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Abstract

We characterize the meander of re-entrant excitation in a model of a sheet of mammalian
ventricular tissue, and its control by resonant drift under feedback driven stimulation. The
Oxsoft equations for excitability in a guinea pig single ventricular cell were incorporated in
a two dimensional reaction-diffusion system to model homogeneous, isotropic tissue with a
plane wave conduction velocity of 0.7 m/s. Re-entrant spiral wave solutions have a spatially
extended transient motion (linear core) that settles down into rotation with an irregular period
of 100-110 ms around an irregular, multi-lobed spiky core. In anisotropic tissue this would
appear as a linear conduction block. The typical velocity of drift of the spiral wave induced
by low amplitude resonant forcing is 0.75 cm/s.
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tial



1 Introduction

Some cardiac arrhythmias are due to re-entrant propagation, in which the same wavefront re-
peatedly re-invades the same piece of tissue after propagating around an anatomical or functional
block. Re-entrant spirals have been optically mapped in thin slices of epicardial tissue (Jalife &
Davidenko 1993) and on the epicardial surface of the rabbit ventricle (Gray et al. 1995). The
relatively thick wall of the ventricle means that propagation in ventricular muscle could be a
predominantly three-dimensional phenomenon that occurs in an anisotropic and heterogeneous
tissue, or could be explained by two-dimensional phenomena that result from the excitation prop-
erties rather than heterogeneity and anisotropy. In this paper we obtain the characteristics of
re-entrant propagation in a two-dimensional, homogeneous model of ventricular tissue, and use
these to account for the linear regions of unidirectional conduction blocks seen in mapping studies
(Davidenko et al. | 1993), to explain why it is difficult to establish re-entrant propagation in the
healthy ventricle, and to quantitatively assess low amplitude, repetitive stimulation by a spatially
uniform electric field as a means of eliminating re-entry from ventricular tissue.

A spiral wave in a two-dimensional, homogeneous, isotropic excitable medium provides a model
for re-entry. Spiral waves rotate around a central core, and may be characterized by their period
of rotation, size of core, and movement of the tip of the spiral. At any specified instant in time
a rotating spiral wave has a location, given by the position of its tip, and a spatial orientation of
rotation phase.

A spiral wave can be forced to move by a spatially uniform, time periodic perturbation of
appropriate frequency (Davydov el al. 1988). Resonant drift in the location of a spiral occurs
when the frequency of perturbation is the same as the frequency of rotation of the spiral. In
principle, resonant drift under feedback control could provide a means of eliminating re-entrant
activity in cardiac tissue (Biktashev & Holden, 1994, 1995). This will be practical only if any re-
entry is eliminated within a reasonable time, say less than 30 s, and so estimation of the velocities
that can be achieved by resonant drift is important in assessing the feasibility of resonant drift as
a means of controlling re-entrant arrhythmias.

We construct an excitable medium model for mammalian ventricular tissue by incorporating
ordinary differential equations for ventricular cell excitability into a partial differential equation
model. There are a number of models available for ventricular excitation that summarize the
results of voltage clamp experiments — these include the Beeler-Reuter (1989) model, the Oxsoft
guinea-pig ventricular cell model specified in (Noble 1991) and the phase 2 Luo-Rudy (1994) model.
None of these models are definitive, they all represent steps in an on-going process of modelling the
behaviour of ventricular cells by a description of membrane currents and pumps, and intracellular
ion binding and concentration changes (Noble, 1995). Spiral waves solutions for rabbit atrial tissue
models (Biktashev & Holden, 1995, and Winslow et al. 1995), show a reasonable agreement with
experimental data. The Beeler-Reuter simplified ventricular model (Beeler & Reuter 1977) has
been incorporated into two-dimensional tissue models, and reentrant solutions characterised by
Courtemanche & Winfree (1991) and Efimov et al. (1995). Study of current ventricular models
has been inhibited by the computational costs of this problem, which is a reflection of the stiffness
of the kinetics of ventricular excitability.

In this paper we use equations of the Oxsoft guinea pig ventricle model. These equations
provide a convenient starting point, as they have been extensively studied and give reasonable
agreement with experiments. There are alternative approaches for description of mammalian ven-
tricular cells, the most recent is that of Luo & Rudy (1994). A major problem with incorporating
the Luo & Rudy (1994) ‘phase two’ model in two- and three-dimensional models of ventricular
tissue is that the [Cat¥]; transient is triggered by OV/Otmax of the action potential, and during
re-entry the action potential does not invade the core, V(¢) is slowed and almost constant close
to the tip of the reentrant wave, and the behaviour near the tip determines meander, drift and
stability of the re-entrant spiral wave.

