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ABSTRACT.

In many applications people deal with waves that are locally plane and periodic, but
at large distances and/or over long intervals of time change their characteristics, i.e. mod-
ulated waves. An efficient way to study such waves is the method of envelope equations,
when the original wave equations are replaced by equations describing the slowly varying
parameters of the waves. The practical approaches to this problem are numerous; however,
many of them have limitations, either in achievable accuracy, or in the wave equations to
which they could apply (e.g. only conservative systems), or both. The purpose of the
present paper is to review results of a particular approach of this kind, which is free from
these disadvantages. This approach is mostly illustrated for autowaves, which, in the au-
thor’s opinion, should play the same role in the theory of waves, as auto-oscillations=limit
cycles play in the theory of oscillations.
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1 Introduction

1.1 Modulated waves

When differential equations, describing a natural or technological process, are too com-
plicated to be solved exactly, one needs to do it approximately. This can be done either
numerically, or analytically, e.g. by using some asymptotic methods. It is known that
approximate methods may not only serve for pure purposes of calculation, but also be an
“instrument of understanding” of complex systems.

The simplest case is if the differential equations have the right-hand sides containing
small parameters, and the systems becomes much simpler, e.g. can be treated exactly, if
these parameters are equal to zero. Then for nonzero but small values of the parameters,
solutions can be obtained by “perturbation techniques”.

The perturbation technique may be also applied to systems without any small param-
eters. This may be the case if we are interested in solutions of a special form, containing
such parameters. A well known example is small-amplitude oscillations in a nonlinear sys-
tem. By scaling the dynamic variables to “normalise” the amplitude of oscillations, one
can bring this problem to a problem explicitly depending on the small parameter, which
becomes linear if this small parameter is equal to zero.

There is a less trivial example of the same kind. This is the famous “geometric optics”
approximation. An important case of geometric optics is the “quasiclassical approxima-



tion” in quantum mechanics, which is so vital for revealing its interrelation with classical
mechanics. Classical interpretation of geometric optics is that the consideration is re-
stricted to solutions with wavelengths small in comparison with other characteristic sizes
of the problem [4]. This works well with classical, linear wave equations, which admit wave
solutions with arbitrarily short wavelengths. In general, this restriction may be imprac-
tical, e.g. if wave solution may not exist with wavelengths less than a certain minimum.
Then the idea of the geometric optics is re-formulated as the idea of modulated waves[1],
or slowly varying waves [3]: the characteristic sizes of the problem, in particular of the
initial conditions for the equations, should be much larger than a typical wavelength.
This means that in relatively small regions, the waves are close to plane and periodic, but
the parameters of these waves, including direction of propagation and the period, slowly
change in time and/or in space, becoming significant at large distances and/or after long
time intervals.

The classical geometric optics approximation for linear wave equations heavily relies
on the specific properties of these equation, notably, the superposition principle. This of
course is no good for nonlinear waves. A well known method for nonlinear waves is the
Whitham procedure, or the Whitham modulation theory [1, 2]. One form of the method
uses knowledge of conservation laws, valid for many wave systems originating from physics,
and derives the evolution equations for slowly varying parameters from these conservation
laws. Another form of the method also uses the properties of physical origin, namely, the
fact that the field equations can be written in the form of a Lagrange variational principle.
The evolution equations are then derived from also from a Lagrangian principle, where
the Lagrangian is rewritten in the form that depends upon the new independent variables
describing the slowly-varying solutions. This method has been applied to many classical
nonlinear equations, such as nonlinear Klein-Gordon equation, Korteweg-deVries equation
and others.

