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Abstract

We consider an excitable medium moving with relative shear, subjected to a
localised disturbance which, in a stationary medium, would produce a pair of spiral
waves. The spiral waves so created are distorted and then broken by the motion of the
medium. Such breaks generate new spiral waves, and so a \chain reaction" of spiral
wave births and deaths is observed. This leads to a complicated spatio-temporal
pattern, the \frazzle gas" (term suggested in [5]), which eventually �lls the whole
medium. In this paper, we display and interpret the main features of the pattern.

PACS: 82.40.Bj, 47.70.Fw, 82.40.Ck, 87.10.+e,

Introduction Excitable medium models, in the form of partial di�erential equations
of the reaction-di�usion type, have been used to account for nonlinear wave phenomena
in many areas of biology, physical chemistry and physics [1]. An excitable system re-
sponds to a small subthreshold perturbation by a graded, decremental response, and to
a suprathreshold perturbation by a large amplitude pulse or pulse train. This threshold
property is characteristic of a cubic nonlinearity, as in the FitzHugh-Nagumo equations
for an excitation process E and a recovery process g. In a spatially extended system, the
suprathreshold response is a non-decremental travelling wave or a wave train. When such
a cubic nonlinearity is included in a reaction-di�usion equation

@E

@t
= c1E(E � a)(1� E)� g +Dr2E;

@g

@t
= �(c2E � g) + �Dr2g; (1)
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in a two-dimensional medium, appropriate initial conditions can lead to a spiral wave. Such
spiral waves (or scroll waves in three-dimensions) have been observed in many biological
excitable media, and a spiral source acts to organise the surrounding medium.

When the excitable medium, such as a 
uid or an elastic solid, is itself undergoing spa-
tial strain, the otherwise stable spiral pattern is deformed and possibly broken. The e�ects
of the motion of the medium on excitation-wave dynamics in the Belousov-Zhabotinsky
system has been studied experimentally for thermoconvective motion in [2], and experi-
mentally and theoretically for small deformations in [3].

We have shown that an arbitrarily small, linear shear 
ow can break repetitive wave-
trains [4]. In a medium subject to a shear 
ow, the wavelength of the train changes
with time. This change depends on the mutual orientation of the 
ow and wavetrain. In
excitable media, there is a shortest possible wavelength, below which the waves cannot
propagate. When the 
ow deforms the wavetrain so that wavelength is less than this
critical value, the propagation is blocked. If the wavetrain and/or the 
ow is not strictly
periodic, the blocking is localised and the waves that extend across a `blocked' and and
`unblocked' region break. The minimum time for the �rst wavebreak to occur has been
estimated in [4] as

t
�
� ��1(k

�
� 1=k

�
); (2)

where � is the shear (i.e. the gradient of the 
ow velocity), and k
�
is the critical deformation,

i.e. the ratio of the initial wavelength of the train and the minimum wavelength.
Here we consider the e�ects of simple shear 
ows on spiral wave behaviour in excitable

media and show that spiral wave activity is broken down by arbitrarily small shear 
ows

into spatio-temporal irregularity (an autowave turbulence, or \frazzle gas" similar to one
described by Markus et al. [5]).

The numerical model For simplicity the numerical illustrations were performed using a
FitzHugh-Nagumo system with cubic nonlinearity and added shear 
ow. We expect other
excitable systems to display qualitatively similar behaviour. The equations considered
were:

@E

@t
= c1E(E � a)(1� E)� g + v(y)

@E

@x
+Dr2E;

@g

@t
= �(kE � g) + v(y)

@g

@x
+ �Dr2g; : (3)

with parameters c1 = 10, a = 0:02, � = 0:1, k = 5, � = 1 and D = 1. This system was
solved using an explicit Euler scheme, with space step hs = 0:5 s:u: (space units) and time
step ht = 0:0025 t:u: (time units), in a rectangular medium (x; y) 2 [0; L]� [�M=2;M=2].
The sizes L�M were varied in di�erent experiments. We used two 
ow velocity pro�les,
a linear pro�le

v(y) = �y; (4)

with no-
ux boundary conditions at y = �M=2, and a sine pro�le

v(y) = vmax sin (2�y=M) : (5)
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with periodic boundary conditions at y = �M=2. In all cases, we used periodic boundary
conditions at x = 0; L. The properties of the stationary (� = 0) medium were as follows:
the minimum wavelength of a periodic train �min � 19:0 s:u:, the asymptotic wavelength
of the spiral wave �s:w: � 41:0 s:u:, and the asymptotic velocity of the spiral wave cs:w: =
1:80 s:u:=t:u:. The initial condition for this system was a short excitation wavelet, just wide
enough to give birth to a pair of spiral waves (\horseshoe pattern") as shown in Fig. 1(a).

(a) (b) (c)

(d) (e) (f )

Figure 1: Development of a \frazzle gas" of spiral waves in linear shear 
ow (4). Shown
are snapshots of E �eld at successive 100 t:u:, in a 400 � 400 s:u: medium, with a 
ow
velocity gradient � = 0:02 t:u:�1.

