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Abstract Modulated waves, i.e. waves that are locally plane and periodic, but at
large distances and/or over long intervals of time change their charac-
teristics, appear in many applications. An efficient way to study such
waves is the method of envelope equations, when the original wave equa-
tions are replaced by equations describing the slowly varying parameters
of the waves. The practical approaches to this problem are numerous;
however, many of them have limitations, either in achievable accuracy,
or in the wave equations to which they could apply (e.g. only conser-
vative systems), or both. In this paper we discuss an approach of this
kind, which appear to be free from these disadvantages. This approach
is illustrated for autowaves, which, in the author’s opinion, should play
the same role in the theory of waves, as auto-oscillations=limit cycles
play in the theory of oscillations: as the basic, least degenerate type of
solutions.

1. INTRODUCTION.
When differential equations, describing a natural or technological pro-

cess, are too complicated to be solved exactly, one needs to do it approx-
imately. This can be done either numerically, or analytically, e.g. by
using some asymptotic methods. Approximate methods may not only
serve for pure purposes of calculation, but also be an “instrument of
understanding” of complex systems.

The simplest case is if the right-hand sides of the differential equations
contain small parameters, and the system becomes much simpler, e.g.
can be treated exactly, if these parameters are equal to zero. Then for
nonzero but small values of the parameters, solutions can be obtained
by perturbation techniques.

The perturbation technique may also be applied to systems without
any small parameters. This may be the case if we are interested in
solutions from a special class, depending on such parameters. A well
known example is small-amplitude oscillations in a nonlinear system. By
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scaling the dynamic variables to normalise the amplitude of oscillations,
one can bring this problem to a problem explicitly depending on the
small parameter, which becomes linear if this small parameter is equated
to zero.

There is a less trivial example of the same kind. This is the famous
geometric optics approximation. The classical interpretation of geomet-
ric optics is that consideration is restricted to solutions with wavelengths
small in comparison with other characteristic scales of the problem [1].
This works well with classical, linear wave equations, which admit wave
solutions with arbitrarily short wavelengths. In general, this restriction
may be impractical, e.g. if wave solution may not exist with wavelengths
less than a certain minimum. Then the idea of the geometric optics is re-
formulated as the idea of modulated waves[2], or slowly varying waves
[3]: the characteristic sizes of the problem, in particular of the initial
conditions for the equations, should be much larger than a typical wave-
length. This means that in relatively small regions, the waves are close
to plane and periodic, but the parameters of these waves, including di-
rection of propagation and the period, slowly change in time and/or in
space, becoming significantly different at large distances and/or after
long time intervals.

The classical geometric optics approximation for linear wave equations
heavily relies on the specific properties of these equation, e.g. the super-
position principle. This is no good for nonlinear waves. A well known
method for nonlinear waves is the Whitham procedure (modulation the-
ory) [2, 4]. One form of the method uses knowledge of conservation laws,
available for many wave systems originating from physics, and derives
the evolution equations for slowly varying parameters from these con-
servation laws. Another form of the method also uses the properties of
physical origin, namely, the fact that the field equations can be written
in the form of a Lagrange variational principle. The evolution equations
are then derived also from a Lagrangian principle, where the averaged
Lagrangian is rewritten as a function of the new independent variables
describing the slowly-varying solutions. This method has been applied
to many classical nonlinear equations, such as nonlinear Klein-Gordon
equation, Korteweg-deVries equation and others. Recent development
in this direction can be found e.g. in [5].

2. THE PROBLEM.
There is an important class of nonlinear waves, for which Whitham’s

approach can not be applied — so called autowaves. Speaking physi-
cally, these are waves that propagate unchanged not because there is no
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dissipation, but because the dissipation is compensated by the constant
supply of energy. Examples are electric pulses in nerve and heart tis-
sues, and waves in some chemical reactions where the consumed reagents
are either supplied, or are stored in substantial amounts so that their
decrease during the wave period is negligible. Mathematically, such sys-
tems are most often described by systems of partial differential equation
of reaction-diffusion type,

∂u/∂t = D∆u + f(u). (1.1)

Here u = u(x, t) ∈ R` is a column-vector of concentrations of the
reagents, f(u) ∈ R` is a column-vector of nonlinear reaction terms (in-
teresting behaviour starts from ` ≥ 2), D is an `× ` matrix of diffusion
coefficients of the reagents, which we assume symmetric; the space coor-
dinates x ∈ Rn where the dimension of physical space, n, can be equal
to 1, 2 or 3, and ∆ is the Laplacian in Rn.