1.2 Autowaves

There is an important class of nonlinear waves, for which the Whitham approach can not
be applied, as they are neither Hamiltonian, nor have any conserved quantities. These
are so called “autowaves”. From the physical viewpoint, these are waves that propagate
not because there is no dissipation, but because the dissipation is compensated by the
constant supply of energy. This can happen in open spatially distributed systems far
from thermodynamic equilibrium. Examples are nerve and heart tissues, and waves in
some chemical reactions where the consumed reagents are either supplied, or are stored in
substantial amounts so that their decrease during the wave period is negligible. Mathe-
matically, such systems are most often described by systems of partial differential equation
of “reaction-diffusion” type,

uy = DAu + f(u). (1)



Here u = u(z,t) € R¢ is a column-vector of concentrations of the reagents, f(u) € R’ is a
column-vector of nonlinear reaction terms (interesting behaviour starts from £ > 2), D is
an £ x £ matrix of diffusion coefficients of the reagents, which we assume symmetric; the
space coordinates € R” where the dimension of physical space, n, can be equal to 1, 2 or
3, and A is the Laplacian in R". Here and throughout the paper subscript by a dynamic
variable denotes partial differentiation, so u; means du/0dt.

Systems of the form (1), describing real autowave systems, do not have any conserved
quantities at all, and, in particular, are not Hamiltonian. The simplest form of autowaves
in (1) are plane periodic waves,

u(z,t) = U ((k, z) — w(k*)t + ¢o, k%) = U(£,m), (2)
where
£ =(k,z) —wkt+¢o, n==k, keR" (3)

Here k is the wavevector, w is the frequency, and ¢q is an arbitrary initial phase. Brackets
(,) denote the scalar product in the physical space R™. The characteristic features of the
family of solutions (2):

e Function U(,n) is 2w-periodic in its first argument,

U(& + 2m,m) = U(&n). (4)

This corresponds to waves periodic in space with the period 27/k, where k is the
wavenumber. An important class of systems that only admit non-periodic solu-
tions, e.g. propagation of flame without subsequent replenishment of fuel, can be
considered formally as a special limit case of (2) with k& — 0.

e Solutions (2), as a rule, can not be found analytically. As it can be seen by direct
substitution, function U(£,n) obeys a system of ordinary differential equations

nDUge(§,n) +w(n)Ue(&n) + f(U) =0. (5)

depending on 7 as a parameter.

e Typically, if the reaction-diffusion system has wave solutions of some period, then it
will have wave solutions at close periods. That is, since dependence of the problem
(5,4) on 7 is continuous, it solution normally depends on 7 continuously. We will
assume that (2) exist at least for k belonging to an interval,

k € (k1,k2); n € (k1,k3). (6)

e Functions U (up to the arbitrary phase shift) and w uniquely depend on k2. That
is, for every wavenumber k, the shape of the waves, and the temporal period (and



therefore the phase velocity) are fixed. At most, for a given k? there could be a
discrete number of different waves, possibly with different frequencies. From the
physical viewpoint, this happens because the propagation of waves is the result of
the unique balance between energy supply and its dissipation. Mathematically, this
means that the periodic orbits in (5) are isolated; the proof of this fact is beyond
the scope of this paper. The dependence

w=w(k?) (7)

is often called dispersion relationship or dispersion curve (especially if it is repre-
sented graphically). In conservative systems, dispersion relationship would involve
also an amplitude or amplitudes of the wave; in autowaves, the wavevector is the
only argument in (7).

e We show the dependence on k? rather than k to ensure we don’t forget that if waves
in (1) can propagate in one direction, similar waves certainly can propagate in the
opposite direction, thus U should be an even function of k.

This family of solutions is the basis of the whole problem, and we call them basic waves
or basic solutions.

1.3 Modulated autowaves

Now we can formulate our goal. We want to describe a certain class of solutions to (1),
based on the plane periodic waves (2). We now want to consider not plane periodic waves,
but waves that are in some sense close to them. The difference from plane and periodic
waves should be obvious on time and space scales much larger than the period and length
of the waves.

Mathematically, this can be expressed in the form

u(z,t) = U (4,(V§)) + v(z, ), (8)

where V¢ is a local wavevector slowly varying in space and time, and v is a small correction,
so that

¢ =€ 1D (ex, et €), e lvk 1. 9)

and function @ is a smooth function of its three arguments. Indeed, one can see that if e
is very small, then ¢ in any bounded domain will be close to a linear function of x and ¢,
and thus (8) will be close, up to a phase shift, to a periodic wave of the family (2). The
difference from that periodic wave will be due to the departure of ¢ from a linear function
in that domain, and also due to the correction v.

