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1. Introduction

One of the most typical two-dimensional patterns in autowave me-
dia is a spiral wave, which has been observed e.g. in the Belousov-
Zhabotinsky reaction [1, 2] cardiac tissue [3], social microorganisms
[4], neural tissue [5] and heterogeneous catalytic chemical reactions
[6]. Spiral waves of excitation in heart tissue underlie certain types of
cardiac arrhythmias [7].

In a perfectly homogeneous medium, the spiral wave may rigidly
rotate around a �xed center determined by initial conditions. Real me-
dia are often inhomogeneous. This usually leads to variation of rotation
frequency and drift of the rotation center [8]. Understanding of this drift
is important, for the prediction and control of spiral wave behaviour.

The mathematical description of autowave media is usually in terms
of nonlinear partial di�erential equations. Description of the dynamics
of spiral waves or there 3D analogues, scroll waves, can be done by
perturbation techniques, assuming that the unperturbed spiral wave
solution, the free spiral , is known [9, 10]. This theory has a heuristic
value, e.g. it predicts that the drift of the spiral is governed by `Aris-
totelean' motion equations: the velocity is proportional to the `force'
caused by inhomogeneity or other perturbation, and this force, in a
�rst approximation, is a linear convolution-type functional of this per-
turbation. The kernels of convolution integrals, the response functions ,
can be found numerically [11].

There are limiting cases where some results can be achieved an-
alytically. The `kinematic approach' [12, 13] applies to an important
class of excitation waves, which include the waves in heart tissue. If the
excitation waves are rare and locally nearly planar, then the description
of a wave is reduced to the description of a curve, the crest line of the
wave, and motion of this curve is determined by its local geometry. For
brevity, we call this line just the wave. Spiral wave is a broken wave, so
we need also to describe the motion of its free end, the tip. Such motion
equations have been proposed, in [12] from semi-phenomenological and
in [13] from asymptotical considerations; these two versions di�er in
some details.

In this paper, we study the drift of spiral waves caused by inhomo-
geneity of the medium properties, in terms of the kinematic approach
as formulated in [13]. Equations of motion of the wave and the tip in
inhomogeneous media can be derived asymptotically, as for homoge-
neous media; this leads to spatial dependence of the coe�cients, and
also to additional terms, that are proportional to spatial derivatives
of the medium properties. In this paper, to reveal the key features of
interaction with inhomogeneity and to simplify formulas, we neglect the
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spatial derivatives and restrict consideration only to spatial dependence
of the coe�cients.

To describe the drift, we use the `adiabatic' perturbation technique
proposed in [14]. We consider the spiral wave in the comoving frame of
reference (CMF), moving together with the center of the spiral wave.
So, this center is always at the origin of the CMF. This leads to a
problem with non-stationary coe�cients, even for a stationary medium.
As the drift is expected to be slow, the instant distribution of medium
properties is considered, in the �rst approximation, as stationary. The
solution in the CMF with frozen coe�cients should be periodic in time.
This requirement yields additional conditions, which allows the deter-
mination of the velocity of the CMF as a functional of the instantaneous
distribution of the medium properties, i.e. of the current location of the
spiral in the laboratory frame of reference.

Though obtained by a di�erent technique, the present results are in
agreement with the general theory of [10]. Namely, the drift velocity and
frequency shift are linear convolution-type functionals of the perturba-
tions of medium properties. This gives explicit analytical expressions for
the response functions with respect to all varied medium parameters.

We conclude by considering examples of media with linear and with
stepwise gradients of parameters.

2. Kinematic approach

The kinematic approach is based on the equation for the normal veloc-
ity of wave propagation, vn, and curvature of the wave, K, [15, 16, 12]:

vn(s; t) = V �DK(s; t); (1)

where K is considered positive if the wave is convex in the direction of
propagation, s is arclength along the wave measured from the tip, and
V and D are parameters of the medium.