Development of the frazzle gas The phenomenon of conduction blocking of periodic
wavetrains has macroscopic consequences for the properties of large-scale two dimensional
excitable media with shear 
ow. Since this conduction block is dependent on the orientation
of the waves, it leads to breaking of the waves when there is a complicated autowave pattern.
Moreover, in an excitable medium, each wavebreak typically leads to the generation of a
new pair of spiral waves, which are sources of periodic wavetrains. This leads to a \chain
reaction" of spiral wave births, as shown in Fig. 1.

Here a local �nite initial perturbation has led to transition of the whole medium into
a turbulence-like state, the \frazzle gas". To characterise quantitatively the complexity of
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the frazzle gas solution, we counted the number of the free ends, de�ned as intersections
of the isolines E = 0:2 and g = 0:48. Some typical dependencies of this number on time,
for di�erent values of the velocity gradient �, are shown in Fig. 2. It appears that for any
�, a statistically steady value is reached after an initial period of development.
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Figure 2: Number of free ends as function of time, in t:u:, for di�erent velocity gradients
(values of � shown in t:u:�1), in a 300� 300 s:u: medium.

Density of the frazzle gas As can be seen in Fig. 1, the dynamics of the generation of
new wavebreaks in this particular experimental setup is determined, in the �rst instance,
by two di�erent processes: the growth of the \horseshoe" pattern, due to the revolution of
the spiral waves, and the deformation of that pattern. Subsequently, the development of
secondary breaks further increases the density of the free ends, until the pattern reaches a
state of statistical equilibrium, when the average number of the new free ends is balanced
by the average rate of their annihilation, which happens if two opposite free ends come
too close to each other. The resulting pattern and 
uctuations in the number of free ends
depends on the value of the velocity gradient, as illustrated in Fig. 3.

The simple criterion for the wave break introduced in [4] can be used for a rough
analytical estimate of the equilibrium density of spiral waves. First, let us estimate the
typical distance between the spiral waves as being of the same order of magnitude as the
distance from the spiral center to the point at which the �rst break in a spiral wave occurs.
This is made up of a minimum distance, of the order of the spiral core, or spiral wavelength
�s:w:, plus the distance travelled by the spiral wave in the time before the breakup, which
is t

�
� ��1(k

�
� 1=k

�
) / ��1, since the critical deformation k

�
= �min=�s:w: � 2:16. The
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(a) (b) (c) (d)

Figure 3: Structure of the dynamically equilibrated \frazzle gas" of spiral waves (snapshots
of the E �eld) at di�erent velocity gradients: (a) 0:005 t:u:�1, (b) 0:01 t:u:�1, (c) 0:02 t:u:�1

and (d) 0:04 t:u:�1. Size of the medium 300� 300 s:u:

typical distance between the spiral waves in the frazzle gas can thus be expected to be

ls:w: = ��s:w: + 
cs:w:�
�1: (6)

where � and 
 are some dimensionless coe�cients of the order of 1. The density of the
spiral waves is then estimated by

� = l�2
s:w: = �2=(K1 +K0�)

2; (7)

where
K0 = ��s:w:; K1 = 
cs:w:: (8)

Fig. 4 shows the dependence �(�) found in numerical experiments, and the best �t to (7).
This best �t is achieved with K0 � 36 and K1 � 0:46, which means � � 1:9 and 
 � 0:26.
Thus, the simple argument presented above correctly predicts the qualitative dependence
of � on �, for a reasonable choice of the dimensionless coe�cients. Recall that the estimates
of [4] also were only valid to within an order of magnitude.

Frazzle gas in an inhomogeneous 
ow The linear shear is a highly simpli�ed case.
To check the robustness of the features of the frazzle gas of spirals, we studied its behaviour
in a more complicated 
ow, the sine shear 
ow (5). The results are illustrated in Fig. 5.

The sine shear pro�le (see panel t = 6 of Fig. 5) provides two regions with high velocity
gradient, clockwise in the middle (y � 0) and counterclockwise around the upper and lower
boundary (y � �M=2, recall that the boundary conditions are periodic), and two regions
with lower velocity gradient, around y � M=4 and y � �M=4. The horseshoe pattern is
initiated in the region with high shear, and is �rst (t = 12) and then displays wavebreaks
(t = 24). In turn, the free ends curl into new spirals, which lead to secondary breaks
(t = 48) and subsequently to the frazzle gas of spirals (t = 96). At t = 96, one can see
that the frazzle gas is localised in the high-shear region, but some of the spirals are driven
away from that region (notice the two spirals at x � 3L=4, y � M=4, and at x � L=4,
y � �M=4), and that the nearly-plane wavetrains are compressed in the other high-shear
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Figure 4: Time-average density of free ends, �, measured in s:u:�2, for established \frazzle
gas" state, as function of the velocity gradient, �, measured in t:u:�1, in coordinates ��1=2

vs ��1. Points with errorbars show values obtained from simulation, the lines show the
best �t to the theoretical dependence (7).

region (see near the upper and lower boundaries). This subsequently leads to the generation
of the frazzle gas in the other high-shear region (t = 192), which with time relaxes to a
dynamic macroscopic equilibrium state (t = 384) This then remains statistically constant
| or at least does not qualitatively change over the following time interval (t = 768).