The necessity to have the small correction v in the Ansatz (8) may not be obvious
from the beginning, but is a result of calculations. For now it suffices to note that such a



correction is admissible, and as long as it is small, solution (8) in every bounded domain
is close to one or another plane periodic wave.

Formulas (8) and (9) formally define the class of solutions we are interested in. We
will call them modulated waves, or slowly varying waves (SVW). Our expectation is that
if the initial values of (1) are SVW, then the solution will remain SVW, at least in large
regions of space and for a long time.

The question is, what conditions should the phase (“eikonal”) variable ¢(z,t) satisfy.
It happens, that the solution can be written in the form of a partial differential equation,
the evolution equation, which will be the analog of the eikonal equation in the geometric
optics. Our purpose is to develop a method of derivation of this equation for every given
reaction-diffusion system (1). One thing we should always bear in mind: as a rule, this
cannot be done entirely analytically, there usually will be some bits to do numerically. One
reason for that is quite obvious: the basic solutions (2) can not be found analytically.

1.4 Structure of the paper

In Section 2 we will approach the problem on a heuristic level, in order to “guess” the
correct answer without worrying too much about the correctness of the procedures used.
Properties and consequences of the obtained evolution equation are analysed in Section 3.
By analysing the limitations of the methods used in Section 2, we show the necessity
of more formal procedures. The main ideas of that procedure are introduced in section
Section 4, on the example of a “model” problem for ordinary differential equations. You
will see however, that this model actually covers many of the well known asymptotic
methods as special cases. This more formal approach is upgraded to be applied to the
problem of SVW in the next two sections, where we will introduce the method of the
detecting operator (Section 5) and of the sub-centre manifold (Section 6); both of them
can be used to derive the evolution equations of arbitrary asymptotic precision.

Thus the overall progress of the paper is from intuitive understanding of the behaviour
of SVW by informal and inefficient ways, towards technically efficient but formal methods.

2 Heuristic derivation of the SVW evolution equation

2.1 Preliminary comments

First of all, we immediately try to obtain the evolution equation, on the “physical” level
of strictness and in the lowest nontrivial order of asymptotic precision. We assume that
we know, analytically or numerically, the plane wave solutions (2) to the PDE system (1),
and we want to obtain an evolution equation for the phase ¢ of the slowly varying wave
solutions (8).

To proceed with this programme, we need to do one more comment. Note that the
choice of U(&,7) in (2) is not unique. For different 7 the arbitrary initial phase ¢y may be
chosen independently. Mathematically, if a function U(&,7) satisfies (5) and (4), so does



any function UK (¢,n) given by the “gauge transformation”

U™ (&) =U(E+K(n),n). (10)

for arbitrary K (n). Later we will see that no all choices of K are alike, and some will give
simpler evolution equations than others.
2.2 Linear approximation

By substituting (8) into (1), we get a £-component vector equation for two unknown
functions: vector function v € R’ and scalar function ¢. So, the equation is under-
determined. In linear approximation in v it takes the form

vi(z,t) = DV?0(z,t) + Flop(x, t)|v(z,t) + hlo(z, 1)), (11)

where the Jacobian matrix F' and the free term h depend on the unknown ¢(z,t) so that

_ 0f(u)
Fl¢] = au |y’ (12)
Mgl = — (@U(V6)7) + ) U — Uy o (V)
+D (UUVQ(Vcﬁ)? +2Ug,; (V,V ((V$)?))
+UV2 9+ Upy (V((V¢)2))2> . (13)

Here the function U is assumed with arguments U = U(#, (V¢)?). In (13), the function f
and term with Uy are absent due to (5).

2.3 Eliminating the secular growth

We make sense of the under-determined system (11) by the following arguments. Formally,
the function ¢(z,t) can be chosen arbitrary, and then the system (11) solved with respect
to v. However, not every such choice would guarantee that the resulting v will be small.
And this smallness is necessary for the linear approximation and the definition of SVW
to be valid.

The requirement that v be small leads to certain limitations the function ¢ should
obey. These limitations are just the desired evolution equation.

