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In this paper, we use numerical simulations to demonstrate a new type of interaction of waves in a mathe-

matical model of ”prey-predator” system with taxis, a “half-soliton” interaction, when of two colliding waves,

one annihilates and the other continues to propagate. We show that this effect depends on the “ages”, or, equiv-

alently, “widths’ of the colliding waves. In two spatial dimensions we demonstrate the type of interaction, i.e.

annihilation, quasi-soliton or half-soliton, depends not only on curvature and width of the colliding waves, but

also on the angle of the collision. When conditions of collision are varying in such a way that only a part of a

wave survive the collision, then “taxitons”, compact pieces of solitary waves, may form, which can exist for a

significant time.

PACS numbers: 87.10.+e

INTRODUCTION.

In this paper we continue the study of a system of two spatially distributed populations in a “predator-prey” relationship with

each other, started in our previous works [1–3]. The spatial evolution is governed by three processes: positive taxis of predators

up the gradient of prey (pursuit) and negative taxis of prey down the gradient of predators (evasion), yielding nonlinear “cross-

diffusion” terms, and random motion of both species (diffusion). The resulting mathematical model is a system of two partial

differential equations,

∂P

∂t
= f(P,Z) + D∇2P + h−∇ (P∇Z) ,

∂Z

∂t
= g(P,Z) + D∇2Z − h+∇ (Z∇P ) , (1)

whereP (r, t) is the density of the prey population,Z(r, t) is the density of the predator population, the nonlinear functions

f(P,Z) and g(P,Z) describe local dynamics, including growth and interaction of the species, whereas the diffusion terms
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describe their spread in space, e.g. resulting from individual random motions. The taxis terms are as in [4], constanth− is the

coefficient of negative taxis ofP on the gradient ofZ (prey evading predators), andh+ is the coefficient of positive taxis ofZ

on the gradient ofP (predators pursuing prey). For simplicity, the diffusion coefficientD is considered constant, uniform and

equal for both species. In this paper we consider problems in one spatial dimension,r = (x), and in two spatial dimensions,

r = (x, y).

We consider the local kinetics functionsf(P,Z) andg(P,Z), describing the population dynamics of prey (phytoplankton)P

and predators (zooplankton)Z, in the Holling type III form used by Truscott and Brindley [5]. In non-dimensional form these

are

f(P,Z) = βP (1− P )− ZP 2/(P 2 + ν2),

g(P,Z) = γZP 2/(P 2 + ν2)− wZ. (2)

It is known that at appropriate choice of parameters, these kinetics demonstrate “excitable” behaviour, and the reaction-diffusion

system (1) withh− = h+ = 0 has propagating solitary wave solutions [5, 6].

We have studied properties of population taxis waves in the mathematical model (1,2) for one dimensional [1, 2] and two

dimensional [3] cases. In those works, we have shown that inclusion of the taxis terms can radically change the properties of

propagating waves, compared to the much better studied waves in purely reaction-diffusion systems without taxis. We have

demonstrated that the very mechanism of propagation of waves in such systems is different. Here are some peculiar features of

taxis waves, described in [1, 2]:

• (a) Essentially different shape of the wave profiles. ForP (x − ct) profile, it could be either “single-hump” or “double-

hump” shape.

• (b) The dependence of the wave propagating velocity on the taxis coefficients has two distinct branches, “parabolic” and

“linear”. The transition from one branch to the other correlates with changes in the shape of the wave profiles: the parabolic

branch of this graph correspond to a “double-hump” shape of theP (x− ct) profile, and the linear branch corresponds to

a “single-hump” shape.

• (c) In the space of parameters of (1), there are large regions, where waves demonstrate quasi-soliton interaction: they can

penetrate through each other, and also reflect from impermeable boundaries, see Fig. 1(a-c).

• (d) For some regions in the parameter space, taxis waves can spontaneously split, emitting “backward” propagating waves.

This can be observed both in the case of soliton-like interaction (Fig. 1(a), solid triangles) and in the case of annihilating
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waves (Fig. 1(a), hollow triangles). The backward emitted waves with time either decay, or split themselves. In the latter

case, the chain of splitting events can lead to self-supporting, aperiodic or approximately periodic activity.

