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Abstract

We explain the phenomenon of hypermeander of spiral waves, observed in numerical experiments with various models of
excitable media, as a chaotic attractor in the quotient system with respect to the Euclidean group. Such an attractor should
lead to a motion of the spiral wave tip analogous to that of a Brownian particle, with mean square of displacement of the tip
growing linearly at large times. This prediction is confirmed by numerical experiments with hypermeandering spiral waves.
Copyright © 1998 Elsevier Science B.V.
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1. Introduction

In [1] we have shown how the Euclidean symmetry group of the plane can be exploited to split the analysis of
spiral wave dynamics into motion in a reduced non-symmetric ‘quotient’ dynamic system, and drift along the group.
For a reaction—diffusion system

du = DV2u + f(u) 1)

with u(r, 1) = (u1, u2,...) € R, 1> 2,1 = (x, y) € R, the reduced dynamic system is the systethRIDEs and
three finite equations,

3v =DV% + f(v) — (C, V)V — wdpv,

2
0=1231(w(0, 1), 0=g2(w(0,1), 0=20:g3(v(0,1)), @)

for I + 3 dynamic variablegv, ¢, w), v(r, 1) € R/, c(t) = (cx (1), cy()) € R2, w(r) € R, where theg; are real
functions andlg = ya, — xdy. Drift along the group is described by equations
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30 =w(1), ()
%R =c(r)expio), (4)

wherec = ¢, +icy, andR = X +1iY € C and® < R are coordinates along the Euclidean gréupE(2), the
displacement vector and rotation angle, respectively.

The mathematical idea of this operation is reduction of the dynamics onto the manifold of group orbits, which
is a standard technique for finite-dimensional systems [2]. Here we used it for PDEs, and parametrised the orbit
manifold by a manifold lying in the phase space transversal to the orbits. In this particular case, this splitting into
two parts has a simple visual interpretation: the first of Egs. (2) is the reaction—diffusion system in a moving frame
of reference, while the next two say that this frame is chosen so that a specific point of the spiral wave, naturally
associated with the spiral wave tip, is always located at the origin and the last equation fixes relative orientation of
the spiral tip and of the frame of reference. A typical choice of functigris:

g1(v) = v1 — v10, g2(v) = v2 — v2o, g3(v) = vy, (5)

with some constants; g, v2o, Which correspond to the definition of the tip as intersection of two isolines, in this
example of components 1 and 2, and orientation of the tip defined as that of the gradient of the first component.
Hence, the equations along the group (3),(4) are interpreted as motion equations of the spiral Rpbeiith its
complex coordinate an@ its orientation.

In [1] we have shown that, in particular, this approach provides a simple derivation of Barkley’s [3—5] model
system for the bifurcation from simple to compound rotation, recently studied rigorously by Wulff [6] in the original
system with symmetry. In our approach, this corresponds simply to the standard Andronov—Hopf bifurcation in the
guotient system (2).

The compound two-periodic rotation of spiral wave is not the only type of meander pattern, and more complicated
patterns have been reported in literature [7-9]; Winfree [7] has called this behaviour ‘hypermeander’. A specific
feature of hypermeander is that the spiral tip trajectory appears complicated, and not compact, i.e. it goes outside
any prescribed region — or, at least, has a much larger excursion than the biperiodic meander of the same model
with similar values of parameters.

In this paper we discuss the hypothesis put forward in [1,3,5,9] that hypermeander is related to some chaotic
behaviour, and more specifically, a chaotic attractor in the quotient system (2). We show that in this case the spiral
tip trajectory is not compact, but walks around the plane, and at large time this walk is analogous to Brownian
motion. This prediction is consistent with numerical experiments.