If ¢ is fixed, equation (11) is a linear inhomogeneous equation for the unknown v.

Since the local wavevector k = V¢ varies slowly, the coefficient matrix and the free
term in (11) are in a large region close to periodic, with the space periods 27/|k| and time
periods 27 /w.



On this stage, we approach the condition that v be small, neglecting the difference and
assuming that F' and h are exactly periodic functions with these periods. More precisely,
we will consider the function ¢ included in (12) and (13) as an argument of U as linear,
and its derivatives, including higher order derivatives, as constants. In other words, every
time ¢ occurs in (12) and (13), we retain only the principal terms. The derivatives are
used as parameters until we get a closed equation for ¢. For (V)2 we use the notation
(V§)* =1

Next, we pass over to a moving frame of reference, by changing independent variables
(t,z) to (1,&,y), where 7 = t, £ = ¢(z,t) = (k,7) — w(k?)t, and y stands for all spatial
coordinates perpendicular to k.

Thereafter, the coefficients F' and the free term h become periodic functions of one
independent variable £ only. Instead of (11) we then get

vy = Lv + h(§) (14)
where L is the linear differential operator with periodic coefficients defined as
Lv = nDuvgg + DAyv + wvg + F(§)v (15)

For brevity, we omit the dependence on the derivatives of ¢.
The stability of plane periodic waves is determined by the spectrum of L,

LVj(&m) = Aj(mV; (& n). (16)

Differentiation of (5) by ¢ and comparison with (15,16) proves that

Vo(&;n) = Ue(&,m), (17)

the so called shift mode, or Goldstone mode, is an eigenfunction of £ corresponding to the
eigenvalue zero,

LV =0 (18)

We will assume that all other A; have negative real parts, which is the strongest stability
we could expect for this system. The existence of zero eigenvalue and the corresponding
Goldstone mode is due to the translational invariance of the reaction-diffusion equations:
even if the wave is stable, there is always indifferent stability with respect to its phase
shift: if we perturb the wave, the perturbation will decay, but the wave may get slightly
shifted after that. In terms of the equation (14), this means that for h = 0 and generic
initial conditions, all the components of the solution v in the basis of eigenfunctions V;
die out, excepted for the shift mode (17).

Remark 2.3.1 Actually, 0 is not an isolated eigenvalue of (14) considered in the entire
space, as there are other modes which decay arbitrarily slowly. This not just an a priori



possibility, but a necessary consequence of the very asymptotic theory described here, and
will become evident later. The slowly decaying modes are the modes that correspond to
very slow modulations of the periodic wave. These modes, when properly normalised, will
be arbitrarily close to (17) in every prescribed finite region. Therefore, in every finite region
the solution of the equation (14) with A = 0 approaches (17), with a factor depending on
the region. This we may say that the slow modulations can be included into ¢, while
not-so-slow modulations remain in v and they do decay quickly.

Let us now consider the inhomogeneous form of (14). As the free term h and the
coefficients F' are periodic functions of ¢ only, there exists a partial solution periodic in ¢
and independent of ¢. For this solution to be bounded in time, it is necessary and sufficient
that the free term is orthogonal to the shift mode

fﬂ%@m%ﬂﬂﬁﬁ=0, (19)

where Wy (&,7) € RE is the eigenfunction of the adjoint operator £,
LYw = nDwge + DAyw — wwe + F7 (€)w (20)

corresponding to the eigenvalue 0. Brackets (,) denote the scalar product in the concen-
tration space Rf, and the integral is taken over a period.

Provided (19) is satisfied and the initial values of (14) do not exceed €, we can be
sure that, after a large enough span of time, the general solution of (14) becomes a nearly
periodic function of &, slowly depending on 7 and y and having the order €, which is the
order of the free term h.

Condition (19) with “unfrozen” derivatives of ¢ becomes the desired closed equation for
¢, which does not depend on z and t explicitly and can therefore be used as a macroscopic
evolution equation.

