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ABSTRACT 
We describe the dynamics of bound states of same-chirality spirals in a generic numerical model of an 

excitable medium. For each bound state, we analyze its tip trajectory patterns and determine its 
characteristic frequencies. We report two new bound states:  for spiral pairs, a state that exhibits alternating 
cycles of small and large distances between collisions (A2); for triplets, the first example of a meandering 
bound state (M3).  In parameter space, A2 lies in between the previously described oscillating pairs (O2) and 
master-slave pairs (MS).  We present numerical evidence that the transition O2→A2 occurs via a 
supercritical period-doubling bifurcation, while the transition A2 →MS occurs via a symmetry breaking 
secondary Hopf bifurcation. A classification of all regimes according to dynamical systems theory exposes 
the wealth of phenomena exhibited by multiarmed spiral waves. 

 
I. INTRODUCTION 

 
 Spiral waves occur in a variety of physical, chemical, and 

biological systems.  Examples include the Belousov-
Zhabotinsky reaction [1,2], electrical ativity in cardiac tissue 
[3], aggregation of starving slime mold amoeba [4], and 
catalytic reactions on platinum surfaces [5].  At the same 
time, analytical and simulation studies have greatly advanced 
our understanding of spiral wave dynamics [6-10]. 

Two or more spirals can form bound states, i.e. stable 
ensembles of spiral arms that interact and remain within a 
limited distance from each other. They have characteristic 
features, like their frequency [11,12], and rules of interaction 
with other bound states [12]. 

  An important example of bound states are multiarmed 
spiral waves, ensembles of same-chirality spiral waves whose 
tips are separated by less than a core diameter.  They have 
been observed in chemical media, like the Belousov-
Zhabotinsky reaction [11], and in biological media, e.g. 
Dictyostelium discoideum [13], two-dimensional cultured 
heart tissue [14], the whole rabbit heart [15], and a variety of 
numerical models of excitable media [16]. 

The simplest type of same-chirality bound states are 
oscillating multiarmed spirals (On) [17].  They are 

characterized by an n-fold rotational symmetry and periodic 
collisions of their arms.  Recently, our group discovered 
another bound state of two same-chirality spirals in which 
one spiral rotates around the other (master-slave pairs or MS) 
[18].  This state exhibits no symmetry, and the spiral tips are 
separated by a distance which can be large compared to the 
diameter of the core of the spiral.  Finally, multiarmed spirals 
rotating around a common core can persist for considerable 
time [13]; however, they have been shown analytically to be 
unstable for several FitzHugh-Nagumo type media [9] and 
are not included in our discussion.  

While many papers have commented on the complex 
dynamics of bound states [11,12,14], these dynamics have not 
yet been analyzed.  In this paper, we study the dynamics of 
bound states of same-chirality waves in a generic excitable 
medium.  We report a new stable regime of spiral pairs, in 
which the spiral arms alternate between larger and smaller 
separations between collisions (A2).   A second new regime 
we found are triple-armed meandering spirals (M3).  We 
characterize the bifurcations that mark the transitions between 
bound states.  We classify all observed regimes in terms of 
the theory of dynamical systems with symmetry and 
determine for each regime the parameter region in which it is 
stable.  Table 1 summarizes the properties of the bound states 

Symbol Bound State Isotropy 
Group 

Attractor in 
Orbit Space 

Figure 

On Oscillating multiarmed spirals with n arms Zn Limit cycle  1
An Alternating oscillating multiarmed spirals 

with n arms  
Zn Limit cycle  

(double period) 
 2

MS Master-slave pairs {id} Torus 3
Mn Meandering multiarmed spirals with n arms {id} Torus 4,5

Table 1: Bound states of same-chirality spiral waves.  Grey background indicates bound states that are described in this 
paper for the first time. 
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of same-chirality spiral waves.  
 
 
 

II. METHODS 
 

Numerical methods 
All observations were made in numerical simulations in 

the widely used Barkley reaction-diffusion model [19] of a 
generic excitable medium.  It consists of an activator variable 
u and an inhibitor variable v, which evolve according to:  

 
 ∂u/∂t = (1/ε)u (1-u)[u-(v+b)/a] + ∇2u   

A convenient language to describe the qualitative features 
of dynamic regimes is that of the dynamical systems theory 
[20].  However, this language cannot be directly applied to 
reaction-diffusion systems, because these systems have 
spatial symmetry (they are equivariant with respect to the 
Euclidean group, i.e. translations, rotations, and reflections).   
An efficient method to deal with this symmetry is to consider 
the space of group orbits of the system [21], which do not 
exhibit spatial symmetry.  In this section, we explain this 
method without any attempt of mathematical rigor.   