• (e) The dependence of the propagation velocity on diffusion in this system differs from the square-root dependence, always

valid for reaction-diffusion waves, see Fig. 1(d).

Additionally, in two spatial dimensions, we observed [3]

• (f) Partial reflection of waves from boundaries, or their partial penetration through each other.

• (g) “Swollen tips”, i.e. circular wave sources, produced by free ends of broken waves.

• (h) Attachment of free ends of broken waves to the wavebacks.

In this paper, by numerical simulation of the system (1,2) we demonstrate a new type wave interactions, when of two colliding

waves, one annihilates and the other continues to propagate. For brevity, we call this behaviour “half-soliton”.

DETAILS OF THE MODEL AND NUMERICAL METHODS

We used “upwind” schemes to approximate the taxis termsLu = ∂
∂xu(x, t)∂S(x,t)

∂x . The idea of the “upwind” schemes is that

they use not the mean between values of the variables subject to taxis at two neighbouring grid nodes as in the central scheme,

but select one or the other depending on the direction of taxis, i.e. sign of the gradient of the attractant. For details of the

schemes we used, see our previous work [2]. As we have shown in [2], the implicit central scheme only works for (1) ifD > 0,

whereas our “upwind” schemes work forD = 0 as well. We used time-implicit scheme with discretization stepsδx = 0.1, and

δt = 5×10−3 for one-dimensional simulations, and time-explicit with discretization steps forδx = δy = 0.5 andδt = 5×10−3

for two-dimensional calculations.

Unless specified otherwise, we have used the same parameters in (1) in our numerics, as we used in [2], that isβ = 1,

ν = 0.07, w = 0.004, and two different values ofγ: γ = 0.01, henceforth “smallγ”, which allows propagation of purely

reaction-diffusion waves, i.e. withh+ = h− = 0, D > 0; andγ = 0.016, henceforth “largeγ”, for which purely reaction-

diffusion waves do not propagate, and taxis is required (see Fig. 1(a-c)).System (1,2) is non-dimensionalized, thus all

the variables and parameters are dimensionless.

In all numerics, we used non-flux boundary conditions:∂P
∂x |x=0,L = 0 and ∂Z

∂x |x=0,L = 0 for one-dimensional problems,

x ∈ [0, L], and ∂P
∂x |x=0,Lx

= 0, ∂Z
∂x |x=0,Lx

= 0 and ∂P
∂y |y=0,Ly

= 0, ∂Z
∂y |y=0,Ly

= 0 for two-dimensional problems,(x, y) ∈
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FIG. 1: (a), (b), (c) Parametric regions corresponding to different regimes of taxis waves (β = 1, w = 0.004). Solid circles: quasi-soliton

waves. Solid triangles: quasi-solitons with the wave splitting. Hollow circles: stably propagating waves annihilating on collision. Hollow

triangles: splitting waves annihilating on collision. Dots: no propagating wave solution. (d) Wave propagation velocity as function of the

square root of the diffusion coefficient. Solid line and the upper row of symbols:γ = 0.016, h− = 5, h+ = 1. Dotted line and the lower row:

γ = 0.01, h− = h+ = 1. In reaction-diffusion systems, this dependence is always a straight line.Here and on other figures, all

parameters and variables are dimensionless.

[0, Lx]× [0, Ly].
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”HALF-SOLITON” WAVE INTERACTION IN ONE DIMENSIONAL CASE

Figure 2 illustrates spatio-temporal dynamics of population taxis waves in (1), including their formation, propagation and

reflection from boundaries. The waves were initiated, both for smallγ, panel (a), and for largeγ, panel (b), by setting initial

conditions forP (x, 0) = 0.8 for x ∈ [0, 1] andP (x, 0) for x ∈ (1, L] andZ(x, 0) for x ∈ [0, L] equal to their equilibrium

values.