2.4 The final equation

Let us normalise the adjoint eigenfunction Wy so that

§ Wolen), va(e ) e = 1. (21)

The evolution equation is simpler if

fﬂ%@m%%@m»%zﬂ- (22)

It proves always possible, thanks to the possibility of the gauge transformation (10), with
appropriately chosen K(n). This can be seen by direct substitution, with account of (21).
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Keeping in (19) only terms of the orders of O(1) and O(e), we obtain the desired
evolution equation

¢ +w((Vh)?) = P ((V4)*) Vo + Q ((V§)?) (V4V)(Ve)>. (23)
This form is equivalent to the following equation for the local wavevector k(z,t) = Vé:
ky = grad (—w(k?) + P(k?)divk + Q(k*) (k, grad(k?))) . (24)

The coefficients P and @ are functions of 1 and are defined as

P(n) = f (Wol&,m), DU (E,m) 46, Q(n) =2 74 (Woai, ), DUgy(6,m)) dE. (25

Note that if the diffusion is scalar, that is D;; = dd;;, then P = d.

2.5 On the accuracy of the equation

The heuristic derivation we have just performed leaves some question open. Why does the
final equation (23) contain the terms of the orders of 1 and € only? Would it be correct if
we keep also the terms of the order of €2? At last, a rhetorical question: could we get an
absolutely precise equation if we do not omit any terms at all?

The key points of the heuristic derivation are elimination of the secular growth, and
“freezing” and “unfreezing” the derivatives of ¢. The elimination of the secular growth
seems quite reasonable, but the procedure of freezing and unfreezing looks somewhat
artificial, especially if we allow for the fact that the ignored non-periodicity of F' and
h leads to an error of the order of € even at a distance of one period, though the final
equation (23) keeps the terms O(e) preserved. It is therefore obvious that even when this
equation is correct, the method cannot provide more accurate approximations. A more
sophisticated tools is required. Such a tool is developed in next sections.

But before that, we enjoy the results of our effort, and have a look at the obtained
evolution equation and its properties.

3 Making sense of the SVW evolution equation

3.1 The physical meaning of the terms in the equation

The term w(k?) of the order of 1 means that the rate at which the phase changes is
normally close to the frequency typical of the plane wave with the given wavevector, and
can be determined by the dispersion relationship (7). This law controls the dispersion of
the waves, or transport of the phase, and thus we may call it dispersional, or transport,
term.

The two terms in the right-hand side of (23) are of the order of € and vanish for plane
periodic waves. They make the equation parabolic, and we may call them “diffusional”
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terms. The fact that there are two such terms points to that here are two distinct processes
here: “longitudinal” and “lateral” diffusions. They can easily be illustrated with a case of
nearly constant local wavevectors. Assume that

¢ = (ko,z) —w(kd)t + d1(z,9,8),  |Vi| < ko;

w(n) = wo+ (n—kjwi +O((n—k§)?),

P(n) = Po+0(n- k),

Q) = Qo+ 0O(n—k), (26)

when 7 — k3.

Assume also that the physical space is a plane with coordinates z,y, and the vector
kg is directed along the x axis. Then the linear approximation in V¢, yields the equation
of anisotropic diffusion with transport

(¢1)t = —cg(h1)z + Ro(1)az + Po(P1)yy, (27)

where the velocity of transport is none other than the group velocity defined by the
standard expression

g = 2wiky = dw(k?)/dk, (28)
the lateral diffusion coefficient is Py and the longitudinal diffusion coefficient is

Ro = Py + 2k2Qo. (29)

3.2 Some special cases
3.2.1 Geometric optics limit

If we neglect the terms of the order of O(e) in (23), we get the simplest “eikonal” =
Hamilton-Jacobi equation for the phase, obtained in the context of autowaves by Howard
and Koppel [3]

¢ =—w ((V9)?). (30)

This into account the dispersion processes only.

3.2.2 “Deformed stripes” dissipative structures

The special case without dispersion, w = 0, corresponds to basic waves being stationary
dissipative structures in the form of stripes; then the SVW are deformed stripes. The
evolution equation is

¢r = P(V¢?) + Q(V$*)(VoV)(V4)? (31)
This equation has been obtained by Cross and Newell [20].
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3.2.3 Long waves in self-oscillatory media

Assume that the local kinetics sustains a stable limit cycle so that every point of the
medium is a self-oscillator. In terms of plane periodic waves this means that

wrwy—w (V)2  PxP, Q=0(1) as(Ve)?—o. (32)
For small V¢ the evolution equation takes the form
¢ ~ —wo + w1 (Vo) + PV (33)

For a special case of self-oscillatory systems, A — w systems, this equation has been sug-
gested by Kuramoto and Tsuzuki [17].