As mentioned in the Introduction, we also need motion equations
for the wave tip. Let G(t) be the tangential (\growth") component of
tip velocity. Then quantities G(t), K0(t) = K(0; t), K0

0(t) = @sK(0; t)
and @t�(t) are related by equations

�0 + �1K0 � G = 0;

��2 + �3K0 + �4K
0

0 + �5K
2
0 + @t� = 0; (2)

�(�1 + �5)K
2
0 � (�0 + �3)K0 + ( �D� �4)K

0

0 + �2 = 0

where �0�5 are medium parameters [13].

jbp.tex; 30/12/1998; 18:06; p.3



4

We suppose now that in an inhomogeneous medium, all the kine-
matic parameters depend on space,

V = �V (1 + ~V (~r)); D = �D(1 + ~D(~r));

�0 = �V ��0(1 + ~�0(~r)); �1 = �D��1(1 + ~�1(~r)); �2 = �V 2��2(1 + ~�2(~r))= �D;

�3 = �V ��3(1 + ~�3(~r)); �4 = �D��4(1 + ~�4(~r)); �5 = �D��5(1 + ~�5(~r)):

(3)

where ~V , ~D and �0�5 are small and localised functions of spatial coor-
dinates ~r.

3. Adiabatic approach

Let ~r(s; t) be the radius-vector of a wave point s at time t, and �(~r)
be the eikonal , a multivalued function, with the values being the time
instants when the wave has visited point ~r. So, 8t; s, f�(~r(s; t))g 3 t.
We suppose that in the CMF our solution is approximately periodic in
time and close to the free spiral. In this frame of reference, the per-
turbations ~V and ~D depend on time. However, as the drift is slow, the
instantaneous distribution of the medium properties can be considered
as stationary. Denote the instantaneous velocity of the CMF by ~c and
the period of the spiral by �0.

In the CMF, the scaling of variables

~R = (�V = �D)~r; T (~R) = ( �V 2= �D)�(~r); ~C = �V~c (4)

bring equation (1) to

(1+~V )jrT j3�(1+ ~D)

�
(rT )2r2T �

1

2
(rTr)(rT )2

�
= (rT )2

h
1 + h ~C;rT i

i
;

(5)
where r is now the gradient over R, and values of the scaled eikonal
T are equidistant in T0 = �V 2�0= �D.

Scaling (4) brings equations at the tip to

0 = �[��0(1 + ~�0) + ��3(1 + ~�3)]p�� [��1(1 + ~�1) + ��5(1 + ~�5)](p�)
2

+��2(1 + ~�2) + [1 + ~D � ��4(1 + ~�4)]��
0;

_� = ��1(1 + ~�1)(p�)
2 + ��0(1 + ~�0)p�� (1 + ~D)��0;

_X0 = �[1 + ~V � (1 + ~D)p�] sin�

�[��0(1 + ~�0) + ��1(1 + ~�1)p�] cos� � Cx; (6)
_Y0 = [1 + ~V � (1 + ~D)p�] cos�

�[��0(1 + ~�0) + ��1(1 + ~�1)p�] sin�� Cy;
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hrT;~ti = 0;

hrT;~ni =
h
1 + ~V � p(1 + ~D)�

i
�1

where X0 and Y0 are scaled tip coordinates, the dot stands for the
derivative with respect to the scaled time �V 2t= �D, p and � are dimen-
sionless parameters of the unperturbed solution:

p = �D �K0= �V ; � = p2 �K0

0=
�K2
0 ; (7)

� = K0= �K0; �0 = K0

0=
�K0

0; (8)

�K0, �K0

0 are the curvature and its derivative at the tip for the free spiral,
~t is the tangent and ~n is the normal unit vectors. We consider ~t and ~n
and the shape of the core quasi-stationary in the CMF, similarly to ~V
and ~D.

Imposing requirements of boundedness of jrT j at large � and pe-
riodicity of X0, Y0 and � onto (5), (6), we obtain problem for three

unknowns: the function T (~R), describing shape of the spiral wave,

the scalar T0, the rotation period of spiral wave, and the vector ~C,
corresponding to the drift velocity.

We present a solution to this problem below.

4. The free spiral

We begin with the description of the free spiral, i.e. the spiral wave
solution in the homogeneous medium. We look for solution of Eq. (5)

at ~V = ~D = 0 and ~C = 0 in the form of a stationary, counterclockwise
rotating wave with angular velocity !0, which in polar coordinates (�; �)
is

T (�; �) = �T �
1

!0
(� +  0(�));  00 � 0: (9)

Substitution
� = � 00(�) (10)

with (9) brings (5) to the form

�0 � (�2 + 1)3=2+ (�=�+ !0�)(�
2 + 1) = 0; (11)

and boundary conditions (6) become

R0!0 =
�
(1� p)2 + (��0 + ��1p)

2
�1=2

;

� = !0t� �;

tan� = (��0 + ��1p)=(1� p); (12)
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!0 = ��2 � ��3p� ��4� � ��5p
2;

�(��1 + ��5)p
2 � (��0 + ��3)p+ (1� ��4)� + ��2 = 0;

�(R0) = tan �;

where R0 is the scaled core radius (R0
�D= �V is the real core radius)

and � is the angle between the tip tangent and the tip radius-vector,
counted from the wave tangent.