∂v/∂t = u–v.                                             (1) 
 
The constant ε is the ratio of characteristic time scales of 

the activator and inhibitor variables. The parameters a and b 
represent the slope of the u-nullcline and the excitation 
threshold. We chose a typical value of ε=0.02 and varied b 
from 0.15 to 0.3.  We set a=1.1 unless stated otherwise (a 
was always between 0.9 and 1.25). All of the regimes we 
describe can be observed in the parameter region for which 
single-armed spirals rigidly rotate, so the complexity 
observed here is truly a consequence of the interaction of the 
spiral arms.    

We solved the model equations on a 320x320 or 640x640 
grid using Euler’s method with zero flux boundary 
conditions, dx=0.1826 as our space step, and dt=0.003 as our 
time step.  The tips of spiral waves were defined to be the 
pixels satisfying 0.45<u<0.57 and 0<du/dt <10. All 
computations were performed on a 32-node Beowulf cluster.   

To create bound states of spiral waves, we used two 
different methods.  In the first method, we initiated two 
consecutive plane waves, let them advance halfway through 
our medium.  We then reset half of our medium, creating two 
broken wave fronts.  In the second method, we superimposed 
snapshots of a single-armed spiral in equally spaced phases 
(we summed the values of each variable over the different 
snapshots, at each point of the medium).  When we initiated 
bound states of three or more arms, we used the second 
method. 

The stability of a bound state was assumed if it showed no 
sign of decay after at least 100 spiral rotations. 

We defined the center of mass of a configuration as the 
center of mass of the tips.  The minimal and maximal tip 
distances from the center were determined by automatically 
detecting the minimal and maximal distances for at least 10 
periods and then taking the average.  

   To determine angular velocities in the tip trajectories 
(ω1, ω2, and ω3; see definitions in the Results section), we 
measured the time needed for a large number of rotations (at 
least 10), and divided the covered angle by that time.  

When we ramped b to study the dependence of the 
system’s behavior on excitability, we used the final condition 
of each value of b as the initial condition for the next value of 

b and allowed transients to pass for at least 15 spiral rotations 
after each change in b.  The boundaries of the regimes in 
parameter space were established with an accuracy of 0.001 
in the value of b for any given a. 

 
Classification of multiarmed spiral waves 

Consider a dynamical system defined in a phase space V 
and equivariant with respect to a symmetry group G.  Any 
point v∈V may have its own symmetry group H = H(v) ⊂G 
which is called the isotropy group of point v. The isotropy 
subgroup is the same for all points of a trajectory. The union 
of all points with similar isotropy subgroups is called a 
stratum. The phase space V is a disjoint union of strata. 
Asymmetric solutions have the trivial isotropy subgroup {id}, 
consisting only of the identical transformation. For the system 
(1), the asymmetric solutions are single-armed spirals or 
asymmetric multi-armed spirals.  

We also consider here n-armed spiral waves, which are 
symmetric with respect to rotation by a multiple of 2π/n. 
Their isotropy groups are isomorphic to the group Zn. A 
group orbit is a set of points of V obtained from each other by 
various elements of G. By identifying all points belonging to 
the same orbit, we reduce the phase space V to the orbit space 
V/G. The part of the V/G corresponding to one stratum has a 
structure of a manifold, and is called an orbit manifold. Any 
trajectory in V generates a trajectory in V/G. The dynamical 
system in V/G is called the reduced dynamical system. Its is 
generic in the sense that its dynamics are devoid of the 
original symmetry of the problem; so we can expect to find 
standard types of attractors and bifurcations on that system, 
unlike the original. 

For system (1) and G the Euclidean group, in some cases 
the reduced dynamical system can be understood as system 
(1) re-written in a moving frame of reference, say attached to 
the tip of a spiral [22]. Thus we will sometimes refer to (1) as 
dynamics in the laboratory frame of reference. 

An important technical comment in [23] is that any 
coordinate on the orbit manifold is a group-invariant function 
of the phase space of (1), and vice versa, any such function 
can be used as a coordinate on an orbit manifold unless it is a 
constant for that manifold. 

To summarize, the implications important for our present 
study are: 
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• The understanding of the dynamic regimes of 
multiarmed spiral waves should be in terms of dynamics on 
the orbit manifolds by the Euclidean group, and this can be 
achieved by using Euclidean invariant functions of such 
solutions. 

 
• The structure of the orbit manifold depends on the 

symmetry (the isotropy subgroup) of the solutions in 
question, and as long as the solutions in question are within 
one stratum, i.e. have the same symmetry, the dynamics on 
the group manifold is generic, in particular, should be 
expected to demonstrate attractors and bifurcations typical for 
generic, non-symmetric systems. 