3.2.4 An analytically solvable example

Consider a simple special case which easily yields the explicit forms of coefficients (25).
This is the Complex Ginzburg-Landau equation with zero linear dispersion:

u = u — (1 —ia)ulul® + V?u, ueC, aeR (34)
The basic family is

U(&,n) = (1—n)'/%. (35)

with the dispersion relationship

The adjoint zero eigenfunction is

wo(e,m) = "0 Wi (37)

Here we assume that the scalar product in the concentration space is defined as

(w,v) =Re (W(£),v(¢)) - (38)
So, the coefficients of the SVW equation are
Pin)=1, Q) =-1/(1—n), R =(1-3n)/(1—n), (39)
and the evolution equation
2
¢t = —a+a(Ve)® + V3¢ — %. (40)

The one-dimensional version of the equation has been derived by Malomed [18] and
Bernoff [19].



3.3 Dissipative properties of the one-dimensional SVW equation

We have already seen in Section 3 that the diffusion terms make the evolution of autowaves
with nearly constant local wave numbers irreversible. Here we describe two dissipative
properties of the one-dimensional SVW equation which keep preserved even for the regimes
with wavenumbers varying generally in a wide range. Both the properties consist in
aligning the wavenumber.

3.3.1 Lyapunov functional

Consider the functional
17
B = 5 [ $(.04ds, (41)
T
where (z1,z2) is an interval. By (23), its time derivative is
T2
Br = [962) + 82 Rz — D] — [ BB (42)
I1

where
Q(k) = / w(k2)dk (43)

is a primitive of the dispersion curve. The integral in (42) sums up the internal factors,
which cause the functional F to decrease. The outside action (the non-integral terms)
vanishes, for instance, when

1. there is a periodicity condition on the boundaries z1, x2, for example, the problem
is put on a circle;

2. the problem is put on the real axis (—o00, +00), with the identical asymptotic values,
so that ¢, — ko, ¢z — 0 as x — Fo00;

3. the boundaries are impermeable, this makes sense, e.g., for self-oscillatory systems.
In these cases the (positively definite) functional E monotonically decreases, and the

wavenumber evolves to a constant, which is 27N for some integer N in the first case, kg
in the second, and 0 in the third.

13
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3.3.2 Maximum principle

Assume that local wavenumber has a local maximum at an interior point zy at some
instant of time, ¢g, so that

ks (.’L‘(),t()) =0, k‘mm(.’L‘(), t()) < 0. (44)
Then it decreases with time at this point. Indeed,

dw dP
kt - @k‘m + Ek?c + kam A = Rk’zz <0 (45)
if only R(k(zo,t0)) is positive. Consequently, if the local wavenumber is limited to a range,
this range does not increase with time, and typically shrinks.

4 Perturbation of a manifold of stationary stationary points

As we noted in the end of Section 2, the heuristic derivation, although producing some
reasonably looking result, is flawed, and in any case, can not produce higher-order results
if required. So the rest of the paper is devoted to a more accurate treatment of the
problem. In this section, we will consider a model problem, for a system of ordinary
differential equations. This will be used to introduce the main ideas of the method. The
method is well known in several different formulations; the purpose of discussing it here is
to introduce the principal ideas in that very form that will be used for the main problem.
Therefore, some notations in this section will coincide with the rest of the paper, while
some will be different, and the reader is advised to watch out.

4.1 Statement of the problem

Let us consider a perturbed system of ordinary differential equations (ODEs)
ug = f(u) + eh(u), uweR" (46)
and assume that at € = 0 it has an m-dimensional manifold of stationary points:
f(U(a))=0, a€ ACR"™, m<n. (47)

Here a are coordinates on the manifold. We assume that the stationary manifold is stable
(attractive).