Equation (11) coincides with the far asymptotics of the small-core
spiral waves considered in [17, 15, 18, 19], but in our case it is valid
for all radii under consideration. The exact spiral wave solution of (11)
can be found analytically [13, 20]. However, it is rather complicated
and we do not need it in this paper. To obtain closed-form results in
the examples, we use its uniformly valid asymptotics.

5. Method of solution

We expect that the drifting spiral in CMF is close to the free spiral,
and so we linearise equation (5) at the solution (9), taking into account
the smallness of the drift velocity ~c and the perturbations ~T and ~T0 of
the eikonal �T and rotation period �T0,

T = �T + ~T; T0 = �T0 + ~T0; (13)

and will look for the perturbations in the form of Fourier series,

~T =
~T0
2�
� +

X
Tn(�) exp(in�); � = !t � � +

X
�n exp(in!t);

� = 1 +
X

�n exp(in!t); �0 = 1 +
X

�0n exp(in!t);

�0(!t) = R0

�
1 +

X
rn exp(in!t)

�
; �(!t) = !t +

X
�n exp(in!t);

(14)

where T�n = Tn
�, ��n = �n

� etc, all the perturbations (except perhaps
Tn) are assumed small compared to unity, �0(�) is the equation of the
tip trajectory in polar coordinates and ! is the perturbed frequency,

! = 2�=( �T0+ ~T0) � !0 + �!: (15)

This leads to linear second-order ODEs for the eikonal modes Tn(�)
of the form

T 00n + pn(�)T
0

n + qn(�)Tn = (16)

= Hn(�) + h0(�)�!�n;0 + h1(�)(Cx � iCy)�n;1 + h�1(�)(Cx+ iCy)�n;�1:
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Equations for Cx and Cy in (6) give the Fourier series for the complex

tip velocity _X0 + i _Y0. Its zeroth harmonics should vanish to provide
periodicity of the tip trajectory. This requirement leads to a linear
relationship between Cx � iCy and �

0

1. Consideration of the zero-order

and �rst harmonics of _X0 + i _Y0 yields expressions for the parameters
of the core shape r0;1; �0;1 through �

0

0;1.
Linearisation of the tip equations (6) gives boundary conditions for

T0;1(�) at the tip trajectory. Extrapolating or interpolating functions
T0;1 and taking into account relations between the core shape and �00;1,
we write these boundary conditions in the form

T 00(R0) = g0�
0

0 + G0; T1(R0) = f1�
0

1 + F1; T 01(R0) = g1�
0

1 + G1:
(17)

Explicit formulae for the coe�cients in (16) and (17) are tedious and
we omit them. Boundary condition at in�nity is obtained from the
requirement of boundedness of the gradient of the solution and has the
form

T 0n(1) = 0 (18)

For n = 0;�1, solutions of (17) are easily found analytically, using
the fact that @� �T and @x �T satisfy the homogeneous linear equations.
These solutions satisfy the boundary conditions only for a unique choice
of Cx, Cy and �!. And this choice is the solution to our problem.

6. The general results

The frequency deviation and velocity drift come out as linear function-
als of parameter perturbations, as it predicted by the general theory
[10]. We classify the kernels of these functionals, the response functions

(RF's), as rotational RF's, determining shift in rotation frequency,
and translational RF's, determining the drift of the rotation center (in
[10, 11], the RF's were classi�ed as temporal and spatial , as for steadily
rotating waves rotation in space is equivalent to translation in time).We
denote this by subscripts, 0 for rotational and 1 for translational RF's.
Another classi�cation of the RF's is by the parameter the in
uence of
which they describe. We denote this by superscripts in parentheses.