 
Moreover, by Takens’ embedding theorem [24], just one 

such coordinate is almost certainly sufficient to reconstruct 
qualitatively the dynamic attractor. In our simulations, the 
symmetry of solutions was always evident, so no special 
technique for its detection was needed. As the Euclidean-
invariant characteristic of two-armed spiral wave solutions 
we have used the distance d(t) between the two tips, which 
was easy to measure and interpret. Then we applied to d(t) 
the standard delayed embedding technique to reconstruct the 
attractors.   

For symmetric three-armed solutions, we used the 
distance between one of the tips and the center of symmetry 
as the Euclidean-invariant characteristic, which is also group-
invariant and practical inasmuch as the center of symmetry 
can be found with sufficient accuracy.  

 
 
 
III. DYNAMICS OF THE MULTIARMED SPIRAL 

REGIMES 
 
 

Oscillating pairs (O2) 
Figure 1 shows the detailed dynamics of O2.  The two 

spiral tips approach each other (Fig. 1A), collide (Fig. 1B), 
and move apart again (Fig. 1C).  Between collisions, both tips 
follow a circular trajectory of the same radius an isolated 
single spiral wave (Fig. 1C-D), until they collide again at 
their tips (Fig. 1E).  The relative positions of the spiral arms 
at each collision are identical (Fig. 1B, E), but from one 
collision to the next, both arms are rotated around the center 
of symmetry.  This second rotation explains the petal pattern 
(Fig 1F) that the tip trajectories form over several rotations. 
Figure 1G shows the distance between the tips as a function 
of time.  It is strictly periodic with period T.  

The tip trajectories can thus be described as a combination 
of a steady rotation of each spiral arm around its core and 
periodic discrete rotations, at each collision, of the whole 
pair.  To quantify the steady rotation, we define the petal 
frequency ω1= 2π/T. The periodic rotation of the whole pair 
can be interpreted as a second, slower rotation:  We name the  

Figure 1. Representative example of O2 dynamics (b = 0.2303).  
Thick white lines show the excitation waves (u≈1), dotted white 
lines show the tip trajectories.  Arrows indicate the drift direction of 
the tips. A-E: Evolution of O2 over 1.5 periods. F: Tip trajectories 
of O2 over four periods. G: The distance d between the tips as a 
function of time. H: Recurrence map for the Poincare cross-section 
defined by the local maxima of d(t).  I: Petal frequency ω1 and 
meandering frequency ω2, as a function of b. The O2 region is 
marked grey, the adjacent regimes (A2, SE) are discussed below.  
 
angle of deflection α2 and define the meandering frequency          
 ω2= α2/T.  After head-on collisions, we always assumed that  
the tips exchange their spiral arms.  The reason for this 
convention is that for collisions away from the tip, the tips 
manifestly exchange arms, and with our convention, we treat 
all collisions equally.  

The sign of ω1 was the same as that of ω2 in all our 
simulations, and we set ω1, ω2>0 without loss of generality 
(taking the mirror image of the medium changes the sign of 
both ω1 and ω2).  From the definitions of ω1 and ω2 it follows 
immediately that ω1>ω2. We describe in the Methods section 
how we measure ω1 and ω2. 

Figure 1H shows a recurrence map for the Poincare cross-
section defined by the local maxima of d(t).  Since there is no 
discernable structure in the recurrence map and the changes 
in the maxima of d(t) are minimal, we conclude that the 
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Figure 2. Representative example of A2 dynamics (b = 0.2177). A-
E: Evolution of A2 over one period. F: Tip trajectories of A2 over 
one period. G: The distance d between the tips as a function of time. 
H: Recurrence map for the Poincare cross-section defined by the 
local maxima of d(t).   I: Petal frequency ω1 and meandering 
frequency ω2 as a function of b.  The A2 region is marked gray, the 
adjacent MS regime is discussed below. 
 
attractor of O2 in orbit space is a limit cycle, i.e. we have a 
periodic solution of the reduced system.  In the laboratory 
frame of reference, this generates a bi-periodic solution. This 
is similar to the classical flower-pattern meander of single-
armed spirals, only here both tips describe the same flower 
patterns symmetrically. 

Figure 1I shows ω1 and ω2 as a function of b. The 
dependency of ω1 on b is in good approximation linear. 
Extrapolating the b for which ω1 is 0 leads to good agreement 
with the largest b that supports spiral pairs (as well as single 
spirals).  This should be expected, because the single spiral 
radius grows to infinity as we approach the boundary of the 
spiral pair domain, and consequently ω1 should vanish.  Our 
extrapolation of ω2 reaches zero at practically the same value 
of b; this can also be expected because ω1>ω2 (see above).   