2. Deterministic Brownian motion
2.1. Mathematical background

The classical theory of Brownian motion considers it as a stochastic process, i.e. as a motion driven by a random
force that results from the superposition of a large number of independent collisions. Deterministic chaos has similar
effects to a stochastic process, and motion driven by a force depending on a single low-dimensional chaotic process
can exhibit properties similar to those of stochastic Brownian motion, e.g. mean walking distaft¢e and is
then called deterministic Brownian motion or deterministic diffusion. The well-studied classes of such processes,
starting from the work [10], are chaotic and periodic iterated maps; there the possibility of macroscopic ‘diffusion’

1 We consider only the subgroup of orientation-preserving motions.



344 V.N. Biktashev, A.V. Holden/Physica D 116 (1998) 342-354

motion is provided by a non-compact discrete group of translations. Here we deal with a continuous symmetry
group and continuous time, and will use a continuous version of corresponding statements:

Theorem 1.Let a semi-flowF’ in a Banach spacB
ur— F'(u), uebB, t>0

be ergodic with an invariant measyre [ du = 1. Suppose a functiol («) : B — R has a zero mean value jin
Vo [ vdua =0,

and its autocorrelation function

mwé/vwwwﬁwmmw ()
quickly decays; more precisely,
+o0
Ko B / K(r)dt < o0. (7)

Consider a point with coordinatee R moving with the velocityV,
aq(r,u)/dt = V(F'(u)). (8)

Then the mean squared displacement of the point in a given time interval

T
. 1
I(t,u) 2 Tﬂﬂﬂoo?/(‘l(f +1,u) — q(z,u)*dr,
0

grows linearly at large,
I(t,u) = Kot +0(t), t— o0, 9)

for almost allu with respect tqu.
If a stronger condition on the autocorrelation function is fulfilled,

— %Kl 2 /dz/K(g)ds <00, (10)
0 T

then this estimation can be strengthened:

I(t,u) = Kot + K1 +0(1), t— +o0. (12)

We did not find a proof of this statement in literature, and so we present it in Appendix A.

We assume that the invariant measure, ergodicity and quickly decaying correlation functions are consequences
of a chaotic attractor of the semi-flo®’, though detailed specification of suitable attractors would lead us away
from the main subject.

Naturally, in case of non-zert, the mean square of the displacement growéVas)?, i.e. there is a directed
drift with velocity Vg rather than Brownian walk. However, it is easy to see that if other conditions of Theorem 1 are
fulfilled, in the frame of reference moving with velocity we shall observe Brownian walk again. In other words,
in general case there is a superposition of the directed and Brownian motions.
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2.2. Example: Deterministic diffusion it

Theorem 1 can be directly applied to the case of chaos-driven walk along a straight line, as recently described by
Coullet and Emilsson [11]. This is Ising—Bloch wall dynamics in a modified complex Ginzburg—Landau equation:

du = Au — Blul’u + otafu +yiu= f(u)+ ozafu (12)

fora, B, A, u(x,t) e Candy, x,t € R.

At some parameter values, there are two stable equilifariein the spatially homogeneous systém = f (),
and solutions are considered which asymptotically approach one equilibriusrat-oo and the other at — —oo.
This equation is invariant under the group of translations along thgis. Reduction by this group, in the same
style as we did it for reaction—diffusion system (1) and Euclidean gBE(R), yields the quotient system

v = f() +ad?v — co,v, 0= g(v(0,1)) (13)
for dynamic variables andc, where
v(x, ) =u(x—X@),1), (14)

andg(v) € R could be chosen, say Re — vg or Im(v) — vg. X can be considered as the wall coordinate, then
drift along the group is the wall motion, and is described simply by

dX/dr = c(z). (15)

Coullet and Emilsson [11] simulated the dynamics of the wall solutions and analysed them in terms of the quantity
M (r) defined as

M) = / |9y u(x, 1)]? dx, (16)

which is invariant under the group, i.e. is a functional of the quotient system (13). At some parameter values,
they have found that time-delay pla¥(¢) vs. M (¢t + t) showed pictures typical for chaotic attractors. Assuming

that this implies invariant measure, ergodicity and decaying correlation functions, we can apply Theorem 1, by
identifying the semi-flow generated by (13) witH of Theorem 1 X with ¢ andc with V. In accordance with the
statement of Theorem 1, in the case of even distribution of the velocity, which took place in a region of parameters,
Coullet and Emilsson observed ‘diffusive’ motion with a root mean squared displacement that scilédmshe

case of non-even distribution which happened in between the ‘diffusive’ parameter range, the root mean squared
displacement scaled aswhich might correspond to the superposition of directed and Brownian motion.