Systems of the form (1.1), describing real autowave systems, do not
have any conserved quantities at all, and, in particular, are not Hamil-
tonian. The simplest autowave solutions of (1.1) are the plane periodic
waves,

u(x, t) = U
(
(k, x)− ω(k2)t + φ0, k

2
)

= U(ξ, η), (1.2)

where ξ = (k, x)− ω(k2)t + φ0, η = k2, k ∈ Rn (1.3)

and ηDUξξ(ξ, η) + ω(η)Uξ(ξ, η) + f(U) = 0. (1.4)

Here k is the wavevector, 0 ≤ η1 ≤ k2 ≤ η2 < ∞, ω is the frequency, and
φ0 is an arbitrary initial phase. Brackets (, ) denote the scalar product
in the physical space Rn.

Modulated autowaves (see fig. 1) are solutions of the form

u(x, t) = U
(
φ, (∇φ)2

)
+ v(x, t), (1.5)

where ∇φ is a local wavevector slowly varying in space and time, and v
is a small correction, so that

φ = ε−1Φ(εx, εt, ε), ε � 1, v � 1. (1.6)

The question is, what conditions should the phase (“eikonal”) variable
φ(x, t) satisfy. It happens, that the condition can be written in the form
of a partial differential equation, the evolution equation, which will be the
analogue of the eikonal equation in the geometric optics. Our purpose
is to develop a method of derivation of this equation for every given
reaction-diffusion system (1.1). One thing we should always bear in
mind: as a rule, this cannot be done entirely analytically, there usually
will be some bits to do numerically. One reason for that is quite obvious:
the basic solutions (1.2) can not be found analytically.



4

3. HEURISTIC DERIVATION OF THE
EVOLUTION EQUATION

By substituting (1.5) into (1.1), we get a `-component vector equation
for two unknown functions: vector function v ∈ R` and scalar function
φ. So, the equation is under-determined. In linear approximation in v
it takes the form

vt(x, t) = D∇2v(x, t) + F [φ(x, t)]v(x, t) + h[φ(x, t)], (1.7)

where the Jacobian matrix F and the free term h depend on the unknown
φ(x, t) so that

F [φ] =
∂f(u)

∂u

∣∣∣∣
u=U

, and (1.8)

h[φ] = −
(
ω((∇φ)2) + φt

)
Uξ − Uη

∂

∂t
(∇φ)2

+D

(
Uη∇2(∇φ)2 + 2Uξη

(
∇φ,∇

(
(∇φ)2

))
+Uξ∇2φ + Uηη

(
∇((∇φ)2)

)2
)

. (1.9)

Here the function U is assumed with arguments U = U(φ, (∇φ)2).
The requirement that v is small leads to certain restrictions on the

function φ. These restrictions are just the desired evolution equation.
Since the local wavevector k = ∇φ varies slowly, the coefficients F

and the free term h are approximately periodic functions of only one
variable ξ = φ(x, t) ≈ (k, x)−ω(k2)t (locally). Then the boundedness of
solutions v of (1.7) at large times requires, via the Fredholm alternative,

Figure 1: Modulated waves in a
reaction+diffusion system. Notice
the cores of the spiral waves, and
the shock structure between the
spiral wave domains. Everything
else is modulated waves.
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that ∮
〈W0(ξ, η), h[φ]〉dξ = 0, (1.10)

where W0(ξ, η) ∈ R` is the 0-eigenfunction of the adjoint L+ of the
linearised operator L,

Lv = ηDvξξ + D∆yv + ωvξ + F (ξ)v,

L+w = ηDwξξ + D∆yw − ωwξ + F T (ξ)w. (1.11)