 

 

I 

Figure 3. Representative example of MS dynamics (b = 0.2087). A-
E: Evolution of MS over one period. F: Master and slave tip 
patterns for one complete revolution of the slave around the master. 
G: The distance d between the tips as a function time.  H: 
Recurrence map for the Poincare cross-section defined by the local 
maxima of d(t).  For this panel, we used b=0.2214 (see text). I: 
Petal frequency ω1 and meandering frequency ω2 as a function of b. 

I 

 
As b is decreased, ω2 grows, but the growth saturates towards 
the end of the O2 regime. 

The observed O2 regime corresponds to the stable spiral 
pairs described by Ermakova et al. for a different FitzHugh-
Nagumo medium [17]. 
  

 
Alternating pairs (A2) 

Figure 2 shows a new, alternating regime of spiral pairs, 
which we call A2.  As in the case of O2, the two spiral arms 
maintain perfect center (Z2 -) symmetry (Figs. 2A-E). 
However, A2 exhibits two different types of collisions that 
occur alternatingly.  The first type of collision is “sideways”: 
The initial contact between the two arms occurs at some 
distance from the tip (Fig. 2C).  The second type is “head-
on”, i. e. collision occurs close to the tip (Fig. 2E), as for O2.  
Figure 2F shows that the tip trajectories in the two types of 
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inter-collision periods also differ: They form a petal pattern 
that contains two different petal sizes.   

Figure 2G shows the distance between the tips as a 
function of time, where alternans can also clearly be seen.  
Figure 2H shows the recurrence map for the Poincare section 
defined by the local maxima of d(t).   

The empirical attractor consists of two clusters, neither of 
which has any further discernible structure.  We conclude that 
the attractor in orbit space of A2 is a limit cycle; but this time, 
the period is about twice that of an isolated spiral in the same 
medium. 

   Figure 2I shows that the linear increase of ω1 with 
decreasing b continues throughout the A2 domain, while ω2 
begins to decrease.  Note that for A2, the period T between 
collisions is alternating (say, between T1 and T2).  Thus, our 
definitions of ω1 and ω2 need to be modified to ω1= 
4π/(T1+T2) and ω2= α2’/(T1+T2), where α2’ is the angle that 
the whole pair rotates during the time T1+T2.  

From the formal viewpoint, the orbit space dynamics here 
are periodic, as for O2, although the shape of the oscillations 
is more complicated. We will discuss the relationship 
between A2 and O2 orbit space dynamics in more detail 
below. 

 
Master-slave pairs (MS) 

Figure 3 shows a third regime of double-armed spiral 
waves (MS), in which the central symmetry is broken.  The 
spiral tip that is to the left in Fig. 3A rotates apparently  
 
unaffected by the collisions through the entire sequence 
shown in Figs. 3A-E. At the same time, the other tip is 
annihilated in every collision (Figs. 3B, 3E) but develops 
again afterwards (Fig. 3C)   We call the spiral that belongs to 
the unaffected tip “master” and the other spiral “slave”.  The 
master takes over the slave arm after each collision, and the 
slave re-develops from the truncated master arm.  Panel F 
shows master and slave tip trajectories. The distance between 
master and slave, averaged over one collision period, 
converges to its steady state within a few revolutions of the 
slave around the master.   

Figure 3G shows that the distance between the tips is in a 
good approximation periodic, but that the extrema vary 
slightly from beat to beat.   

This variation is further analyzed in Fig. 3H, which shows 
the recurrence map for the Poincare section defined by the 
local maxima of d(t).  The recurrence map forms a closed 
loop, and we conclude that the attractor in orbit space of MS 
is a torus.  In the Figure, we show the recurrence map for 
b=0.2214, because the loop is more pronounced for larger b, 
for which master and slave are close together (Fig. 3I 
suggests that b=0.2214 does not support MS, but there is 
actually MS/A2 bistability for b=0.2214, as we discuss below, 
in Fig. 9). 

In Fig. 3I, we see that ω1 continues to grow as b decreases.  
On the contrary, ω2 approaches zero as we approach the left  

 
Figure 4. Representative example of M3 dynamics (a = 1.25, b = 
0.27488). A-E:  Evolution of stable triple-armed spirals over two 
periods.  We observed two types of collisions, which alternate every 
rotation cycle: head-on collisions (Frames A, E), and sidearm 
collisions (Frame C). F: Tip trajectory of a triple-armed spiral over 
two periods. The alternating tip and sidearm collisions form two 
concentric patterns. G: Distance d from the tips to the center as a 
function of time (equal for all three arms). H: Recurrence map for 
the Poincare cross-section defined by the local maxima of d(t).  I: 
Petal frequency ω1 and meandering frequency ω2 as a function of b.  
 
end of the MS domain.  This is because the master-slave 
distance diverges towards the left end of the MS domain 
while the petal size (like the radius of an isolated spiral) 
decreases.  