2.3. Application to hypermeander

For our present case of diffusion alo8g(2), application of Theorem 1 is not so simple, as the group manifold
not only is not a straight line (it is three-dimensional), but is ‘curved’, due to the non-commutati8&(2j.

Formally, this is represented by the fact that Eqgs. (3) and (4) neither have a simple form (8), nor can be reduced
to one. So, the straightforward identificationgodf Theorem 1 with Euclidean-group coordinafésy and®, and
the semi-flowF?’ with that generated by the dynamical system (2), do not work. In this case, the tip coordinates
R() = X () +iY(¢) are determined via two indefinite integrals, the first to find) from w(¢), and the second
to find R(¢z) from ¢(¢) and ® (¢). Correspondingly, Theorem 1 should be applied twice, to each of the indefinite
integrals, and the second application does not succeed due to the possibility of correlation leetwyearc(z),
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as they come from the same dynamic system. Conceivably, this is not just a technical difficulty, but reflects the
essence of the problem, as it is seen from the following alternative viewpoint.
Let us reduce (1) by the subgroup of translations only. The quotient system is

dyw=DV2w+ f(w) — (C,VIw,  wi(0,1) =uo,  w2(0,1) = uzo 17)
for dynamic variables,

wk,y,)=ux—X@),y—Y(®),1), (18)
andC = (C,, Cy), and motion along the group is motion of the tip,

#X =Cy, &Y =C,. (19)

Note that the ‘semi-reduced system’ (17) is still invariant under the subgroup of rotations of the Euclidean group,
SO(2) c SE(2), represented as simultaneous rotations of ve€tand arguments of.2 The subgroup of trans-
lations is commutative, the dynamics ®fandY are separated, and we can identjfpf Theorem 1 withX and
Y, V with C, andC,, andF* with the semi-flow generated by (17). As the semi-reduced system is still invariant
underG = SO(2), its maximal attractor must be invariant under this group, but can be split into invariant subsets,
each invariant under a subgrofipc G. This subgroup could be eith80(2) itself, in which case the only invariant
subset coincides with the whole maximal attractorZgr, m € N or the trivial group, and then there are many
invariant subsets. Let us consider all these cases:
1. IfSisSO(2) orZ,,,m > 1, then the mean value Gfvanishes, as required by Theorem 1, and the tip undergoes
Brownian motion in the plane. As the motion is in both th@ndy directions, the mean squared walking distance
is

T
. 1 2 2
I(I,M)ZTLITOO?/[(X(t—f—t,u)—X(t,u)) + Y (t+1t,u) —Y(r,u))]dr
0

=2Kot +2K1+0(1), t— +o0, (20)

whereKo and K1 are parameters of correlation function of each of the velooffieandC,. This corresponds

to diffusion coefficientk/2.

2. Alternatively, if S is the trivial group, then the mean value of the tip velodity = [ Cdu1 is generically
non-zero, if averaged over an ergodic component of measyreorresponding to an invariant subset of the
attractor. In this case, there will be a superposition of directed drift with the velagjtyand direction depending
on the particular trajectory at the maximal attractor, and a Brownian walk.

In a particular system, either case may take place. In an analogous problem, that of periodic solutions in systems
with finite symmetry groups, it is known that symmetry subgroup of a periodic solution is a robust property, in the
sense that it changes only at bifurcation points [12]. Here we deal with continuous groups and chaotic attractors,
and so the question is more complicated. As pointed out by Mantel and Barkley [13], in the case of quasi-periodic
behaviour in the quotient system, there is directed drift and hence splitting of the attractor in the semi-reduced
system for a set of parameters which is everywhere dense, as well as the set of non-split attractors. For the chaotic
case considered here, results of Jones and Parry [14] can be applied. Namely, Theorem 5 of [14] claims, in certain
assumptions, that if the quotient system is uniquely ergodic, the full system is also uniquely ergodic, for ‘almost

2 Equivalently, the semi-reduced system can be obtained by combining (2) and (3), and idewtifsr@, + iCy with cexp(i®) so
that (19) corresponds to (4). The gro8@(2) is represented in the semi-reduced system (2)+(3) by shiéis in
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all’ parameters. In our case, assuming unique ergodicity in (2) and applied to thefBoRp this theorem means
that a non-split attractor in (17) is the typical case, while a split attractor is the case of measure zero. However, this
does not exclude the possibility of both the cases being everywhere dense.