Now we substitute (1.9) into condition (1.10). The resulting equality
does not depend x and t explicitly, but only on time and space deriva-
tives of φ, and so can be viewed as the required evolution equation. It
makes sense if the derivatives of φ are no longer considered constant, but
allowed to slowly vary in time and space, i.e. “unfrozen”. Generically,
this equation will contain a term with ∂

∂t(∇φ)2. However, the coefficient
at that term can be made to disappear, by the following transformation.
Notice that if U(ξ, η) is a base wave solution of (1.4), then U(ξ+χ(η), η)
is also a solution, for arbitrary χ. This function χ(η) can be chosen in
such a way that

∮
〈W0(ξ, η), DUξη(ξ, η)〉dξ = 0, see [6, 7] for details.

Ultimately, we have

φt + ω((∇φ)2) = P
(
(∇φ)2

)
∇2φ + Q

(
(∇φ)2

)
(∇φ∇)(∇φ)2 (1.12)

where

P (η) =
∮
〈W0(ξ, η), DUξ(ξ, η)〉dξ,

Q(η) = 2
∮
〈W0(ξ, η), DUξη(ξ, η)〉dξ. (1.13)

The key points of this heuristic derivation are elimination of the secu-
lar growth (Fredholm alternative), and “freezing” and “unfreezing” the
derivatives of φ. The latter procedure is potentially flawed. E.g., the
ignored non-periodicity of F and h leads to an error of the order of ε
even at a distance of one period, though the final equation (1.12) keeps
the terms O(ε) preserved. Thus, more sophisticated tools are required.

4. PERTURBATION OF A MANIFOLD OF
STABLE EQUILIBRIA

The ideas of the more accurate asymptotic approaches can be intro-
duced using a finite dimensional example. Consider a perturbed system
of ODEs

ut = f(u) + εh(u), u ∈ Rn (1.14)
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and assume that at ε = 0 it has an m-dimensional attracting manifold of
equilibria U(a) with coordinates a ∈ A ⊂ Rm, m < n, so that f(U(a)) =
0, ∀a ∈ A.

For ε 6= 0, there is an invariant manifold in the vicinity of U , with a
slow dynamics on it:

u = U(a(t)) + εv(t) (1.15)
Here v = O(1), and a, v are ε-slowly varying functions, i.e. they depend
upon t only via the combination εt, and v(t) can be found as a functional
of a in all orders of ε. To make (1.15) unambiguous, we require that v(t)
is always orthogonal to U at the point a(t), say

〈Wj(a), v〉 = 0, j = 1..m, (1.16)

where Wj are eigenvectors of the transposed Jacobian matrix, F T (a)Wj(a) =
λj(a)Wj(a), biorthogonal (

〈
Wj(a), Vj′(a)

〉
= δj,j′) to the eigenvectors of

the Jacobian F = ∂f(U(a))/∂u itself, including the tangent vectors to
the stationary manifold Vj(a) = ∂U(a)/∂aj , corresponding to

λj(a) = 0, j = 1 . . .m.
Substitution of the Ansatz (1.15) into (1.14), introducing notation for

the flow on the slow manifold, ȧj = εGj , G = O(1) and expanding v(t)
in the eigenvector basis, v(t) =

∑n
j Vj(a(t))vj(t), vj ∈ R, leads to

v̇j = λj(a)vj + (hj(a)− Gj(t))

+ ε


n∑
k

hjkvk +
n∑
k,l

(KjklGkvl + fjklvkvl)

 +O(ε2).(1.17)

where Gj ≡ 0 for j > m, hjk, fjkl etc. are Taylor coefficients of the func-
tions h and f , and Kjkl = 〈∂Wj(a)/∂ak, Vl(a)〉 = −〈Wj , ∂Vl(a)/∂ak〉.
Imposing now conditions of orthogonality (1.16), vj(t) ≡ 0, j = 1 . . .m,
we determine iteratively aj(t) and vj(t) with higher and higher precision,
by considering alternately (1.17) for j = m + 1 . . . n as equations for vj ,
and j = 1 . . .m as equations for Gj . E.g., in the second order we get