The key observation for the present paper is that taxis waves establish their stationary structure and corresponding speed only

after a rather long transient. Figure 3 illustrates variations of the propagation velocity,V , panels (a,c) and width,W , panel (b,d),

of a wave during such transients, both before and after its reflection from the boundary. During the transient, the propagation

velocity distinctly decreases for a short interval of time (approximately betweent = 450 andt = 550), while the wave width

continues to monotonically approach its stationary value. This temporary decrease of the velocity correlates with a change in

the shape of the wave profile. Figures 4 and 5 show the wave profiles corresponding to selected time moments, indicated by

arrows on Fig. 3. We see that the temporary decrease of propagation velocity corresponds to the transition of the wave profile

from double-hump to single-hump shape. As mentioned earlier, in [2] we have shown that these two shapes correspond to two

distinct branches on the graph of stationary propagation speedV onh+, “parabolic” and “linear”. Figures 4 and 5 demonstrate

that the transition from one shape to the other happens during the transient, thus associated variations in the propagation velocity

seen on Fig. 3. Besides, the change of shape itself causes apparent short-term change in the velocity due to the method of the

measuring the velocity of the wave, as the velocity of the point with a particular value ofP ; this is the main reason with the

sharp local minima of the propagation velocity coinciding with the transitions from one wave shape to the other.

On the other hand, the type of interaction of stationary waves, i.e. reflection or annihilation (see Fig. 1), also correlates with

the shape of the profiles of those waves [2]. Since the shape of the profiles changes in the long transient after the wave initiation,

we decided to check if the waves at different stages of their “life” will show different type of interaction, corresponding to their

current shape. This conjecture has been tested by numerical experiments, results of which are presented on Fig. 6. Periodic waves

were initiated in a one-dimensional medium with non-flux boundaries. In addition to already known quasi-soliton reflection of

waves and their splitting, we have observed also a new type of interaction, where of two colliding waves only one survives,

whereas the other decays. We call this “half-soliton” interaction.

For a detailed study of this half-soliton interaction, we simulated collisions of artificially prepared taxis waves of different

“ages”. We have recorded a wave in a large medium at chosen moments of its transient, namely,t = 195, 345, 461 and645; (all
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FIG. 2: The spatio-temporal dynamics of the taxis wave formation, propagation and reflection from impermeable boundaries for system (1) in

one dimensional case withL = 250: (a)γ = 0.01, D = 0.04, h− = h+ = 1; (b)γ = 0.016, D = 0, h− = 5, h+ = 1. Black corresponds to

P = 0.9, white toP = 0.
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FIG. 3: Variations of the propagation velocity (a,c) and wave width (b,d) during the transient, corresponding to Fig. 2: (a,b)γ = 0.01,

D = 0.04, h− = h+ = 1, (c,d)γ = 0.016, D = 0, h− = 5, h+ = 1. Width W (t) is defined as the distance between the points on the front

and the back of the wave whereP (x, t) = 0.4; propagation velocityV (x, t) is defined as the instant velocity of such point on the front, i.e.

whereP (x, t) = 0.4 and∂P/∂t(x, t) > 0. Arrows designate the time moments, for which Figs. 4 and 5 show the wave profiles.

by 5 time units earlier than the moments shown on Fig. 4). Then we set up initial conditions, in which in one half of the medium

we used a recorded wave of one age, suitably shifted alongx axis, and in the other half of the medium we used another recorded

wave. Of course, the wave in the right half of the medium was also inverted, so as to move towards the left wave. As the time

from such artificial initial conditions to the collision was approximately 5 time units, the ages of waves at the very moment of

collision correspond to those shown on Fig. 4. So, we denote such waves as asW200, W350, W466 andW650, according to their

ages.

Figure 7 describes interaction of wavesW200 andW466. The result is thatW200 has suppressedW466. Similar events are
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FIG. 4: Variations of the wave profiles, corresponding to the selected time moments on Fig. 2(a) and Fig. 3(a,b).

A B C D

A - A A A

B A + B B

C A B + +

D A B + +

TABLE I: Results of collisions forγ = 0.01, D = 0.04, h− = h+ = 1. Here ‘A’ denotesW200, ‘B’ is W350, ‘C’ is W466, ‘D’ is W650, result

of collision is shown on the intersection of corresponding row and column, letter denotes the surviving wave, ‘+’ means both waves survive,

‘-’ means neither survives. Approximate ratios of widths (P = 0.4) are:λA/λD = 5.3, λB/λD = 2, λC/λD = 1.25.

shown on Fig. 8 (W200 vs W466), Fig. 9 (W350 vs W466) and Fig. 10 (W650 vs W466). Tables I and II summarize the results of

collisions of waves of various ages.