Namely, the frequency deviation is

�! =

1Z
R0

2�Z
0

h
~W

(V )
0 (�) ~V (�; �) + ~W

(D)
0 (�) ~D(�; �)

i
d��d� (19)
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+

2�Z
0

2
4Ŵ (V )

0
~V (R0; �) + Ŵ

(D)
0

~D(R0; �) +
5X

j=0

Ŵ
(j)
0 ��j ~�j(R0; �)

3
5d�;

where the rotational RF's are

~W
(V )
0 (�) = �W0

0
!0

1� p
exp

0
@�!0

�Z
R0

�1�(�1)d�1

1
A ;

~W
(D)
0 (�) = ~W

(V )
0 (�)

h
!0�(�

2 + 1)�1=2 � 1
i
;

Ŵ
(V )
0 =W0

0p=!0; Ŵ
(D)
0 = �

��

2�
(2��5p+ ��3)�W

0
0

�
��W1

0 �
p2

!0

�
; (20)

Ŵ
(0)
0 =

p�

2�
(2��5p+ ��3) +W

0
0

�
p�W1

0 �
1� pR0 sin �

1� p

�
; Ŵ

(1)
0 = Ŵ

(0)
0 p;

Ŵ
(2)
0 =

�

2�
(2��1p+ ��0) +W0

0�W
2
0 ;

Ŵ
(3)
0 = �Ŵ

(2)
0 p; Ŵ

(4)
0 = �Ŵ

(2)
0 �; Ŵ

(5)
0 = �Ŵ

(2)
0 p2

and notations introduced for brevity

W0
0 = �

1

2�

�
Z0

1� p
+
pR0 � sin �(1 + cos2 �)

!0 cos�
�
pa

b

�
p

!0
+ ��1

1� pR0 sin �

1� p

���1

;

W1
0 =

�
Z0

1� p
�
pR0 � sin �(1 + cos2 �)

!0 cos �

�
(2��5p+ ��3) +

p

!0
+ ��1

1� pR0 sin �

1� p
; (21)

W2
0 =

�
Z0

1� p
�
pR0 � sin �(1 + cos2 �)

!0 cos �

�
(2��1p+ ��0)�

p

!0
� ��1

1� pR0 sin �

1� p
;

Z0 =

1Z
R0

�

(�2 + 1)3=2

�
(�2 + 1)1=2(1� 2�2) + 2�2(!0�+

�

�
)

�
exp

0
@�!0

�Z
R0

�1�(�1)d�1

1
A d�

The drift velocity is

Cx � iCy =

1Z
R0

2�Z
0

h
~W

(V )
1 (�; �) ~V (�; �) + ~W

(D)
1 (�; �) ~D(�; �)

i
d��d� (22)

+

2�Z
0

2
4Ŵ (V )

1 (�) ~V (R0; �) + Ŵ
(D)
1 (�) ~D(R0; �) +

5X
j=0

Ŵ
(j)
1 (�)��j ~�j(R0; �)

3
5d�

with the translational RF's

~W
(V;D)
1 (�; �) = ~W

(V;D)
1 (�) exp(�i�); Ŵ

(j)
1 (�) = Ŵ

(j)
1 exp(�i�); j = V;D; 0:::5;
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~W
(V )
1 (�) = �2iW1 [bR0 + pa(1 + i��1) exp(i�)]

�+ i

�
exp

2
4�

�Z
R0

�
!0�1 +

2i

�1

�
�(�1)d�1

3
5

~W
(D)
1 (�) = ~W

(V )
1 (�)

�
!0�

(�2 + 1)1=2
� 1

�
;

Ŵ
(V )
1 =W1W

1
1 ; Ŵ

(D)
1 =W1

�
�(��+ p)W1

1 + ��1��W
2
1 � (2��5p+ ��3)��W

3
1

�
;

Ŵ
(0)
1 =W1

�
p�W1

1 + (1� ��1p�)W2
1 + (2��5p+ ��3)p�W

3
1

�
; Ŵ

(1)
1 = Ŵ

(0)
1 p; (23)

Ŵ
(2)
1 =W1

�
��W1

1 + ��1�W
2
1 + (2��1p+ ��0)�W

3
1

�
;

Ŵ
(3)
1 = �Ŵ

(2)
1 p; Ŵ

(4)
1 = �Ŵ

(2)
1 �; Ŵ

(5)
1 = �Ŵ

(2)
1 p2

and notations introduced for brevity

W1 =
1

2�

2
4pR0 sin � � 1

1� p
(bR0 � pa exp(�i�)(1 + i��1))� i (bR0 + pa(1 + i��1) exp(i�)) �

�

1Z
R0

(�+ i)2

(�2 + 1)1=2
exp

0
@�

�Z
R0

�
!0�1 +

2i

�1

�
�(�1)d�1

1
Ad�

3
5
�1

;