 
Meandering triplets (M3) 

We now turn to spirals with three arms.  Figure 4 shows the 
dynamics of a triple-armed, meandering spiral wave (M3).  
Apart from its meandering, the configuration is analogous to 
A2: Between collisions, the individual tips move along 
circular trajectories, as independent single arms.  There are 
two types of collisions that occur alternatingly: head-on (Fig. 
4A, 4E) and sideways (Fig. 4C).  The tip trajectories also 
form a pattern analogous to that of alternating spiral pairs, 
characterized by a small petal radius and a big petal radius 
(Fig 4F).   
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Figure 5.  Representative example of a meandering multiarmed 
spiral (a=1.2, b=0.262).  A:  Tip trajectories and meandering. The 
dotted gray lines mark the tip trajectories of all three tips, the solid 
white dot marks the corresponding center of mass of the tips.  Over 
time, the center of mass moves along the circle marked by a dashed 
white line, with angular velocity ω3. B: Coordinates of the center of 
mass as a function of time.  The black trace shows the x-coordinate 
of the center of mass (xCOM), the grey trace the y-coordinate (yCOM).  
Noise in both traces is due to tip misdetections. 

 
Figure 4G shows the tip distance over time, reflecting the 

alternating motion. Figure 4H shows the recurrence map for 
the Poincare section defined by the local maxima of d(t).  The 
recurrence map shows two closed loops, so it provides 
evidence that the attractor in orbit space of M3 is a torus. 

However, the structure of the loops is not clear enough to 
rule out a more complicated attractor, e.g. a 3-torus, which is 
suggested by the observation of meander discussed below. 

Figure 4I shows the petal frequency (ω1) and the 
meandering frequency (ω2) as a function of b.  Both ω1 and 
ω2 remain almost constant over the A3 domain (which is 
relatively small).   
Figure 5A shows that the whole triplet meanders on a circular 
path.  The amplitude of the meandering is comparable to the 
core diameter of an isolated spiral. We define the angular 
meandering velocity ω3=2π/T3, where T3 is the period of the 
meandering (see Fig. 5B).   The frequency ω3 depends on b 
(like ω1 and ω2), and it is consistently lower than ω2 by an 
order of magnitude (we have not determined the detailed 
dependency of ω3 on b because of the very long duration of 
the corresponding simulations).  Figure 5B shows the x- and 
y-coordinates of the center of mass (xCOM and  yCOM) for a 
representative example of M3.  Despite some noise from tip 
misdetections, Fig. 5B shows that both coordinates oscillate 
sinusoidally with great accuracy. 

Different from the previously discussed regimes, M3 was 
stable only for a narrow range of parameters and initial 
conditions.  In the vicinity of this narrow range, M3 can 
persist for a long time (>50 rotations) before developing 
asymmetries and finally decaying.  This raises the possibility 
that M3 is nowhere truly stable, but only has very large decay 
times for certain parameters.  While we cannot rule out this 
possibility, we ran simulations with up to 500 spiral rotations 
without seeing any sign of breakup.  Even if M3  should not 
be analytically stable, it persists for so long that it can be 
considered stable for many practical purposes. 

 

 
Figure 6. Parameter regions of the dynamic regimes of the Barkley 
model.  Light grey area marks the O2 regime, medium grey area the 
A2 domain, and black area the MS domain. The hatched area marks 
the overlap of the A2 and the MS domain. Previously identified 
regimes are labeled in grey: NW (no waves), SE (sub-excitable), SS 
(stable spirals), and BI (bistable). 

 
Parameter regions of the dynamic regimes 

Figure 6 shows the parameter regions of all dynamical 
regimes discussed in this paper.  They all lie inside the region 
in which a single spiral is stable (marked “SS”).  O2 occurs at 
highest b (lowest excitabilities), A2 at lower b, and MS at still 
lower b.  Figure 6 shows that stable bound pairs cover a large 
portion of parameter space, i.e. more than 50% of the stable 
spiral (SS) domain shown in Fig. 6 (but note that the SS 
domain extends beyond the part of the model’s parameter 
space shown in Fig. 6 [25]).  The domain of symmetric triple 
armed spirals is much smaller (about 2% of the SS domain 
shown in Fig. 6).   

We also looked for stable bound states with four arms, but 
they consistently broke up after a short time (10 rotations).  
Stable bound pairs also occurred for parameters outside the 
range shown in Fig. 6 (e.g. for a=0.6, b=0.08).  We never 
observed them, however, for parameters at which a single 
spiral meanders [25]. 