The Oxsoft equations for cell excitability are incorporated into a reaction-diffusion equation
with the voltage diffusion coefficient (hence, spatial scaling) selected to give an appropriate conduc-
tion velocity. Re-entrant spiral waves are initiated from a cut wavefront, or a twin-pulse protocol,
and the evolution of their meander pattern followed. The velocity of resonant drift, produced by
spatially uniform perturbations is obtained.



2 The numerical model

The Oxsoft equations (Noble 1990) for a single isopotential cell are in the form of a system of
ordinary differential equations:
Cdv/dt = f(V,u) (1)
du/dt = g(V,u),

where C' is the capacitance of a single cell, V' the membrane potential in mV and u is a vector of
the activation and inactivation gating variables and the ionic concentrations that determine the
total membrane current f(V,u). The full equations, together with the parameter values, are listed
in the Appendix, and can also be obtained in the form of a Pascal program in Oxsoft HEART.
This model was incorporated into a partial differential equation model for an excitable medium in
the plane (z,y),

oV/ot = C~1f(V,u) + DV2V + F(t) )

du/ot = g(V,u),

where D is the diffusion coefficient for V, V2 is the Laplacian operator (92/8z? + 9%/0y?) and
F(t) is a spatially uniform, time dependent forcing that models external electric current applied to
the tissue. The diffusion coefficient was chosen D = 1.25¢cm?/s, which corresponds to intercellular
(gap junction) resistance of R = 250k, by the formula D(celllength)=2? = (RC)~1.

Calculations were performed using the explicit Euler method with five-node approximation of
the Laplacian on a rectangular grid of 200x200 to 300x300 nodes with a time and space step
of hy = 0.0lms and h, = 0.2mm (for the majority of experiments) or 0.001 ms and 0.1 mm
(i.e. nearly the myocyte length) for a few control computations. Steps used in other published
ventricular simulations were: 0.025 ms and 0.25 mm in (Courtemanche & Winfree 1991) and
0.1 ms and 0.25 mm in (Efimov et al. 1995).

The boundaries were modelled as impermeable,

OV 0 o=t minwmsx= OV/OY ly=yuminyma= 0, (3)

with the medium large enough so that the exact form of boundary conditions does not influence
the spiral wave behaviour.

At the space step of 0.2 mm, the upstroke velocity of the solitary wave was 570 V/s, and
the conduction velocity (CV) 0.76 m/s; and at space step of 0.1 m/s, 500 V/s and 0.90 m/s
correspondingly. Canine ventricular CV range from 0.14-0.25 m/s (transverse) to 0.5-0.8 m/s
(longitudinal). The electrotonic space constant at the resting state is about 0.36 mm. Thus,
the space step of 0.2 mm seems too large to get quantitatively exact results, as the error in
important physiological quantities is up to 20%. The space step necessary for convergence of the
CV estimate is less than cell size. As the space step is reduced, the CV with D = 1.25cm?/s
converges to 0.97 m/s; the CV is within 5% of this ‘true’ value at hy = 0.05mm Z.e. less than
the length of a single cell. However, the computed propagation patterns did not show the effects
of anisotropy seen with coarse space steps, especially with the simplest Laplacian approximation
we used, when grid geometry distorts curved wavefronts. The few methodological experiments
we performed with the space step of 0.1 mm (computation cost grows as h;* or even faster with
account of overheads), did not show any significant change of the overall behaviour and so the
simulation results should be correct, up to the value of diffusion coefficient or space scale.

The action of external forcing in the form of additive term F'(¢) in (2) corresponds to injecting
current into each cell and does not correspond to extracellular field stimulation. However, realistic
models of external current require consideration of each cell as an extended object described
by PDE, or at least integration of transmembrane currents over each cell’s surface [13] and so
massively increase the computational load. This paper is mostly concerned with the spontaneous
evolution of spiral waves, and the qualitative features of resonant drift and so this simplification
is acceptable. We measured the external forcing F' in V/s in terms of its dimensionality in (2);
this can easily be rescaled to amperes per cell by dividing by membrane capacitance C. The time
dependent F'(t) used to produce resonant drift of the spiral wave was a series of rectangular pulses
of 2 ms duration, applied at a fixed time after an action potential was detected at the recording
site by V increasing through -10 mV.