ȧj = εhj + ε2

−∑
k

hjkhk/λk +
∑
k,l

(
Kjklhkhl/λl + fjklhkhl/(λkλl)

)
+O(ε3). (1.18)

We see, that this iterative procedure yields successively more and more
precise evolution equations. The significant feature of the procedure is
that their solutions approximate exact solutions not only with succes-
sively decreasing (in asymptotic sense) error, but also become valid at
successively growing time scales. This becomes possible only by keeping
terms of different order in the same equation.
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5. SUBCENTER MANIFOLD EXPANSION
The described method is associated with the method of the (sub)centre

manifold, which is both a fundamentally important theoretical concept
and an efficient practical tool.

The procedure of alternating increase of asymptotic precision of the
G(a) and v(a) leads to building asymptotic series in ε for these functions.
If these series converge for some ε, this means that for each of those ε
we will have an invariant manifold

U(a, ε) = U(a) + εv(a, ε) (1.19)

and the flow on that manifold defined by

ȧ = G(a, ε). (1.20)

The unique dependence of v on a arises when we select a unique solution
to the differential equation, say the one that remains finite for t → −∞.

In the extended phase space Rn ×R = {u, ε}, manifold U is an inter-
section of the manifold U by the hyperplane ε = 0. It be easily seen that
the difference between U and U at small ε is along V0, which means that
U is tangent to the centre subspace of U . Thus it is a centre manifold
or a sub-centre manifold; the technical difference is not important for us
here, as all we use is the formalism.

This motivates an alternative approach to building the asymptotic
evolution equation: from the very beginning, to look for representations
of (1.19) and (1.20) in the form of power series in ε straightaway, instead
of coming to (1.19) via the complicated procedure described above. This
certainly is a very efficient method from a practical viewpoint.

And as far as actual calculations rather than their motivation in this
finite-dimensional example are concerned, the subcenter manifold ap-
proach and the method described in Section 4 are strikingly similar.
Method of Section 4, modified for a PDE problem in the form of the
“method of the detecting operator”, has been applied for the prob-
lem of the modulated strongly nonlinear waves, including autowaves in
reaction-diffusion system (1.1) and conservative waves in the nonlinear
Klein-Gordon equation, in [7]. Here we treat the modulated autowaves
using the formalism of the subcenter manifold. This is based on the
idea of [8] originally applied to another class of problems (nearly linear
waves).
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6. FUNCTIONAL SUBCENTER MANIFOLD
OF MODULATED WAVES

We consider modulated waves defined by (1.5) as a “functional man-
ifold”. Thus, the whole phase distribution φ(x), in its entirety, is a
coordinate on this manifold.

We consider the starting PDE system (1.1) as an ordinary differential
equation in a Banach space Y,

dû

dt
= f̂(û)

where û : R → Y; t 7→ u(x, t). The Ansatz is

u(x, t) = U [φ(x, t)], (1.21)

where square brackets [] denote functional dependence, i.e. [φ] denotes
dependence on φ and all its spatial derivatives, U(φ, ∂φ/∂xi, ∂

2φ/∂xi∂xj , . . . ).
In Banach-vector form,

û(t) = Û(φ̂(t)), (1.22)

where φ̂ is a vector of a “smaller” functional space X , representing the
spatial distribution of the phase φ(x, t) at a particular time instant t:
φ̂ : R → X ; t 7→ φ(x, t), and Û : X → Y.

Space X is “smaller” than Y, e.g. in the sense that it consists of
scalar functions rather than R`-valued functions as Y. Another (non-
formalised) difference is that φ̂ represents functions φ(x, t) with slowly
varying spatial derivatives.

Evolution of the phase φ(x, t) is sought in the form

∂φ

∂t
= G[φ(x, t)] or

dφ̂

dt
= Ĝ(φ̂(t)) (1.23)

where Ĝ : X → X (assuming X is linear).
Then, the operators Û and Ĝ are sought in the form of formal power

series in the small parameter ε,

U =
∞∑

n=0

U (n)εn, G =
∞∑

n=0

G(n)εn, or Û =
∞∑

n=0

Û (n)εn, Ĝ =
∞∑

n=0

Ĝ(n)εn.