 
 

IV. TRANSITIONS BETWEEN THE REGIMES 
 

Transition O2→A2 
Figure 7 shows the transition from O2 to A2.  Figure 7A 
shows that starting from the largest value shown (b=0.234), 
decreasing b decreases r1 (maximal distances of the spiral tips 
from the center of symmetry, see Fig. 7B) and increases r2 
(minimal distances of the spiral tips from the center of 
symmetry, right before a collision, see Fig. 7B).  The 
decrease in r1 reflects the decrease of a single spiral’s radius 
with b, and the growth in r2 indicates that the spirals are 
meeting less and less exactly head-on. 

At bO2→A2 ≈0.229, a period doubling bifurcation occurs in 
the base system.  For b< bO2→A2 , during one period, r does 
not simply oscillate between r1 and r2, but it increases from r2 
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Figure 7. Transition from O2 to A2 as b is changed (a=1.1).  A: 
Bifurcation diagram.  The symbols r1, r2, r3, and r4 correspond to the 
extremal points of the tip trajectories (see Panels B and C).  The 
dark grey area marks the range of b supporting O2, the medium grey 
area the range of b supporting A2. The light grey area marks the 
region of b that supports MS but not A2 (see Fig.8) . The dotted line 
indicates the average distance of the spiral tips from the center of 
symmetry.  B: Tip trajectories of both spiral arms (grey and black) 
for O2.  Maximum and minimum distances between tips and the 
center of symmetry are labeled r1 and r2. C: Tip trajectories for A2. 
Additional local maxima and minima are labeled r3 and r4.  
 
to r1, then decreases to r4, increases to r3 and decreases back 
to r2 (see Fig. 7C).  The average radius [r1+ r2+ r3+ r4]/4, 
shown by a dotted line in Fig. 7A, decreases monotonically 
down to the end of the alternating pairs domain 
(bA2→MS≈0.216). 

Figure 8 gives evidence that the transition O2→A2 is 
indeed a period doubling bifurcation.   
Figure 8A shows the delay-embedded distance between the 
tips for b=0.233, i.e. in the O2 domain but close to bO2→A2.  
The trajectory is a closed loop.  Figure 8B shows the 
corresponding trajectory for b=0.226, in the A2 domain. The 
closed loop has split in a double loop, but the shape is still 
very similar to that of Fig. 8A.  This strongly suggests that a 
period-doubling bifurcation occurred. 

 
 Transition A2→MS 

 Figure 9 shows the transition from A2 to MS.  In order to 
characterize the change in MS dynamics for different b, we 
introduce the slave precession radius rs and the master 
precession radius rm (Fig. 9B).  Figure 9A shows that as b is 
decreased below bMS→A2≈0.223, the medium begins to sustain 
MS (the name bMS→A2 will become clear in the next paragraph 

           
  

 
Figure 8: Delay-embedded trajectories before (Panel A, b=0.233) 
and after (Panel B, b=0.226) the period doubling bifurcation.  The 
delay τ was chosen to be T/4 (T measured before the bifurcation). 
 
where we discuss hysteresis).  The values of rs and rm are on 
either side of the corresponding average tip-center distance of 
the A2 regime (dotted line). While rs grows monotonically and 
eventually diverges at b=0.2057, rm decreases monotonically 
and approaches zero as rs diverges [18]. 

Note that there is an overlap of the A2 and the MS 
domains.  In the bistable region, the initial condition 
determines whether A2 or MS develops.  If b is varied 
continuously, there is hysteresis: Starting with A2 and 
decreasing b slowly, the alternating pair persists down to 
bA2→MS≈0.216, while starting with MS and increasing b 
slowly, MS persists up to bMS→A2≈0.223. 

Below bA2→MS, MS is the only stable formation.  For 
decreasing b, the slave precession radius increases and 
eventually diverges around b=0.2057 [18] while the master 
precession radius converges to zero.  

Note that the transition from A2 to MS is a transition from 
a limit cycle to an invariant torus in the reduced system. 
Recall that such a transition is a typical codimension one 
event in generic dynamical systems, marked by a secondary 
Hopf bifurcation, a.k.a. Neimark-Sacker bifurcation. In our 
case this is a symmetry-breaking bifurcation, as different 
branches correspond to different strata: A2 has central 
symmetry Z2, whereas MS has the trivial symmetry {id}. 
Besides, this bifurcation appears subcritical, which gives rise 
to the ‘hard’ birth of the 2-torus and the hysteresis. 
 