Spiral waves were initiated in two ways, by a cut wavefront or twin pulse protocol. A plane
wave was initiated at one edge of the medium by a 2 ms duration stimulation of a strip 1.3 mm
wide, by a current that gave a dV/dt of 50 V/s and the excitation allowed to propagate to the
centre of the medium. The wavefront was then cut, and all the variables on one side of the cut
reset to their equilibrium values. This numerically convenient but artificial method allows spirals
to be initiated in a 4x4 cm medium. The twin pulse protocol requires a larger (6x6 cm) medium,
in which a plane wave is initiated at the lower border by 10 ms stimulation of 50 V/s of a two mm
strip, and 180 ms later (after the wavefront has propagated through the medium, establishing a



gradient in refractoriness) the second stimulus is applied: a 4 ms stimulation of 40 V/s over the
left 6x5 cm area of the medium. These large area (larger than endocardial surface of a rabbit
atrium) are necessary for the initiation of reentry in a homogeneous tissue; re-entry persists in
smaller media, see Fig. 1.

By anisotropic medium we understood (2) with Laplacian replaced by (6§8%/d2% + 8% /dy?) or
(6%/0x2 + 602 /0y?) with § = 1/9, which is equivalent to 3-fold compression in z or y direction,
respectively.

Simulating 1 s of activity in a 4x4 cm medium with A¢ = 0.01ms and Az = 0.2mm took about
180 hours on a single MIPS R8000 75 MHz central processor unit.

3 Results

Figure 1: (a) Isopotential map and tip trajectory of spiral wave solution of equations (2) and (3),
in a 40x40 mm medium with h; = 0.01lms and h,; = 0.2mm, with the 10 voltage isolines spanning
-89.4 to 32.4 mV in equal steps of 13.5 mV. The isolines represent the V() waveform 2.67 s after
its initiation from a broken wavefront, and the solid line ending in e is the trajectory of the tip
during the preceding 190 ms. (b, ¢) The tip trajectory for spiral wave solutions of (2, 3) produced
by a cut plane wave (b) and a twin stimulus protocol (¢).

Figure 1(a) illustrates a spiral wave solution of the model, as the spatial distribution of isolines of
membrane potential V', at an instant 2.67 s after the spiral wave was initiated by cutting a broken
plane wave. The spiral rotated with an initial period of approximately 170 ms, and over the first
1 s the period decreased to 100-110 ms. If the medium were large enough, the distance between
successive wavefronts far from the tip, i.e. the wavelength of the spiral would be about 8 cm. We
define the tip of the spiral by the intersection of the V = —10 mV and the f = 0.5 isolines, where
f is the ClaT™ inactivation gating variable. The qualitative behaviour of the trajectory of the tip
does not depend on the precise choice of these values. The trajectory of the tip of the spiral is
not stationary, but meanders, and its motion is nonuniform, moving by a jump-like alternation
between fast and very slow phases, with about 5 jumps per full rotation. This motion resembles
an irregular, nearly biperiodic process, with the ratio of the two periods close to 1:5.

The multi-lobed pattern of the trajectory of the tip takes time to develop, and itself develops
with time. Figure 1(b,¢) follows the tip trajectory for spirals initiated from a broken wavefront
(b), by a twin pulse protocol (¢). In both cases the tip trajectory follows a transient over 3-4
rotations, in which there is an extended “core”, with a length of some centimeters, that evolves into
an irregular, biperiodic motion around a core contained within 7 mm square. Both the extended
transient and the biperiodic motions are composed of almost linear segments (when the velocity
of the tip movement is fast, about 0.3 m/s) broken by sharp turns of up to 170° (when the tip
trajectory is almost stationary).