These results suggest that the half-soliton interaction takes place when the two colliding waves are essentially different in

their widths. A thinner, older wave is less likely to penetrate through a younger, thicker wave. Note, that since the colliding

waves now are different from each other, we can distinguish “reflection” from “penetration” of the waves, and the most natural
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FIG. 5: Variations of the wave profiles, corresponding to the selected time moments on Fig. 2(b) and Fig. 3(c,d).

a b c d

a - a a a

b a - b b

c a b + +

d a b + +

TABLE II: Results of collisions forγ = 0.016, D = 0, h− = 5, h+ = 1. Here ‘a’ isw84, ‘b’ is w140 , ‘c’ is w160 , ‘d’ is w450, corresponding

to the selected moments indicated on Fig. 2, see also Fig. 3(c,d). Approximate ratios of widths (P = 0.4) are:λa/λd = 2.8, λb/λd = 1.4,

λc/λd = 1.14.

interpretation is that the waves penetrate though each other, if they do, rather than reflect.

HALF-SOLITONS IN TWO DIMENSIONS

In our previous work [3], we have described some typical two-dimensional regimes of propagation of taxis waves in (1,2).

In particular, we have demonstrated that for parameters corresponding to quasi-soliton behaviour in one dimension, concentric
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FIG. 6: The spatio-temporal dynamics of the taxis waves periodically initiated at the left end, with time periodT , specified under the density

plots. Independent variables ranges:L = 250, t ∈ [0, 2000]. (a) and (b):γ = 0.01, D = 0.04, h− = h+ = 1 ; (c) and (d):γ = 0.016,

D = 0, h− = 5, h+ = 1.

waves can either penetrate/reflect on collision, or annihilate, depending on conditions, particularly on the curvature of the waves.

The results of the previous section show, however, that another factor that can affect the result of collision, is the “age” state of

the colliding waves.

Let us consider interaction of concentric taxis waves of different radia and different widths. As in one-dimensional collisions,

the initial conditions have been prepared from solitary one-dimensional pulses recorded at different stages of their transients and

therefore having different widths. IfP1d(x), Z1d(x) is such a recording, shifted alongx axis so that the front is atx = 0, then

initial conditions we used can be described as

P (x, y, 0) = P1d

(√
x2 + y2 −R

)
, Z(x, y, 0) = Z1d

(√
x2 + y2 −R

)
,

whereR was the desired radius of the circular wave.

For parametersγ = 0.016, D = 0, h− = 5, h+ = 1, we initiated a one-dimensional wave in the standard way described

above, and recorded it at timest = 120 (as waveW ), t = 150 (waveS) and t = 450 (waveU ). These recorded waves

had widths, measured at levelP = 0.4, correspondingly,λW = 9.2, λS = 6.4 andλU = 5.1, so thatλW /λU = 1.8 and

λS/λU = 1.25.

Figure 11 shows interaction of twoU waves with initial radiaR = 70. In this case, the waves both penetrate through each

other and reflect from the domain boundaries. Similar quasi-soliton interaction is observed on collision of aU and anS waves

with equal radiaR = 70, see Fig. 12. Interaction ofU andW waves with the same radia demonstrates a half-soliton behaviour,

when waveW suppressesU , but annihilates at the boundary.
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FIG. 7: Collision ofW200 (from the left) andW466 (from the right).

Collision of twoS waves with initial radiaR = 40, see Fig. 14, produces spatially localised waves, which we call “taxitons”

(panels d-f). These taxitons interact in half-soliton way with waves reflected from the boundaries (panels g,h).

There are also simulations showing both half-soliton and taxiton regimes at the same time. On Fig. 15, waveU with initial

radiusR = 70 collided with waveS with initial radiusR = 40. The result was thatS-wave penetrated throughU in the

half-soliton way, andU -wave penetrated only partially, as a taxiton (panels c–e). This is followed by an even more complicated

picture of different kinds of interactions, including tip-swelling as described in [3] (panels n,o).

The type of interaction (annihilation, quasi-soliton or half-soliton) depends not only on curvature and width of the colliding

waves, but also on the angle of collision. This explains formation of the taxitons, where only a part of a wave continues to

propagate after collision, even though all parts of the wave are of the same age. The waves colliding head-on are more likely to

penetrate than in a skewed collision, and so when the widths of the waves are close to their critical values allowing penetration,

only the part of the wave which is close to first collision site penetrates, whereas more distant parts annihilate.

