined as fragments of isolines E(x,y,t) = —40mV which satisfy condition of



0i(x,y,t) > 0.5 (wavefronts) or o;(x,y,t) < 0.5 (wavebacks) for a given value of
t. Correspondingly, the wavebreak points, and spiral wave tips are defined as
internal ends of these fragments, i.e. intersections of isolines E(z,y,t) = —40mV
and o;(z,y,t) = 0.5. The moment of self-termination of the arrhythmia was
defined as the moment of ultimate disappearance of all tips; this inevitably lead
to eventual return of the medium to the uniform resting state when last ex-
citation waves reach boundaries. Restitution curves are usually defined as
dependence of the action potential duration (APD) of a cell on the preced-
ing diastolic interval (DI) of that cell. In our numerics, we defined APD as
a continuous interval of time ¢ when E(z,y,t) > E, at a given point (x,y) and
for a certain fixed E.; correspondingly, DI is the interval when E(x,y,t) < E..
We have tried different values of E,.

3 Results

3.1 Fresh medium

We have made 7 simulations of spiral waves stimulated in the fresh medium,
different in the initial position of the spiral wave with respect to the medium
boundaries. This allowed us assess the effect of boundaries on the spiral wave
dynamics. We describe in detail one simulation of this series. Figure 1 shows a
collection of snapshots, from the moment of initiation by cross-field stimulation,
t = 0, with an interval of 100 ms up to the frame ¢ = 1900 ms, after which the
spiral wave self-terminates, i.e. excitation fails to re-enter in the medium and
eventually decays (not shown). As can be seen from the movie, but not necessary
from the set of still pictures, the key event leading to the self-termination happens
at around t ~ 1400 ms and is characterized by block of propagation, at which
the wavefront “dissipates” along a long line, stretching almost up to the upper
boundary of the medium.

To visualize this and other important events, we employed the method of
isochrone maps. The relationship between the snapshot and isochrone represen-
tation is illustrated by fig. 2, where a front isochrone, a tip and a back isocrhone
are shown for a selected snapshot from the previous series.

The isochrone maps, i.e. collection of such isochrones for a selected intervals of
times, separately for fronts and backs, are shown on fig. 3. Whereas propagation
of fronts is more or less smooth everywhere where the fronts propagate at all, the
evolution of the back is highly irregular, and this irregularity has a tendency to
increase with time. This is a display of the “dynamic inhomogeneity” discussed
in [1]. At times the irregularity reaches a stage where visual propagation of the
back is opposite to the propagation of the previous front at that point. In extreme
cases, one can see islands of recovered medium before the overall back of the wave
reaches that site. One such episode can be seen on the panel of back isochrones
for t = 600...900ms in the left top quarter. This is the effect of “triggered
recovery” [1,9]. The inhomogeneity of the propagation pattern of wavebacks,
with the relative homogeneity of the wavefronts, is an evidence of high variability
of the action potential durations. This inhomogeneity affects propagation of



Fig. 1. (color online) Development of a spiral wave, initiated by cross-field stimulation
in the fresh medium. Shown are snapshots with interval 100 ms, starting from 0ms, in
the “reading order” (left to right, then top to bottom).

next wavefronts either by slightly delaying or speeding them up, and from time
to time by blocking next fronts, which leads to sudden displacement of the
functional block of the spiral wave, which results in the highly irregular, “hyper-
meander” trajectory of the spiral tip. This is likely to happen where the speed
of recovery wave is slow, which shows as dense location of back isochrones. The
above mentioned key event of front propagation block is clearly seen on front
isochrone map ¢ = 1200...1500ms as a long almost straight trajectory of the
wavetip at which the wavefronts retract rather than protrude; this is a visual
effect of wavefronts actually dissipating when reaching that line. This event is
preceded by a density of wavebacks, which is seen on back isochrone maps of
t =900...1200ms (from approx. 1000 ms on) and ¢t = 1200...1500 ms (up until
approx. 1300ms), which occurs right at the site where subsequent fronts are
blocked.

A distinct feature of the above discussed simulation is a relatively short
lifetime of the spiral wave, 1776 ms. Other 6 simulations with different initial
positions of the spiral showed similarly short lifetimes, from 1732 ms to 2732 ms,
with average and standard deviation of 1900 £ 367 ms for all 7 simulations.
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Fig. 2. (color online) Alternative representations of an excitation pattern. Left: snap-
shot ¢ = 300ms from fig. 1. Right: the same, represented by isoline £ = —40mV,
the ‘isochrone’. The dot on the line is the tip of the spiral, defined by the additional
condition o; = 0.5. This point splits the isoline to two parts, front (red) and back
(blue).
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Fig. 3. (color online) Isochronal maps corresponding to fig. 1. Time interval between
isochrones is 10 ms. Fronts are on upper panels, backs are on lower panels. Bold points,
blending together into thick black lines, are the free ends of the isochrones, i.e. tips of
the spirals.