The rotation of the spiral wave can be monitored by following an isoline on the wavefront,
and the trajectory of the tip of the spiral, as illustrated in Figure 2(a). The area enclosed by
the tip trajectory is analogous to the core of a rigidly rotating spiral, and is not invaded by the
action potential. Characteristics of the V() observed at different sites in the medium during the
evolution of a rotating spiral wave are (Figure 2(b))

e only the first action potential, produced by activity invading a resting medium, has the fast
depolarization and overshoot that are characteristic of solitary membrane action potential
solutions of (1),

e far from the tip of the spiral wave, the repetitive action potentials are faster and larger
than closer to the tip, and have an amplitude and shape determined by their rate (of about
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Figure 2: (a) Isochronal map of a spiral wave solution of equations (2) and (3), initiated by the
twin pulse protocol in a 60x60 mm medium with h; = 0.05 ms and A, = 0.2 mm. Thin lines are
the excitation front position, drawn at every 10 ms during one rotation 1.2 to 1.29s. The front
lines are defined as loci of V = —25mV and f > 0.5, where f is the Ca™T inactivation gating
variable. The thick line is the trajectory of the spiral tip during this rotation. A-D and O mark
the position of recording sites. (b) V(¢) at sites A-D during the first 12 rotations of the spiral after
its initiation. Voltage scale is from -100 mV to 100 mV with marks in 50 mV, marks on time axis
are in 100 ms. (¢,d) Membrane potential V(¢), upper graphs, and principal currents iy, (solid),
icq (long dashed), ik, (medium dashed), ix (dotted), lower graphs, at points A (¢) and O (d) of
Figure 2(a), 1.5 to 1.8 s after the initiation of spiral wave from broken wavefront. Voltage is in
mV, current in nA, marks on time axis through 100 ms.



e close to the tip both the amplitude and GV/Otmax are reduced by more than an order of
magnitude, and V' (¢) appears more as slow oscillations than action potentials.

The membrane potential and principal currents (inq, ica, ik, ix) far from, and within the core
of the spiral, sites “A” and “O” of Figure 2(a), are illustrated in Figure 2(¢c,d), respectively. Within
the core (d) the membrane potential remains between -45 and -5 mV; this persistent depolarization
inactivates the inward current iy, (on the graph, it is indistinguishable from zero), thus blocking
propagation into the core. The trajectory of the tip maps out an area of the conduction block.
Note that the change of action potential waveform in different sites is a general feature of spiral
waves in excitable media; see e.g. (Plesser et al. 1990) for analogous waveform changes in the
Belousov-Zhabotinsky reaction.
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Figure 3: (a—f) Successive 150 ms pieces of the tip trajectory, starting 1.5 s after spiral initiation
from a broken plane wave, with hy = 0.2mm, h; = 0.0lms, in a medium 40x40 mm. (g—i)
Isochronal map during of biperiodic tip meander, 2.480-2.520 s since spiral was initiated from
a broken plane wave, (g) in isotropic medium, (k) in anisotropic medium with longitudinal axis
of fibres in the vertical direction, and (z) in anisotopic medium, with longitudinal axis of fibres
in the horizontal direction. The isochrons are labeled in ms relative to 2480 ms. h; = 0.01ms,
h, = 0.2mm, medium 40x40 mm.

Figure 3(a—f) shows that as the asymmetric, multilobed trajectory continues to evolve, the area
it encloses continues to decrease, and the pattern changes from having two or three sharp turns,
to having five. The trajectory during any rotation differs from the trajectory during the preceding
rotations. The spiral wave solutions have been followed for up to 3 s, and so, once established, the
slowly evolving, almost biperiodic meander pattern shown in Figures 1-3 appears to be stable.

Anisotropy in conduction velocity will distort the spiral wave and tip trajectory; Figure 3(g—i)
shows voltage isochrons in isotropic and anisotropic media: in the isotropic medium the isochrons
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Figure 4: Tip trajectories under feedback controlled, resonant driving. When the wavefront of
the spiral wave (depolarization through -10 mV) reached a recording site in the bottom left hand
corner, a 2 ms, 4 V/s depolarizing perturbation was added after a fixed delay. Each trajectory is
for a different delay, from 0 to 100 ms, and corresponds to applying the perturbation at a different
phase of the spiral. All trajectories start in the same place in the center, move toward boundaries
and annihilate. The dots mark point on trajectories corresponding to the moments of stimulation.

for the small, multilobed tip trajectory of Figure 3(a—f) appear to emerge from a compact core,
while in the anisotropic medium the isochrons appear to move around a linear core.