The structure of the frazzle gas is inhomogeneous, and may seem counterintuitive. The
free ends are seen in both high- and low-shear regions. In high-shear regions, one can see
well developed spiral waves, while in low-shear regions, where in the homogeneous case one
would expect even better developed spirals (see Fig. 3(a)), there are no spirals at all, but
only dislocations in quasi-plane wave trains.

This paradox is easily explained. The presence of a shear 
ow breaks the spatial
re
ection symmetry of the reaction-di�usion system. As a result, the angular velocity of
a spiral wave in the shear 
ow now depends on the direction of rotation. The general
perturbation theory [6] predicts only that the angular velocity is

! = !0 + �m� +O(�2); (9)

where !0 is the angular velocity in a quiescent medium, m is direction of rotation, say
m = 1 for clockwise rotating spirals and m = �1 for counterclockwise, and coe�cient
� depends on the particular model. In our model, the spirals rotating against the shear
(counter-rotating spirals) rotate faster.

Furthermore, it is well known that, in an autowave medium, faster sources entrain
slower sources, and if the slower source is a spiral wave, this causes its so-called \induced
drift" [7, 8, 9]. As a result, in the high-shear regions, co-rotating spiral waves are entrained
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y range [0;M=8] [ [7M=8;M ] [M=8; 3M=8] [3M=8; 5M=8] [5M=8; 7M=8]
shear high c.c.w. small high c.w. small
t = 384 11/2 (c.w./c.c.w) 10/12 3/13 7/7
t = 768 11/3 10/10 4/12 6/5

Table 1: Structure of the frazzle gas in di�erent regions. The ratios show number of c.w.
free ends/number of c.c.w free ends in the region.

by counter-rotating spirals and driven away to the low-shear regions. The spirals in the
low-shear regions do not develop since the spiral rotation frequency there is approximately
!0, which is lower than that in the high-shear regions where it is !0 + j��maxj, so the free
ends remain dislocations and cannot develop into spiral waves.

These processes lead to the following structure (see Table 1). The high-shear regions are
populated mainly (but not exclusively) by counter-rotating spirals, i.e. counterclockwise
rotating in the middle region and clockwise rotating in the top/bottom region. However,
some corotating spirals are also present, since the free ends are born in pairs, and it takes
time to entrain a spiral wave. At the same time the low-shear regions show quasi-plane
wave trains with dislocations, which are former spiral waves expelled from the high-shear
regions.

Discussion In this paper, we have described the process of generation and main prop-
erties of a \frazzle gas" of spiral waves produced by shear 
ows in the medium. Such a
frazzle gas occurs in a su�ciently large excitable medium when shear 
ow breaks a repet-
itive wavetrain. The conditions for the generation of the �rst wavebreaks were described
earlier [4] and and the �rst break requires a space and time to develop (the weaker the
shear, the larger the space and time required), whereafter new wavebreaks are generated
via a chain reaction, until a dynamical equilibrium is reached where the average number
of newly generated wavebreaks equals the average number of annihilated wavebreaks.

The average density of wavebreaks as a function of 
ow velocity gradient is described by
a simple semi-empirical \Michaelis-Menten" formula; understanding the key mechanisms
of the dynamic equilibrium allowed us to relate, to within the order of magnitude, the
constants in that formula to principal parameters of the medium.

An inhomogeneously sheared 
ow makes the rate of generation of new wavebreaks
space-dependent, which naturally leads to inhomogeneous distribution of the wavebreak.
In addition, it introduces qualitatively new features, especially if the shear changes sign:
the 
ow sorts the wavebreaks by their chirality. The mechanism for this sorting is related
to parity violation by the shear, which leads to a di�erence in frequency between oppositely
rotating spiral waves and to induced drift of the slower rotating waves.

The mechanism and properties of this \frazzle gas" makes it di�erent from other ex-
amples. In particular, the example in [5] is clearly di�erent since it occurs in a stationary
medium. The experimental example [2] is more similar, since it is also about interaction
of convection and excitation. However, the convection there was quite complicated, con-
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sisting of B�enard convection cells, of size comparable to the wavelength of the spiral. It
was therefore not clear whether the complexity of the resulting pattern should have been
attributed to the presence of convective motion or to its complexity. The present study
shows that the complexity of the 
ow is not necessary, as the irregular activity occurs even
in a perfectly homogeneous linear shear 
ow.
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Figure 5: Development of a \frazzle gas" of spiral waves in a sine-shear 
ow (5). Shown
are snapshots of E in a 300� 600 s:u: with maximal 
ow velocity vmax = 1:5 s:u: � t:u:�1 at
time moments (shown on each panel, measured in t:u:, ) chosen in geometric progression.
hx = 1:0, ht = 0:01.
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