Note that the trajectory of the tip would be erratic in either case, and in practice they may be indistinguishable,
especially if the hypermeander diffusion coefficiéhy/2 is large and the mean velocity is small, or experimental
noise or round-off errors are significant.

To sum up, we see that if the quotient system of the spiral wave has a chaotic attractor, then the trajectory of the
tip will not only look complicated, but also be non-compact. The long-time asymptotics of tip motion would be
either a Brownian motion or a superposition of the Brownian motion and a directed drift, with direction depending
on initial conditions and perhaps slowly varying due to experimental noise or round-off errors.

In either case, a chaotic attractor in the quotient system may explain the corresponding feature of the hyperme-
andering spiral waves.

3. Numerical illustration

The prediction of quasi-Brownian behaviour made in the previous section could be verified within the lim-
its of the model system, in the style of [9] or [13]. This, however, would be essentially a numerical check of
rigorously proved statements, and so it is more interesting to observe this type of behaviour in a particular reaction—
diffusion system. There are a few papers in which hypermeandering spiral waves were reported; not all of them
were we able to reproduce. So, the cubic FitzHugh—Nagumo model with parameters reported in [7] as providing
a hypermeander, did show a rather complicated behaviour — however, in our experiments this complicated be-
haviour only lasted a few dozens of spiral revolutions, whereafter standard flower-like meander established. The
Oregonator model with parameters described in [8] showed complicated and obviously not flower-like tip trajec-
tory. However, that trajectory remained compact for the longest timescales we followed it (1pstalt.u.),
which, apparently, means that the quotient system had complicated but not chaotic dynamics. This is consistent
with observations of Plesser anduler [15] of up to four-periodic motions and no chaos in Oregonator spiral
waves.

a | b c

Fig. 1. (a) Spiral wave in the medium &30 s.u. large. Darkness of shading shows sum of the values of activator vasiavid inhibitor
variableuy. (b) Same, in the medium 20 20 s.u. The black line is a piece of trajectory of the tip. (c) Piece of the tip trajectory during
40t.u.; arrows show begin and end of the piece, size of the squarexd<.0G.u., cut from the medium 8080 s.u.



348 V.N. Biktashev, A.V. Holden/Physica D 116 (1998) 342-354

a b

Fig. 2. Histogram of the tip position, (a) through the first 800 t.u., (b) through the whole duration of numerical experignertit.u.
Medium size: 80x 80 s.u. The peak at the far border of panel (b) corresponds to the tip attaching the boundary before dying out.

Eventually, we have chosen Barkley's model [16] for our experiments:

u2+b

duq/0t :Vzul—i-%ul(l—ul) (ul— ) dup/dt = u1 — us (22)

for two reasons. First, it is the fastest for simulation, which is provided by the efficient numeric algorithm of [16].
This algorithm, in particular, includes resettingto the null-cline value 0 or 1 if it becomes too close (closer than

8 = 1073) to one of them, so that in a large number of nodes there is no need to compute Laplacian which is zero.
Second, we were able to find parameter values which produced intensive and persistent hypermeander with clearly
non-local tip trajectory:

a=025  b=0001, e=1/500 (22)

Both these aspects are crucial, as the statistical predictions of Theorem 1 required very long experiments. The
grid steps were chosén. = 0.2 su. in space and, = 0.008tu. in time. The time step is small enough to obey
diffusion stability criterionz; < h§/4, but sincer, /e = 4 > 1, local kinetics ofs; variable were calculated using
implicit version of [16]. This choice of computation steps is rather far from giving a fully resolved PDE simulation
— however, the major approximation error produced by the implicit calculation of fast local kinetigsdad not
influence the symmetry of the model, and change of the dynamic field in one time step always remained small.
So, we believe that the computational model used is of a spatially extended dynamical system with all the required
symmetry properties, and is suitable for testing the theory considered, no matter what is its exact relation to the
PDE system (21}

Maximal medium size was 88 80 s.u., i.e. 400< 400 grid nodes. The spiral wave was initiated from cross-
gradient initial conditionsi; was assigned to 0 in the left half of the medium and to 1 in the right halfuand
was assigned to 0 in the bottom half of the medium and/®in the upper half. The spiral wave and typical tip
trajectory are illustrated in Fig. 1.