The tip of the spiral wave solutions of Figures 1-3 moves irregularly in a complicated trajec-
tory, but does not move out of the medium: if the medium is large enough to contain the early
transient motion around an almost linear core then the spiral wave remains in the medium. Small
amplitude, spatially uniform repetitive stimulation under feedback control can be used to produce
directed movement of a rigidly rotating spiral wave and so to push the spiral out the medium
(Biktashev & Holden, 1994). Figure 4 shows five tip trajectories produced by repetitive stimula-
tion applied at five different fixed delays after the wavefront reached the bottom left hand corner
of the medium. The delay determines the initial direction of drift. The curved drift trajectories
all reach the medium boundaries. A repetitive perturbation of 15% the amplitude of the single
shock defibrillation threshold produces a directed motion with a velocity of about 0.75 cm/s. Here
we mean by defibrillation threshold the minimal amplitude of a brief pulse F(¢) in (2), which is
sufficient to eliminate the re-entrant activity, about 12.5 V/s.



4 Discussion

The relevance of these computations to propagation during re-entrant arrhythmias in ventricular
tissue can be assessed by quantitative features of the re-entry — the period and waveform of
the action potential, the size of the medium within which re-entry can be initiated, the rapidly
decaying transient and then slow ageing of the re-entrant wave (i.e. change of period and core shape
due to slow processes), the irregular, jump-like motion of the re-entrant wave, and the velocity
at which it can be moved by resonant perturbation. The relevance can be questioned, on the
grounds that macro- and micro-anatomical detail is ignored, as are the effects of heterogeneity. We
would argue that the reasonable correspondence between the computations and observations of re-
entrant propagation means that cardiac tissue, in spite of its cellularity, three-dimensional anatomy
and heterogeneity, behaves as a reaction diffusion system, and so methods for controlling spiral
waves in such systems may be applicable to controlling propagation during re-entrant ventricular
arrhythmias.

Although OV/0tmax of a solitary action potential of the single cell model (580 V/s) compares
well with the values of 512 4+ 68 V/s obtained by Taniguchi et al. (1994) for guinea-pig isolated
ventricular myocytes, the computed value of OV /dtyax for the propagating wavefronts are too
high. Taniguchi et al. obtained 0V/Jtyax for propagating action potentials as 231 + 35 V/s
(longitudinal propagation) and 309433 V/s (transverse propagation). The difference in transverse
and longitudinal V/0tax correlates with the anistropy in conduction velocity; the longitudinal
space constant is longer than the transverse space constant, and so inward membrane current
depolarises the capacitance of tissue further ahead in the longitudinal than transverse direction.
The slow down of V/dtmax is partly due to the increase in capacitative load, and partly due to
a slow inactivation of the Na conductance by electrotonic current. Both effects are seen in the
computations with the Oxsoft model, but the maximal effect (produced in the limit R = 0) is
only a 30% reduction in 0V /3tmax. Thus the unreasonably fast OV /0tmax is due to a mismatch
in behaviour of the Na system between the model and ventricular cells.

The period of the spiral wave of about 100-110 ms in our model corresponds to 120-240 ms
in the human, 110-165 ms in the rabbit, 120-130 ms in the pig in situ, 120-250 ms in the sheep
and 100-200 ms in the dog for epicardial tissue slices (Pertsov et al. 1993). Computations by
Courtemanche & Winfree (1991) with the modified Beeler-Reuter model give a longer (190-300 ms)
period.

The persistence of the spiral wave solution (i.e. their stability and lack of breakdown) is
consistent with the experimental observations of Davidenko et al. (1993). The earlier computations
of Panfilov & Holden (1990) for a Purkinje-fibre kinetics and Courtemanch & Winfree (1991) for
Beeler-Reuter kinetics showed spontaneous spiral breakdown.

The transient, extended tip trajectories seen on initiating a spiral wave in Figure 1(5,¢) means
that although a large medium is required to initiate a re-entrant wave, once established, it can
survive in a smaller medium. A transient change in medium properties (say, a decrease in action
potential duration produced by a transient ischaemic episode) could allow the creation of re-entry
in the transient abnormal tissue, and this could persist even when the tissue properties returned
to normal, even though the size of the tissue was smaller than the critical mass (Zipes et al. 1975).