If € is not zero, sufficiently small, the stationary manifold is generally destroyed. Since
the manifold was stable, the perturbed system will have another invariant manifold in the
vicinity of U(A), but it will no longer be a manifold of stationary points; rather, we will
observe a slow dynamics on it. That is, we expect existence of trajectories of the form

u=Ul(a(t)) + ev(t) (48)
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Here v = O(1), and a, v are e-slowly varying functions, i.e. they depend upon ¢ only via
the combination et. Here and later we omit explicit dependence of functions on ¢, for the
sake of brevity. The problem is to determine asymptotically the functions a(t) and v(?).

The solution of this problem depends upon required precision and observation interval.
If we are interested in the time scales of the order of 1 or less, then we may put a = const,
or any other e-slowly varying function, and v = 0, or any other function O(1). The
discrepancy between left- and right-hand sides (residual) in (46) will be of the order of
¢, and we can be sure that in some e-vicinity of our ”approximate” solution there exists
an actual solution of (46). Moreover, we can obtain more precise solutions at these time
scales, if we put a(t) = const and find v(t) by the simplest perturbation procedure.

If we are interested in larger time scales, for instance, O(e~1), it is not sufficient to find
appropriate v(t), since it will increase to the values of the order of ¢! unless we consider
the dynamics of a(t). In what follows we show that for the problem of finding appropriate
v to be solvable, the vector a must satisfy an evolution equation of the form

a; = €G(a) (49)

Below we suggest an asymptotic procedure for deriving the equations, which enables ap-
proximation of exact solutions in arbitrary large time scales. As an example, we derive
such an equation valid for time scale of the order o(e 3).

4.2 The requirement of orthogonality

The central idea of the evolution equation derivation is related to the following observation.
Note that the representation (48) is ambiguous: we may introduce new variables a, 7:

a(t) = a(t) +eaM(t),
(50)
5(t) = v(t) — 0U(a)/daaM(t) + O(e),

that will correspond to the same function u(¢). In other words, any point in the e-vicinity
of the manifold U can be represented by the sum of a vector on U and a vector of the
order of ¢, in different ways, the only necessary condition is that the point on U should
lie in some region of size of the order of e. If we want to obtain the right-hand side in
evolution (49) with precision better than O(e), we should remove this ambiguity. In our
example, the precision O(e?) is necessary to have the error o(1) at the time scale o(e~3).

A possible, although by no means the only, choice is that the small correction ev should
be orthogonal to the manifold at the point U(a). Before we put this requirement more
formally, let us define the basis of eigenvectors Vj, 7 = 1..n of the Jacobi matrix F' of f
on the manifold U(a):

F(a)Vj(a) = Aj(a)Vj(a). (51)
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The equilibria on the manifold U are indifferent with respect to shifts along this manifold,
and the tangent space to U is the null-space of the Jacobian F',

Vj(a) = 0U(a)/0a;, Aj(a) =0,j=1...m. (52)
We assume that the manifold (47) is stable, so
Re(}Aj) <0, j=m+1...n. (53)

And at last, let us define the basis biorthogonal to {V;}. This consists of the eigenvectors
W; of the transposed Jacobian matrix:

F1(a)W;(a) = X;(a)W;(a), (54)

(Wj(a), Vi (a)) = 81, (55)

where (,) is the inner product in R”, and A denotes the complex conjugate of .
Now the requirement of orthogonality, making the representation (48) unambiguous,
is written as

(Wj(a),v) =0, j=1.m. (56)

Remark 4.2.1 To get rid of the ambiguity, the biorthogonality condition (55) is not
necessary. Any other set of vectors (W;) would do as long as they are essentially different
and not orthogonal to the null-space of F. However, it is usually convenient if W; all
belong to the null-space of FT.