This shows that the trajectory looks evidently more complicated than regular ‘flowers’ of simple meander, thus it
may be called hypermeander. To see evolution of the tip at long times, we used histograms of tip position, obtained

3In fact, computations with smaller steps give different behaviour (R. Mantel, private communication).
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~N ~

Fig. 3. A piece of trajectory of the quotient system (2) as extracted from the numerical experiment. Here the Cartesian cogrginates
andz stand forc,, ¢y, andw of (2), respectively.

with bins of 5x 5 grid cells (see Fig. 2). This solution was followed for aba66k 10° time steps, or Bx 10*t.u.,
when the spiral wave has died out by reaching the boundary.
It can be seen in that figure that the tip does walk in the plane to large distances. We have found that this trajectory
is long enough to interpret the behaviour of this system in terms of the proposed theory.
To do that, we extracted tip path datat), Y (r) and® (r), whereX andY were coordinates of the crossing of
two isolines,

u1(X@),Y(@),r) =05, ur(X@),Y(),t) =05a—b (23)
and® was the azimuthal angle &fu; calculated at the tip point,
O(r) = arg[(0/dx +19/3y)usr(X (1), Y (1), D)]. (24)

The gradient has been calculated by central differences at the corners of the computational cell containing the tip,
and then bilinearly interpolated to the tip point.

The time derivatives B/d¢, dY/dr and d?/dr were substituted into (3) and (4) to reconstreict andw. The
numerical differentiation was performed with simplest Tikhonov regularisation procedure [17] with regularising
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~ N

0 2 4 6 8

X

Fig. 4. Attractor of the system (2), i.e. a very long trajectory from the numerical experiment, shown by dots; coordinates are the same as
in Fig. 3.

functional A [ (y")2dr equivalent to frequency filtering with window/ @1 + (Aw)?), where the parametet was
chosen 0.06 t.u. The results are shown in Figs. 3-5.

Fig. 3 shows a typical projection of the trajectory in the quotient system in theaxes, »). One loop typically
consists of a large piece of a fast motion, corresponding to the quick jumps of the tip trajectory, and a smaller piece
closer to the origin with a slower and oscillatory motion, corresponding to the sharp turns when the tip nearly stops.
This shape of the trajectories in the quotient system is reminiscent of Shil'nikov chaos near a loop of a saddle-focus.
Notice that this is close to the mechanism of transition to chaos via heteroclinic tangle hypothesised in [3,5] based
on the Barkley's model system.

Fig. 4 shows the general look of the attractor in the quotient system, in the same coordinates. It is represented by
about 12 000 points chosen equispaced with interval 10 t.s. or 0.08 t.u.

The accuracy of the computations is enough to see that it is a rather compact set — however, its fine structure is
smeared out by the numerical noise.

Fig. 5 shows the attractor in the ‘semi-reduced’ system — same set of points in different coordihates w).
It looks clearly even in both andy directions. Visually, its symmetry group may Bg or SO(2); the latter is more
likely as theZ 4-shape of the central hole of the top view should probably be attributed to the influence of the square
grid, which is naturally more noticeable at low propagation speeds.
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Fig. 5. Attractor in the semi-reduced system extracted from numerical experiment,wittlenoting tip velocity components, and
Cy, andz still beingw.

At any rate, the parity of the attractor in the semi-reduced system means that the large-time behaviour should
be of Brownian type without directed component. To check this, we measured directly the mean squared walking
distance as a function of time (Fig. 6).

We assumed ergodicity and calculated the mean squared walking distance by splitting the trajectory from the
longest experiment onto pieces of equal length and averaging the square of distance between the ends of each piece.
The resulting dependence is shown by dots in Fig. 6 (about 3000 points).

Leftmost part of the graph, far< 0.5t.u., with slope 2 represents differentiability of the trajectories. The range
0.5-10t.u. is characteristic time range of the attractor in the quotient system. At the times larger than 10t.u., growth
of the displacement due to diffusive motion is seen up to times 2000t.u. when averaging time intervals become
comparable to the length of the experiment, and ergodicity fails.