(1.24)
Then we use the finite-dimensional procedure discussed above, expressed
in terms of Û and Ĝ, as a guidance, but immediately translate obtained
expressions to the straightforward form, without hats. The orbit deriva-
tive of (1.21) by the system (1.23) yields

∂u/∂t = UφG + U∇φ∇G +O(ε2) (1.25)
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since, as we mentioned, U is function of φ and all its derivatives, and
derivatives of higher orders are, according to (1.6), of higher asymptotic
orders in ε.

In turn, differentiation of U by spatial variables, using the chain rule,
yields

∂U/∂xi = Uφφi + Uφj
φij +O(ε2). (1.26)

Here and below, we denote spatial derivatives of φ by subscripts corre-
sponding to the spatial coordinates, so φi means ∂φ/∂xi etc.; and assume
summation by repeated indices.

Now, substitution of spatial and (1.25) into (1.1), with account of
expansions (1.24), yields

U (0)
φ G(0) + U (1)

φ G(0) + U (0)
φ G(1) + U (0)

φi
G(0)

φj
φij + O(ε2)

= f(U (0)) + F (U (0))U (1)

+ D
(
U (0)

φφ φiφi + 2U (0)
φφj

φiφij + U (0)
φ φii + U (1)

φφ φiφi

)
+O(ε2). (1.27)

Then we consider sequentially different orders in ε of this equation.

Order O(1). Equating terms of (1.27) of the order O(1) we have

−Uφ(0)G(0) = f(U (0)) + DU (0)
φφ φiφi. (1.28)

This coincides with the equation (1.4) for the basic waves if U (0) = U ,
G(0) = −ω, and φiφi is identified with η. Together with the requirement
of periodicity in φ, this order provides a nonlinear eigenvalue problem
determining the basic solution U (0) = U and the main frequency −G(0) =
ω as functions of the local value of the slowly varying phase gradient
η = φiφi = (∇φ)2.

Order O(ε). This order gives a linear equation for U (1):

LU (1) = h, (1.29)

where the linear operator L is

L = ηD∂φφ + ω(η)∂φ + F (1.30)

and the free term h depends on G(1),

h = G(1)U (0)
φ + U (0)

φi
G(0)

φj
−DU (0)

φφ φii − 2DU (0)
φφj

φiφij . (1.31)

This is a differential problem in φ and as such is exactly 2π-periodic.
Operator L is singular, its zero eigenfunction is the Goldstone mode V0 =
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∂U/∂φ. By Fredholm, (1.29) is solvable iff the free term is orthogonal
to the zero-eigenfunction W0, of the adjoint operator L+,

L+ = ηD∂2
φ − ω(η)∂φ + F T . (1.32)

This leads to the following result:

G(1) =
(∮ 〈

W0, DU (0)
φ

〉
dφ

)
φii + 2

(∮ 〈
W0, DU (0)

φφj

〉
dφ

)
φiφij .

(1.33)
Noting that U (0) depends on φ only via η = φ2

i , we arrive ultimately to
the evolution equation precisely coinciding, up to the notation difference,
with (1.12), with identical definitions of P and Q.

7. DISCUSSION
In this paper, we describe a new method of derivation of the envelope

equations for strongly nonlinear, non-conservative waves. The method
is illustrated for the generic reaction-diffusion system (1.1), without any
assumptions on the exact form of the reaction term f(u) or diffusion
matrix D. It has been demonstrated that the detecting operator tech-
nique, closely related to the sub-centre manifold technique, is equally
applicable classical conservative nonlinear wave equations, such as the
nonlinear Klein-Gordon equation, and produces the same results[7], so
we may expect the present method to be similarly flexible. The detecting
operator technique described in [7] is rather involved, and construction
of the detecting operator itself is a non-algorithmic part of the proce-
dure. The method described here is free from that disadvantage and
provides a much easier, algorithmic way, producing the same results.
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