The slow ageing, i.e. change of the re-entry features from one period to another, is analogous
to that seen in atrial tissue models (Holden & Zhang, 1995), in that it is due to the slow dynamics
of some of the current, pump and concentration components. However, the key characteristic of
meander in this ventricular model is the alternation between fast, almost linear, motions and slow,
sharp turns. This gives a core with a large perimeter but small area, and results from the dynamic
interplay between the fast rate of the action potential depolarization forcing high curvature, while
the long duration of the action potential only allows small curvatures. This provides a general
mechanism for ‘linear’ conduction blocks in homogeneous excitable media with ventricular-like
action potentials. This correlates with ‘linear’, ‘Z-shaped’ and ‘hypocycloidal’ conduction blocks
observed in cellular automata (Fast et al. 1990), modified FitzHugh-Nagumo (Krinsky et al.
1992) and Beeler-Reuter (Efimov et al. 1995) media. For instance, a ‘Z-shaped’ core is similar
to trajectory observed in first couple of rotations in our simulations. These extended arcs of
conduction block would be enhanced by anisotropy in conduction velocity, as seen in Figure 3(h,i)
as ‘linear conduction block’.

A re-entrant wave in such an anisotropic circuit can have an excitable gap (in which recovery
of excitability has occured) before the tissue is re-excited by the re-entrant wave. During the slow,
sharp turn, the gap ahead is large; during the faster, linear motion the gap is smaller. However,
in any case the excitable gap anywhere far from the core is virtually absent (see Fig. 2(b,¢)).

We have proposed resonant drift under feedback control as a means of defibrillating cardiac
(Biktashev & Holden 1994) and atrial (Biktashev & Holden 1995) tissues. This method exploits
the stability and symmetry of a rigidly rotating spiral (i.e. with a circular core): the key idea is



that stable spiral waves can be displaced by spatially uniform perturbations, and so appropriately
timed perturbations could be used to drive a spiral wave out of a medium. The nonuniform tip
velocity, and the spiky pattern of meander, both complicate the response of the ventricular model
spiral wave to perturbation. The trajectories obtained by feedback controlled, resonant driving of
the position of the spiral wave solution shown in Figure 4 show that resonant drift can be used to
control the position of reentrant sources in this model, and so feedback controlled resonant drift
of re-entrant activity of a free (unpinned) spiral or scroll wave may be produced in ventricular
tissue. However, even in two-dimensional tissue slices, the effects of local heterogeneities, that pin
or bind re-entrant sources, may be dominant (Vinson et al. 1994).

In summary, a two-dimensional partial differential equation model of ventricular tissue, with
a detailed description of membrane excitability, generates persistent re-entrant waves with an
appropriate waveform and period, and with extended cores that would be apparent in mapping
studies as lines or arcs of unidirectional conduction block. These re-entrant waves can be moved
by resonant drift , with a velocity that would force a re-entrant wave to a medium boundary in
an epicardial tissue slice preparation within 10 s, if the re-entry was not trapped by localized
heterogeneities. Resonant drift under feedback control can be used to move re-entrant sources
even when their pattern of rotation is not a rigid rotation around a circular core, but is around a
line or arc of unidirectional conduction block.
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A Appendix. Equations of Excitability of a Single Guinea

Pig Ventricular Cell

A.1 Units
s second time
pgm  micrometer space
ul microlitre volume
mJ  millijjoule energy
C coulomb electric charge
mV  millivolt potential
nA  nanoampere  current
°K  kelvin temperature
1S microsiemen  conductance
pF  microfarad capacitance
mol  mole amount of substance
mM  mole per litre  concentration
A.2 Independent Dynamic Variables

e V - transmembrane voltage, mV

e m, h,d x f,q,r, fact, forod - gating variables, 0 ...1
e [Nat], [K*]i, [Ca®*], - intracellular ion concentrations, mM
d [Ca2+]up’ [Ca2+]rel’ [Ca2+]calmod’ [Ca2+]trop