V. ROBUSTNESS OF MULTIARMED SPIRAL 
REGIMES 

 
We performed additional simulations to demonstrate that 

the regimes described are robust against noise and 
perturbations and independent of initial conditions. 
Figure 10 illustrates the reversibility of the effect of 
parameter changes.  Figure 10A shows the tip trajectories for 
a value of b that corresponds to O2. Then b is abruptly 
increased such that the spiral pair remains in the O2 regime, 
but the resulting tip trajectory pattern has a smaller radius 
(Fig. 10B).  Afterwards, we set b back to its original value 
and get the original tip trajectory, up to a shift and a rotation 
(Fig. 10C). 
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Figure 9. Transition from A2 to MS as b is changed (a=1.1).  A:  
Bifurcation diagram for r as b is changed.  The symbols used are 
explained in Panels B and C. The solid lines show rs and rm as 
function of b.  The dotted line indicates the average distance of the 
spiral tips from the center of symmetry (copied from Fig.7). Arrows 
indicate which stable branch the system follows for increasing and 
decreasing b. There is hysteresis in the transition. The dark grey 
area marks the range of b supporting O2, the medium grey area the 
range of b supporting A2, and the light grey area the region of b that 
supports MS; note the overlap of the MS and A2 domains (hatched 
area).  B: Precession of the slave and master.  Left panel shows the 
tip trajectories of slave (grey) and master (black).  The motion of the 
slave tip is a combination of a single spiral rotation and a low- 
frequency precession of amplitude rs caused by the interaction. The 
dashed circle marks the precession component of the trajectory. The 
trajectory can be recovered by moving the core center along the 
dashed circle as the tip rotates around the core.  In the right panel, 
we show the magnified master tip trajectory, which appears thick 
because the motion of the master tip is also a combination of a 
single spiral rotation and a low-frequency precession of (low) 
amplitude rm.  The dashed circle in the center of the master tip 
trajectory (radius rm) shows the precession component of the master 
trajectory.   The thickness of the slave trajectory is 2rm because this 
is how much the instantaneous center of the master rotation changes 
due to precession. 
 

Transitions between different pairs of regimes are 
reversible in the same manner.  Figures 10D-F illustrate this 
finding in the case of the regimes MS and O2 Figure 10D 
shows a MS tip trajectory.  When we abruptly increase b, the 
system converges to the O2 tip trajectory pattern shown in 
Fig. 10E.  When we set b back to its original value, the 
system evolves back to the MS regime and the original tip 
pattern (Fig. 10F). 

 
Figure 10. Reversibility of the effect of parameter changes. A-C: 
Parameter changes within a dynamic regime (O2). A: O2 tip 
trajectory (b = 0.2338). B: Steady-state tip trajectory of the same 
spiral pair after b is decreased to 0.2303. C: After b is decreased to 
its original value, the original tip pattern is restored. D-F. Parameter 
changes across regimes. D: MS tip trajectory (b = 0.2149). E: 
Increasing the value of b to 0.2303, we obtain O2. F: After 
decreasing the value of b back to 0.2149, the original O2 is restored. 
 

 
Figure 11.  Effect of random noise on MS. A: Tip trajectories of 
master and slave before noise was switched on.  B: Transition from 
noise-free to noise MS dynamics.  The arrow marks the position in 
the slave trajectory where the noise was turned on.  The master 
trajectory deviates visibly from its original circular path as soon as 
the noise is switched on.  C: Tip trajectories after the noise has been 
turned off.  In the background (grey) we show the original 
trajectories from Panel A (notice the shift of the entire trajectory 
pattern). The noise applied consisted of uniformly distributed 
random numbers with amplitude of ±7.5% of the activation 
threshold, added in every time step. 
 

We conducted further tests of the robustness of all 
reported regimes. Figure 11 shows the effect of noise on MS.  
Figure 11A shows the tip trajectories of a master-slave pair 
before noise is switched on.  In Fig. 11B, the noise is off 
initially, but it is switched on when the slave tip is at the point 
indicated by the arrow.  As soon as the noise is turned on, the 
slave trajectory becomes irregular; but qualitatively, the MS 
dynamics are preserved.  The master trajectory is also 
affected:  As soon as the noise is switched on, the master tip 
starts to meander randomly on top of its circulating motion. 
In Figure 11C, the noise has been turned off again, and a 
regular MS tip pattern sets in immediately.  We show in grey 
the original MS tip pattern (from Fig. 11A), and see that the  
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Figure 12. Initiation of MS from two closely spaced wave breaks.  
A-C:  If the distance between the wavebreaks is below some critical 
value, they develop into MS.  D-F:  If the wavebreaks are too 
widely spaced, they develop into two independent spirals. G: 
Evolution of tip distance for different initial distances.  The dashed 
line marks the single spiral wavelength. H: Time for MS formation 
as function of initial separation of the wavefronts. 
 
only lasting effect of the noise application is a small shift of 
the entire tip trajectory pattern.   