W1
1 = 2

b

!0
(i� pR0 cos�)� 2

p2a

!0
(1 + i��1); (24)

W2
1 = 2

b

!0
(1� pR0 sin �); W3

1 = 2i
pa

!0
(1� pR0 sin �)(1 + i��1)

As it is seen from (19) and (22), the RF's are further classi�ed

on their spatial character. RF's ~W
(�)
0;1 determine the contributions from

parameter perturbations in the whole medium outside the core, whereas

Ŵ
(�)
0;1 only from the perturbations at the core boundary. So, if expressed

as functions of space, Ŵ
(�)
0;1 will be singular functions, proportional to

�(��R0). Respectively, we call ~W
(�)
0;1 and Ŵ

(�)
0;1 the regular and singular

components of the RF's. Parameters that in
uence only the motion of

the tip have only singular RF components. The rotational RF's ~W
(j)
0 ,

Ŵ
(j)
0 are real, while translational RF's ~W

(j)
1 , Ŵ

(j)
1 are complex as they

determine not only the speed but also the direction of the drift.
Note that all the regular RF's decay quickly (superexponentially) at

large �.
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7. Examples

7.1. Approximate solution for the typical case

In this section, we consider the case ��2 � 1 and ��0 nonzero and of the
order of unity, all other ��j being arbitrary and of the order of unity.
This is \the most typical" case, as ��2 being small or zero is a necessary
condition for applicability of the kinematic approach. The main param-
eters of the free spiral, in the principal orders in p = ��2= (��3 + ��0), are
[13]

� = �p2��0 � 1; � = arctan ��0 / 1; !0 = p��0 � 1; R0 =
1� p

p sin�
� 1:

(25)
The shape of the spiral is asymptotically described by

� � (!2
0�

2 � 1)1=2 +
!3
0�

2

!2
0�

2 � 1
+O

�
!2
0

�
; (26)

uniformly on � 2 [R0;+1). The �rst term here corresponds to the
involute of a circle. To leading orders in p, the rotational regular RF's
simplify to

~W
(V )
0 (�) �

!0
4�

� p��20
�
1 + ��20

�
exp

"
��20
3p
�

(!2
0�

2 � 1)3=2

3p��0

#
;

~W
(D)
0 (�) � �

!0

(!2
0�

2 � 1)1=2
~W

(V )
0 (�); (27)

rotational singular RF's to

Ŵ
(V )
0 � �

!0
4�

�
�
1 + ��20

�
; Ŵ

(D)
0 �

!0
4�

� p
��0
�
��20 � 1

�
+ ��3

�
��20 + 1

�
��0 + ��3

;

Ŵ
(0)
0 �

!0
2�

�
��3

��0 (��0 + ��3)
; Ŵ

(1)
0 �

!0
2�

�
p��3

��0 (��0 + ��3)
; (28)

Ŵ
(2)
0 �

!0
2���2

; Ŵ
(3)
0 � �

!0
2�

�
1

��0 + ��3
; Ŵ

(4)
0 �

!0
2�

�
p��0

��0 + ��3
; Ŵ

(5)
0 � �

!0
2�

�
p

��0 + ��3
;

translational regular RF's to

~W
(V )
1 (�) �

p��20
�(1 + ��20 )

1=2
exp

�
��20
3p

+ 2i��0

�h
1 + i

�
!2
0�

2 � 1
�1=2i

�

� exp

"
�
(!2

0�
2 � 1)3=2

3!0
� 2i

�
!2
0�

2 � 1
�1=2#

;

~W
(D)
1 (�) � �

!0

(!2
0�

2 � 1)1=2
~W

(V )
1 (�); (29)
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and translational singular RF's to

Ŵ
(V )
1 � �

1 + i��0
�
�
1 + ��20

� ; Ŵ
(D)
1 �

p(1 + i��0)

�
�
1 + ��20

� ;
Ŵ

(0)
1 �

p��0(1 + i��0)

�
�
1 + ��20

� �1 + i��0
1 + ��20

�
1

��0(��0 + ��3)

�
; (30)

Ŵ
(1)
1 �

p2��0(1 + i��0)

�
�
1 + ��20

� �
1 + i��0
1 + ��20

�
1

��0(��0 + ��3)

�
;