3.2 Tired medium

Figures 4 and 5 show evolution of a spiral wave in a selected simulation with
a tired medium. The lifetime of this spiral wave was 6992 ms, i.e. much longer
than those in a fresh medium. Figure 4 shows snapshots in the first 3400 ms of
that interval and fig. 5 shows isochrones in the first 1500 ms of it.

As in the fresh medium, there is prominent dynamic inhomogeneity caused by
variability of APD and reflected by irregular patterns of the waveback isochrones.
However, this time the irregularity seems less, although we didn’t measure it by
any formal measure. As a result, the dynamic imhomogeneity does not develop
a complete block of the propagation and instead shows localized block of prop-
agation, i.e. a breakup of the wave. The analysis of the record of the wavebreak
points in the numerics of figs. 4,5 shows that the breakups lead to generation of
new pairs of spiral waves which occur both nearly in the same place and each exist
for about one period before annihilating, in the intervals t = 770...874 ms and



t = 1132...1258 ms (although at different definition of wavebreaks this could
perhaps be considered as one pair of spirals which existed for two rotations).
Evolution in other two simulations with the tired medium showed similar
types of evolution and similarly large lifetimes of the spirals, from 4034 ms to
9924 ms with average and standard deviation of 3 simulations 6983 4 2945 ms.

3.3 De-facto restitution properties

The ND theory and its variations aim to describe precisely the kind of process,
when the action potential duration (APD) variability in response to the history
of excitation causes instability of regular propagation of waves. This theory is
based on the relationship between the diastolic interval (DI) and subsequent
APD. To test how much this theory can be applied to our model, we have
recorded values of transmembrane voltage, E;(t) = E(z;,y;,t), for a regular grid
of 13 x 13 points (x;,y;), j = 1...269 regularly spread through the medium.
We have tried different values of E, for defining APD and DI. Figure 6 shows
a typical electrogram in relation to voltages E, = —33mV, corresponding to
m(E,.) = 1/2, E, = —67mV, which corresponds to h(E,) = 1/2, and E, =
—50mV which is the average of the two, i.e. in the middle of the fast Na current
excitation window. We see that the high variability of action potential profiles
makes any of these voltages not ideal for determining APD and DI, although,
arguably, F, = —67mV looks more sensible than the other two.

The graphs of APD vs DI for the three selected values of E, are shown on
fig. 7. We believe that even bearing in mind all possible sources of errors, these
graphs are an evidence that DI is not a good predictor of APD at all.

4 Discussion

We have found that the difference in the initial condition does not qualitatively
change the behaviour of spiral waves in this model of atrial tissue. As in [1], we
see that the evolution of spiral waves is dominated by such factors as developing
dynamic inhomogeneity, including triggered recovery, which causes localized or
massive dissipation events of wavefronts, which in turn lead to hypermeander of
the tip of the spiral, spontaneous generation of new spirals, and eventually to
self-termination of all re-entrant activity. The new study confirms that the time
to self-termination in a tired medium is much longer than in the fresh medium.

This finding seems to suggest a possible mechanism of proarrhythmic action
of tissue fatigue. However, it is not certain how our “numerical fatigue” relates to
physiology. So the theoretical aspect, the mechanism of the development of the
dynamic inhomogeneity, may be even more important. The ND theory explains
the dynamic inhomogeneity based on the assumption that an APD is determined
by the immediately preceding DI. This works for some models [5]. However, this
assumption does not seem to bear any resemblance to the processes happening
in this model. Perhaps, correct predictors of APD can be found based on asymp-
totic analysis of the realistic excitability models, rather than phenomenology of



simplified models. Also, there is no obvious explanation in ND theory to the dif-
ference between the behaviour in fresh and recovered medium, perhaps because
that theory does not even aim to explain the process of propagation block, only
development of a dynamic instability.

An interesting theoretical mechanism of finite lifetime of re-entrant waves was
suggested long ago by Krinsky [10], within an axiomatic “tau-model”, which
has some properties that are relevant to cardiac tissue but not captured by
FitzHugh-Nagumo type simplified models. Although the mechanism of finite
lifetime re-entry of [10] is based on static inhomogeneity of tissue properties and
thus not directly applicable to our case, it still can offer some food for thought.
A new hope on further progress in understanding the phenomena described in
this work comes from recent results on asymptotic properties of realistic models
which make them different from traditional simplified models [11,12].
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Fig. 4. (color online) Spiral wave in a tired medium. Shown are snapshots with interval
100 ms, starting from 0 ms.
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Fig. 5. (color online) Isochronal maps of initial 1800 ms of evolution of a spiral wave
initiated by cross-field method in a tired medium. Notations are the same as on fig. 3.
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Fig. 6. An electrogram recorded at point with coordinates (35.2,35.2) mm from the
left top corner in the numerics described in figs. 1 and 3. Horizontal lines show the
levels at which detection of APD and DI was attempted.
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Fig. 7. Graphs of APD vs DI for electrograms at 289 points in the numerics shown
on figs. 1 and 3, for different values of E.. Top row: fresh medium. Bottom row: tired
medium.