Figures 16 and 17 illustrate collision at different angles in pure form. Initial conditions have been formed from the same 1D
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FIG. 8: Collision ofW350 (from the left) andW466 (from the right).

waveU (old-age, well established), arranged in 2D in the form of two plane waves meeting each other at different angles, i.e.

P (x, y, 0) = P1d (x cos(θ) + y sin(θ)− C) , Z(x, y, 0) = Z1d (x cos(θ) + y sin(θ)− C) ,

whereθ andC are constants, different for the left and the right halves of the medium.

In Fig. 16, angle between the fronts of the waves is80◦, and the waves annihilate. On Fig. 17, the angle is60◦, and the waves

penetrate through each other. This proves directly that result of collision depends on the angle of incidence.

Conclusions. In our previous papers [1–3] we have described soliton-like behaviour and also spontaneous wave splitting in

a class of waves that can exist in population dynamics models due to taxis of species to each other’s gradients. It was shown that

properties of taxis waves are essentially different from those of solitary waves observed in excitable reaction-diffusion systems.

In the present paper we have described new properties of such taxis waves:

• “Half-soliton interaction”, when only one of the colliding waves penetrates and the other annihilates. This is observed

both in one and in two spatial dimensions.

• “Taxitons”, i.e. compact pieces of solitary waves in two dimensions, that can form when only a part of a colliding wave



12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80
x

P,Z

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
x

P,Z

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
x

P,Z

(a)t = 0 (b)t = 7 (c)t = 10

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
x

P,Z

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80
x

P,Z

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
x

P,Z

(d)t = 11 (e)t = 13 (f)t = 30

FIG. 9: Collision ofW466 (from the left) andW466 (from the right).

can manage to penetrate through the collision.

We have demonstrated that half-soliton interaction depends on the width of the colliding waves, which can depend on their

history, and formation of taxitons depends on that too, and also on the angle of incidence between the colliding waves. The

dependence on the angle of incidence is apparently related to the dependence on the wave width, as in an oblique collision, the

apparent width of the waves along the line of collision is larger.

So, the results of the present and previous works [1–3] demonstrate that population taxis waves have unique properties, making

them different both from solitons in conservative systems [7], and from solitary waves in excitable reaction-diffusion systems

[8, 9]. A broader investigation of this new class of nonlinear waves is required, which is both interesting from mathematical

viewpoint, and also motivated by recent experimental studies of chemotaxis in bacteria [10, 11], which demonstrated interesting

results on propagation and interaction of population taxis waves, and also on self-organisation of population systems with taxis

[12–22].

This study was supported in part by EPSRC grant GR/S08664/01 (UK) and RFBR grant 03-01-00673 (Russia).
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FIG. 10: Collision ofW650 (from the left) andW466 (from the right).
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FIG. 11: Quasi-soliton interaction of twoU -waves with initial radiaR = 70. Time interval between the panels is 20. Medium sizeLx×Ly =

150× 100.
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FIG. 12: Quasi-soliton interaction of aU wave and anS wave with initial radiaR = 70. Time interval between the panels is 20. Domain size

Lx × Ly = 150× 100.
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FIG. 13: Half-soliton interaction of aU wave and aW wave with initial radiaR = 70. Time interval between the panels is 20. Domain size

Lx × Ly = 150× 100.
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(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 130 (i) t = 140

FIG. 14: Interaction of twoS-waves with initial radiusR = 40. Timing is shown under the panels. Domain sizeLx × Ly = 150× 100.
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FIG. 15: Interaction of aU wave with initial radiusR = 70 and anS wave with initiation radiusR = 40. Time interval between the panels is

20. Domain sizeLx × Ly = 150× 100.
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(a) (b) (c) (d)

FIG. 16: Interaction of two planeU waves, with an initial angle of80◦ between them. Time interval between the panels is 20. Domain size

Lx × Ly = 150× 50.

(a) (b) (c) (d)

FIG. 17: Interaction of two planeU waves, with an initial angle of60◦ between them. Time interval between the panels is 30. Domain size

Lx × Ly = 150× 50.
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