Ŵ
(2)
1 �

1 + i��0
�
�
1 + ��20

�
(��0 + ��3)

; Ŵ
(3)
1 � �

p(1 + i��0)

�
�
1 + ��20

�
(��0 + ��3)

;

Ŵ
(4)
1 �

p2��0(1 + i��0)

�
�
1 + ��20

�
(��0 + ��3)

; Ŵ
(5)
1 � �

p2(1 + i��0)

�
�
1 + ��20

�
(��0 + ��3)

:

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Re(W1)
Im(W1)

W0

l=R0

Figure 1. The response functions ~W (V )
0;1 , representing the sensitivity to perturba-

tion of the wave propagation velocity, as functions of the distance from the center
normalised by the core radius, l=R0, for ��0 = 0:6 and p = 0:2.

Typical shapes of the most essential regular RF components, ~W
(V )
0;1 ,

are illustrated on Figure 1.
~W

(V )
1 and Ŵ

(V )
1 are the largest amongst the spatial RFs. So if per-

turbation of the propagation velocity ~V is present, it is the main factor
determining the drift. If all other perturbations are neglected, then
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�! =
!0

4� cos2 �

I 8<
:� ~V (R0; �) +

sin �

cos2 �

1Z
0

exp

�
�

sin �

cos2 �
�

�
~V (R0 + �; �)d�

9=
; d�;

Cx � iCy =
ei�

�

I 8<
:� ~V (R0; �) cos� +

sin �

cos2 �

1Z
0

exp

�
�

sin �

cos2 �
�

�
~V (R0 + �; �)d�

9=
; d�:

(31)

7.2. Linear gradient inhomogeneity

Let us consider a perturbation in the form of a linear gradient of all
parameters in the x-direction:

~D = kD� cos �; ~V = kV � cos �; ~�j = kj� cos �: (32)

These perturbations are large at large x. However, as the RF's decrease
rapidly with distance, only perturbations in a small neighbourhood of
the core are of interest. In other words, if we consider perturbations,
that are described by (32) in a neighbourhood of the core, and vanish
outside that neighbourhood, the result would be almost the same as
that for (32).

Substitution of (32) into (19) and (22) gives

�! = 0;

Cx � iCy =
1 + i��0

(1 + ��20)
1=2

� �
1� (1 + ��20)

�1=2
�
R0kV + kD (33)

+

�
��0
1 + i��0
1 + ��20

�
1

��0 + ��3

�
(��0k0 + p��1k1) + k2 +

1

��0 + ��3
(���3k3 + p��0��4k4 � p��5k5)

�
:

The zero perturbation of the spiral rotation frequency simply means
that the in
uences of the faster and the slower neighbourhoods of the
spiral cancel each other in the �rst approximation. The drift is mainly
determined by variations of the conduction velocity, as only kV is mul-
tiplied by the large coe�cient R0. Apart from this coe�cient, the drift
velocity in this main order is a simple function of a single parameter
��0. In particular, the angle between the drift velocity and the gradient
of the conduction velocity is always approximately equal to the angle
between the tip tangent and radius-vector of the core.
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7.3. Stepwise inhomogeneity

Suppose the medium consists of two domains with di�erent properties,
separated by straight line x = l (in the CMF), and the parameters of the
medium are uniform within each of the domains. In polar coordinates,

~D = �Dsgn(l�� cos�); ~V = �V sgn(l�� cos�); ~�j = ��jsgn(l�� cos�)
(34)

Again, the seeming contradiction with the assumption on the localisa-
tion of the perturbation is resolved by noting that it's only the nearest
neighbourhood of the core that matters, and it su�ces if the parameters
are described by (34) in this neighbourhood and vanish outside it.

Then equations (19){(22) give the frequency deviation

�!

!0
�

2

�(��0 + ��3)
arcsin

l

l0

hp
2
(��0(��

2
0 � 1) + ��3(��

2
0 + 1))�D (35)

+��3��0 + p
��3��1
��0

��1 + (��0 + ��3)��2 � ��3��3 + p��0��4��4 � p��5��5

�

and the drift velocity

Cx � iCy � �4
21=2p��20

�
1 + i(!2

0l
2
0 � 1)1=2

�
�!