We found that the steady state to which the system 
evolves is generally not sensitive to the initial conditions 
(exceptions to this rule are discussed below).  Initiating any 
of the reported regimes in two different ways (see Methods 
section) resulted in an identical steady state (up to a shift and 
a rotation).  Ramping the parameter b led to the same result.  
Triple-armed spirals did not develop from a train of three 
consecutive broken waves. 

We further applied one-time global additive perturbations 
of varying amplitude and spatial frequency to the activator 
variable.  These perturbations did not destroy the regimes’ 
dynamics and had a negligible effect on their phase, even for 
perturbation amplitudes of 0.9 activation thresholds (No 
figure shown).  

The size of the medium and boundary conditions were 
relevant only if one of the tips got close to the boundary 
(when the distance became less than the core diameter of an 
isolated spiral). 

While the steady state is generally not sensitive to initial 
conditions, there are some exceptions.  One example is the 
bistability shown in Fig. 7; in this part of parameter space, 
some initial conditions lead to A2 and others to MS.  Another 
example is shown in Fig. 12:  MS will develop from a pair of 

wavebreaks only if they are sufficiently close together (Fig. 
12A-C), but not if their separation is above a certain threshold 
(Fig. 12D-F).   

Figure 12G shows the evolution of the tip distance for 
different initial separations.   For initial separations below a 
threshold θ (θ≈15), the tip distance relaxed monotonously to 
that of a MS pair, dMS (dMS ≈10).  For initial separations larger 
than θ, we observe qualitatively different dynamics:  The tip 
distance first drops below dMS (“undershoot”), and then 
relaxes to dMS.  Interestingly, the relaxation to MS occurs 
faster for an initial separation that lies slightly above θ than 
for one that lies slightly below θ.  However, as the initial 
separation is further increased, the formation time for a MS 
pair grows dramatically.  Figure 12H shows how the 
formation time of a MS pair depends on the initial separation 
in a semi-logarithmic plot.  Formation was considered to 
occur when the tip distance enters the interval dMS±5% and 
stays in this interval. The data points deviate upwards from a 
straight line; therefore, the formation time either grows super-
exponentially or there is some threshold separation above 
which the two spiral arms do not interact.   

  
 
 

VI. DISCUSSION 
 
In a generic numerical model of an excitable medium, we 

found two new alternating bound states (A2 and M3) of spiral 
waves. We observed for the first time meandering in 
multiarmed spirals (M3). We showed the detailed dynamics of 
A2, M3, and the two other types of bound states that occur in 
this model (O2 and MS). We scanned the entire parameter 
space and determined the domains of A2, O2, and MS.  Each 
domain occupies a significant portion of parameter space.  

We have presented numerical evidence that the transition 
O2→A2 occurs via a supercritical period-doubling bifurcation 
in the reduced system, while the transitions A2 →MS occurs 
via a symmetry breaking secondary Hopf bifurcation in the 
reduced system, from the Z2 stratum to the {id} stratum.  The 
O2→A2 period doubling bifurcation is supercritical, thus the 
birth of the alternating spirals is ‘soft’. On the contrary, the 
A2→MS secondary Hopf-bifurcation is subcritical, thus the 
small 2-tori are born unstable, the transition to the new 
regime is ‘hard’, and there is hysteresis.   

While we analyzed the prevalence of bound states in the 
whole parameter space, our analysis was limited to states that 
exhibit strict synchronization of the arms. There are other 
regimes in our model as well as in other models that lack 
such synchronization [12,16].  The detailed dynamics of these 
regimes have not yet been studied and are likely to be more 
complex.    

Our simulations were naturally limited in time, and the 
regimes that persisted in our simulations may not be 
analytically stable but decay at a later time.  This possibility 
seems most likely in the case of M3 which was stable in our 
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simulations only in a narrow range of parameters and initial 
conditions.  In any case, the bound states presented here 
persist over very long periods and can be considered stable 
for many practical purposes.    

Experimental data on multiarmed spirals exhibit a striking 
overall resemblance with our numerical simulations. In the 
Belousov-Zhabotinsky reaction, double- and triple-armed 
spirals have been observed to periodically move apart and 
back together [11], much like our double-armed (Figs.1-3) 
and triple-armed (Fig. 4-5) spirals.  Unfortunately, available 
experimental data do not yet include detailed tip trajectories 
or bifurcation analyses, and we do not know whether the 
regimes and transitions we described here occur in 
experimental systems as well. 

Our data suggest, however, that at least some of the bound 
states we described and the transitions between can be 
observed in experiments.  On the one hand, most of them 
occupy a significant portion of parameter space, on the other 
hand, they are robust against various types of perturbations.  
The chances may be particularly good in media whose 
experimental parameters can be controlled, as the Belousov-
Zhabotinsky reaction.  In this reaction, the excitation 
threshold is perfectly controllable and multiarmed spirals 
have already been observed [11]. 
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