mM

A.3 Differential equations

- intracellular partial [C'a®t] concentrations,

-1
—(Ix + Ix1 + Lo + Lik + Ik + INak + INa + Tona +

vV =
¢ ‘
IsiNa + INaCa + IsiCa + IbCa)
, 200(V +41) —0.056(V+66)
. - 2000
_ —0.125(V475) 1 _ py
h = 20e (1—nh) 1+ 320e=0-1(V+75) h
. 90(V + 19) 36(V + 19)
4 = Tvroat— 9 - mEmm o
. 0.5¢0-0826(V+50) 1.3¢=0-06(V+20)
L N (| C) Rl et T
L 3.125(V +34) 25
I = vmon 1 D mamsand
) 1
i = 3 =ras 0
33
. —-V/17
Fo= 0083 - ) - et
. —1 [1TV[1+]O
+]. = . . ;
[NCL ]1 I/iF(INa + Ibl\a 140 + 3INaK + 3II\aCa + Is1Na)
[K+], = I;F(IK + Ix1 + ik + Tk + Tro — 2INak)
. —1 VsRup Vel
24, = — i — N - —
[C(l ]1 QWF(ISICE + IbCa QIl\aCa) IUP + Irel ‘/ivup
_[Ca2+]calmod - [Ca2+]trop
: Vi
[Ca’t],, = mlup — Iy
. 74
[Ca2+]rel — Vup Itr - Irel
rel
[Ca2+]calmod = 105(Mtrop - [Ca2+]calmod)[ca2+]i - 5O[Ca2+]calmod
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[Ca™¥],y = 10°(Cirop — [Ca®],,,)[Ca®), = 200[Ca™],,,,,
fia = (1= = o) 300( )
—fact(500([caf]‘:%m)2 + 60)
forod = Faee(300( T h )2 4 60)  foreg

[Caz-l-]i + km(}a

A.4 Dependent Quantities - Functions of Dynamic Variables

A.4.1 Channel Transmembrane Currents

; I -
Ig = TR - [KH]oe )
~ [K+], V - Fx
ha = OamEn T | 4 o )
Ito — Gto(v - EK)QT
Ik = Guk(V — Ex)
Ina = GNa(V - Emh)mgh
Iva = Gona(V — Exa)
o 50 —(V—50)
Lica = 4Pcodf—I _[[Ca’*)e R/ — [Cat] ¢ Fo7er |
| = ¢RI
V=50
RT/F
Lik = PCaKPCadf_i/ =9
1 — ¢ BT/F
50 — —50
([KHie ™7 — [KHoe 777
V50
IsiNa = PCaNaPCadf%
1 — e RT/F
50 —(V —50)
[[Nat]ie ®7F — [Nat]oe #77 ]
Ivca = Gpca(V — Fca)

A.4.2 Pump/Exchanger Transmembrane Currents

I; = I [K*]o [Nat];
NaK — NaKmax [I{+]o n k’mK [Ntl+]i + kmNa

67#[1\7(14-]13[0(124-]0 - 6_(1_7)#[17\7“4-]2[0“%]
1+ dxaca([Ca?+];[Nat],? + [Ca?t] [Nat]?)

i

INaCa = kNaCa

A.4.3 [Ca’*] Sequestration Flows

3.0[Ca®t]; - 0.23[Ca®] keycakixes

p— kSl‘C&
Iup - 24 24 kcycakxcs
[C[I ]i + [C(I ]up Karca + kcycakxcs + kcyca
I = 50([Ca*t],, —[Ca®t],)
fact 2 2
Ire = e — km a Ca +
1 (fact + 025) C 2[ ]rel
A.4.4 Reversal potentials
RT [Nat],
EFnag = —1
N F 8 e,
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_ RT, [K*],
_RT [Ca?t],
Eca = ﬁ Og( [Ca2+]i)
+ Tt
P ﬂlog([Na Jo 4+ 0.12[K*],

F [Nat] + 0.12[K +]; )

13



A.5 Standard Parameter Values

C 200 - 10=%uF | knaca 5-10"%nA
IKmax 1.0nA dNaCa 0.0
kal 10mM Y %
ki ImM | kcyea 3.10~*mM
kmNa 40mM | kyes 0.4mM
kmca 7-107*mM | kerea 0.omM
Vinift 20.0mV | F 96485C /mol
INaKmax 0.7TnA | R 8314.41mJ/(mol°K)
GNa 2.5uS | T 310°K
Gio 0.0054S | Vees 0.4
Gpk .0006uS | radius 15pum
Gk1 1.0uS | length 80pm
GuNa .0006uS | Veen 10~ %7 radius®length, ul
GbCa 00025NS ‘/1 (1 - I/ecs - Vup - ‘/rel)‘/cell;/il
Pca 0.25nA/mM | Vip 0.01
Pcak 0.002 | Viel 0.1
PCaNa 0.002 VSRup ‘/cell‘/up/i1
[C’a2+]0 2mM | kmcan 625nA /mM
[K*t]o 4mM | Mirop 0.02mM
[Nat], 140mM | Chrop 0.0bmM
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