3=2
0 l0(1 + ��20)

1=2(!2
0l

2
0 � 1)1=2

�

� exp

"
��30 � (!2

0l
2
0 � 1)3=2

3!0
+ 2i

�
��0 � (!2

0l
2
0 � 1)1=2

�#
�

� exp

 
!0(l20 � l

2)(!2
0l

2
0 � 1)1=2

2

!
�

 
3

2
;
!0(l20 � l

2)(!2
0l

2
0 � 1)1=2

2

!
�V

+4

�
1�

l2

l20

�1=2
1 + i��0
�(1 + ��20)

�V �
4

�

�
1�

l2

l20

�1=2
1 + i��0
1 + ��20

p � (36)�
p�D+

�
��0
1 + i��0
1 + ��20

�
1

��0 + ��3

�
(��0��0 + p��1��1) + ��2

+
1

��0 + ��3
(���3��3 + p��0��4��4 � p��5��5)

�

where, for brevity, we introduced

l0 = max(l; R0): (37)

An example of the dependencies of Cx and Cy on l due to the
perturbation of �V is shown on Figure 2. It can be seen, both on the
graphs and from (36), that in the interval l < R0, where the both
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(b) l=R0

Cy=�V

Figure 2. Velocities of the drift of the spiral wave, Cx=�V and Cy=�V , near a step-
wise inhomogeneity in the conduction velocity �V , normalised by the magnitude of
this inhomogeneity, as functions of the distance from the spiral center to the step,
normalised by the core radius, l=R0, for ��0 = 0:6 and p = 0:2. (a) Velocity across
the inhomogeneity line, Cx=�V , (b) velocity along the inhomogeneity Cy=�V . Solid
lines: the total velocity, dashed line: contribution of the \singular" component (tip
motion equations), dotted line: contribution of the \regular" component (wavefront
motion equation).

velocity components are considerable, they are, again, approximately
proportional to each other with the coe�cient ���0.

7.4. Comparison with numerical results

. We compared predictions of the previous subsection with numerical
simulations of the piecewise-linear FitzHugh-Nagumo system [21]

ut = aiu� v + bi +r
2u;

vt = �i(u� v); (38)

i =

8<
:

0; u < u1;
1; u1 < u < u2;
2; u2 < u;

with parameters a0 = �4:0, b0 = 0, a1 = 0:98, b1 = �0:08964, a2 =
�15, b2 = 15, u1 = 0:018, u2 = 0:944283 and a stepwise inhomogeneity
of parameters �1 from 3.0 (in the left) to 1.68 (in the right), �2 from 0.1
to 0.06 and �3 from 3.0 to 1.5. Results of simulations are presented on
Figure 3. In agreement with the asymptotic theory, (i) the detectable
drift happens only when the core crosses the line of the inhomogeneity,
and throughout this processes (ii) the absolute value of the velocity
changes, but (iii) direction of the drift is preserved.
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Figure 3. (a) Trajectory of the tip (solid line) and the rotation center (dashed
line) of the spiral wave, in a numerical experiment with a stepwise inhomogeneous
FitzHugh-Nagumo system (38). The vertical dotted line is the boundary between
the domains. Coordinates of the rotation center were de�ned as the coordinates of
the tip averaged over one rotation. (b), (c) x- and y-coordinates of the tip and of
the center, as functions of time.

8. Conclusion

In this paper, we have studied the behaviour of large-core spiral waves
in slightly inhomogeneous excitable media. We used the kinematic
approach, in which an excitable medium is characterised by several
parameters, two of which determine the motion of the wave (the wave

parameters) and the motion of the wave tip depending also on the other
six (tip parameters). These parameters can be found by perturbations
of the half-plane-wave solutions of underlying reaction-di�usion equa-
tions [13] or phenomenologically by �tting experimental or numerical
data.

We have obtained explicit analytical expressions of the frequency
shift and drift velocity, as functionals of the perturbations of the medium
parameters.

Some features of our results are:

1. The linear superposition principle is valid: in
uence of medium
inhomogeneity onto the spiral wave rotation frequency and drift
velocity is a sum of contributions of all in�nitesimal regions with
perturbed parameters. The contribution of each region depends on
parameters' perturbations in this region, and (for perturbations of
the wave parameters) on its distance to the spiral center.

2. At large distances, the decrease of the rotation frequency perturba-
tion is superexponential, � exp(�(�=�)3), and the decrease of the
drift velocity is superexponential with oscillations, � exp(�(�=�)3�
2i�=�0). The period of these oscillations is �0=2, half the asymptotic
wavelength of the free spiral.
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3. Of all the parameters, the spiral wave is most sensitive to the inho-
mogeneity of V . Neglecting other inhomogeneities, the in
uence of
a perturbation of V is described by simple equations (31), involving
only parameters which are easily found phenomenologically. In par-
ticular, in
uence of V is signi�cant even at some (relatively small)
distance from the tip.