The long-time walking distance is significantly larger than the typical size of one meandering petal, and so
approximations (20) may be sensible in the scale between 10 and 2000 t.u. We fitted the data to (20) and to a more
generic dependence

1(t) ~ 2Kot* + 2K, (25)
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Fig. 6. Mean square of the displacement of the/tip vs. timer (dots), and fitting curve (solid line) in logarithmic coordinates. Vertical
lines show the fitting range.

in logarithmic coordinates, using Marquard’s method [18] with equal weights of all points (about 5000) in the range
10-2000t.u., i.e. more than two decades. Fitting by (20) yielded coeffici&ht$20.090 and X; ~ 2.99, and

good agreement with the experimental data in two decadegsefe Fig. 6). The reliability of this approximation

can be seen from fitting the same data to (25), which yietded1.09+ 0.03. Thus, the experimental dependence

of 1(z) in a proper range of is reasonably approximated by (20), with the hypermeandering diffusion coefficient
Ko/2 =~ 0.023, i.e. 40 times less than the diffusion coefficient of the propagator variable. So, the hypermeander
diffusion is rather intensive and hardly can be attributed to the numerical noise.

4. Discussion

In this paper, we have described the simplest mathematical features of continuous deterministic Brownian motion,
i.e. unlimited walk driven by deterministic chaotic force, and have shown that the complicated patterns of spiral
wave meandering observed in numerical experiments may be interpreted as such a motion.

This sort of motion results from two main features of the mathematical problem. The firstis the difference between
symmetry groups of the dynamical system and particular solutions, so that the factor group, if it is non-compact,
gives birth to a non-compact set of congruent solutions and thus creates the possibility of unlimited drift along this
set. The other is chaos in the quotient systems, which makes this drift similar to stochastic Brownian motion. We
have considered the case of continuous factor group, and predicted two types of deterministic Brownian motion,
with or without directed component. Which type occurs in a particular case depends on whether or not the maximal
attractor of the semi-reduced system is uniquely ergodic.

Non-symmetric solutions of symmetric systems are ubiquitous, and in all such cases, hon-compact factor group
and chaotic dynamics in the quotient system can lead to deterministic Brownian motion or deterministic diffusion.
Theorem 1 describes such a motion in case when the factor group is the group of translations of the straight
line, as in [11]. The hypermeander of spiral waves considered in this paper is a more complicated motion as the
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symmetry group involvedSE(2), is non-commutative, the corresponding three-dimensional manifold is curved
and Theorem 1 is not applicable directly. We were able to overcome this difficulty by notin§Hat can be
decomposed onto two Abelian subgroups, those of translations and rotations, and reduction by the subgroup of
translations yields the required result. Deterministic chaos-driven walk along more complicated groups presents an
interesting mathematical problem for future study.
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Appendix A. Proof of Theorem 1

Due to ergodicity ofu, averaging over time and im are equivalent, and it is enough to prove the statements of
the theorem for thei-averaged squared distance:

Iu(t) = / (q(t, u) — q (0, 1))* duu(u), (A.1)

which equald (¢, u) for almost allu with respect tqu.
Straightforward calculations give

t t
fM(t)z/ due(u) (/ V(Ft(u))d‘t) (/ V(F"(u))do) (definition ofg(r)) (A.2)

0 0

t t
=/dr/da </ V(Ff(u))V(F“(u))du(u)) (change of order of integration) (A.3)
0 0
t t
= / / K(t —o)drdo (definition ofK (7)) (A.4)
00
t &
= 2/ dé / K (n)dn (change of independent variablest o =&, 1 — o0 =17) (A.5)
0 0
t +00
:Kot—Z/ de / K(n)dn (definition ofKg) (A.6)
0 &
t
= Kot +/ 0(1)|¢— 0 d& (convergence oKp). (A.7)

0
=Kot + 0(t)],. (L'Hospital's rule). (A.8)
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The last estimation is the statement (9) of the theorem.
Analogously, using (10) in (A.7) in addition to (7) leads to a more accurate estimation (11).
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