4. In
uence of perturbation of D on the spiral drift and frequency
deviation is always much smaller than the in
uence of a perturba-
tion of V , and is signi�cant only if it takes place at the tip (regular
components of the RF's vanish in the linear approximation in p).

5. Only eight of the singular RF components, ŴV;D;0;2
0;1 are essentially

di�erent, while other eight may be expressed through these and
parameters p and �.

Some of these features may be explained heuristically and compared
with similar features of problems of small-amplitude perturbations in
CGLE [11] and boundary-induced drift in CGLE [14] and \coreless"
spirals in Fife limit excitable media [17]. Naturally, features 1{5 are not
identical to those of boundary-induced drift and when we comparing
these features, we speak about similar but not identical properties.

Feature 1, is valid for the solution of [14, 11] and as we think, of [17]
(those authors did not present solutions for general form of boundary
and restricted only to some partial cases). The fact that small pertur-
bations act additively is not surprising. However, neither it is obvious a
priori for a nonlinear problem: e.g. in the dynamics of the domain wall
in the Landau-Lifshits equation, it is the squares of the perturbations
that are additive [22].

Feature 2 is valid for [17]. However, in [14] and [11], both frequency
deviation and drift velocity show simple exponential dependence on
distance. This di�erence can be understood intuitively in terms of
di�usion of the autowave phase [23, 24]. The basic idea is that the
perturbations in
uence the events around the core through the spiral
wave radiated outwards. The spiral wave outside the core is locally close
to plane periodic waves, and can be considered as a slowly varying wave
(SVW)[23]. So, the transition of the perturbation in
uence to the core
could be thought of in terms of di�usion of the phase of SVW on the
background of its transport outwards, which may be only due to the
phase di�usion[24]. Coe�cients of longitudinal and lateral di�usions
of phase may di�er signi�cantly. The model considered in [14] had
the two di�usion coe�cients equal, while in the model considered here
and in [17], the longitudinal di�usion is absent. It is easy to see that
Eq. (5) corresponds to the phase evolution equation of [24] with zero
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longitudinal di�usion. The reason is that in present approximation, the
next excitation wave receives no information from the previous one,
and the perturbation can propagate only along the wave. So, in CGLE,
perturbations can propagate straightforwardly \upstream" the waves
emitted by the spiral, so they have to overcome just the distance �. On
the contrary, in the present case the perturbations have to propagate
the much longer way along the wave, thus the faster dependence on the
distance.

The oscillatory dependence of drift velocity on the distance can
be partly understood in terms of the so called resonant drift. Note
that perturbation signi�cantly in
uences the spiral wave only when
the wave moves through the perturbed region. Thus, this is a periodic
in
uence synchronised with the spiral wave rotation. Now we can ap-
ply the same arguments as in the case of resonant parametric drift
[25, 21, 26]. Namely, small e�ects of the perturbations are applied
to the same phases of the spiral rotation and therefore add up. The
essential di�erence here is that the in
uence strongly depends on the
distance to the perturbed region. In particular, the direction of the
drift is determined by the phase di�erence between the spiral rotation
and the in
uence. This di�erence is determined by the distance to the
boundary, measured by 2� times number of wavelengths. This explains
the periodic dependence of the direction of the drift on the distance to
the inhomogeneity, and relationship of this period with the wavelength
of the spiral. The factor of 1=2, however, remains unexplained and
appears so far as a nontrivial result of the theory. On the contrary,
in CGLE all the oscillation phases are exactly equivalent, and so the
in
uence of inhomogeneity, in this sense, is not oscillating at all.

These heuristic interpretations predict that (i) the superexponential
asymptotics are not common and are limited to the cases with zero
longitudinal di�usion of autowave phase, while otherwise the exponen-
tial asymptotic are more probable, and (ii) the oscillatory character of
drift direction is more common, and may be absent only in systems
with special internal symmetries.

Features 3{5 are speci�c to the considered approximation. Of these,
the most prominent seems the prediction 3, as it can be most easily
tested in experiments and numerical simulations. In this paper, we
presented only simplest qualitative comparison; this subject deserves
further study.
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