4.3 Derivation of the evolution equation

Substitution of the Ansatz (48) into (46) gives

U= f: Via; + ev = eF(a)v + €fP(a) - v-v + eh(U(a)) + E€hM (a)v + O(3) (57

Here we have used (47) and the Taylor expansions of f and h. Note that by using more
terms in the Taylor expansion, we could could obtain a higher precision. Since da/dt =
O(e), we can put

dj = ng, g = O(l) (58)

Vector equation (57) is a system of n equations for n + m real variables v and a, i.e. is
under-determined. Let us rewrite it as an equation for v, depending on ¢ as a parameter:

b = Fa)v + (h(U(a) - i ViGj) + € (/@ 00+ hWv) + O(e) (59)



and expand v(t) in the basis (Vj(a(t))):

n
v(t) =Y Vi(a(t))v;(t),v; € R, (60)
J
In this section, we shall call the components v; modes, distinguishing between the unstable

modes vj, j = 1...m and the stable modes vj, 7 = m + 1...n. Then the orthogonality
condition (56) means that unstable modes are all zero. All v; satisfy

b5 = N(a)vj + (hi(a) — G5 (1)) + €Y hypve + D (KjuuGrvi + firwevr) p + O(€?).
k ol
(61)

Symbols G; for j < m are defined by (49), and for convenience we defined G; = 0 for
J > m. Symbols hji, fjr etc. are Taylor coefficients of the functions h and f, and K
are defined as

Kjr = (0W;(a)/9ax, Vi(a)) = — (W}, 8V (a)/Oay) . (62)

Following the reasoning of Section 4.2, we need to find the functions a;(t) so as (61) would
have a uniformly bounded solution v(¢) for all ¢ in the prescribed time interval. Let us
find the conditions when

vi(t) =0, j=1...m; v;j(t)=0(1) j=m+1...m; Vt € (—o0,+00).  (63)

To do this, we determine iteratively a;(t), v;(t) with higher and higher precision. We do
it by considering alternately the stable modes equations, as equations for v;, and unstable
mode equations, as equations for G;.

Stable-mode equations in leading terms give

Gj(t) = hj(a(t)) + O(e),j =1...m. (64)
According to (58), this is the first-order approximation for the desired evolution equation:
dj = Gh]’(a) + 0(62). (65)

Solution of this equation will be close to exact solutions of (46) at time scales of the order
of o(e™2).

Using higher-order terms in unstable-mode equations, we could obtain more precise
approximations for G;, if only we knew the stable modes v;, j = m+1...n with sufficient
precision. If we know v with the precision O(ef) for some £, it is sufficient to get the
precision O(ef+1) for G.

17
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Next, let us consider equation (61) for stable modes. If we know G; as functions of
aj, as in (64), with a precision O(ef) for some ¢, then we can obtain uniformly bounded
solution for v; with the precision O(eb), using a; as known functions.

To prove this, let us show that if G; are known, we can build arbitrary precision
approximations of solutions v to equation (61) uniformly at all ¢ € (—oo, +00) (assuming,
of course, that such solutions exist in the vicinity of the manifold (47)). We rewrite
equation (61), for brevity, in the form

’l-)j = )\j (t)’Uj + hj (t) + eHj(t, ’U(t)), (66)

where the term H; = O(1) includes, besides dependence upon G;, any needed number of
terms in Taylor expansions of f and h. Considering H; as a known function of time, we
formally solve resulting linear equation for v;, and obtain the integral equation

vj(t) = / t A2 (b (1) + eHj (7, v(7)))dr, (67)

—0o0

where A are primitives of A,
dA;(t)/dt = X;(2). (68)

We have selected here the particular solution which is bounded for all ¢, using the fact
that all Re (\;) < 0.

This integral equation can be solved iteratively, which yields uniform approximations
for exact solutions with successively growing precision in e.

Moreover, due to the stability condition (53) and slowness of A;, h; and H; we can
present the resulting expressions for v; in non-integral form. Let us show this for the
lowest-order approximation of v;. Since the exponents in (67) decay at time scales longer
than O(1), the major contribution to the integrals is made by time moments 7 close enough
to ¢ so that 7 — ¢ = O(1). Expanding A; and h; in Taylor series in ¢, 7 and, therefore, in
€, we get the asymptotic estimates

Aj(r) = A;(8) + A () (1 — 1) + O(e), (69)

hj(T) = h;(t) + O(e), (70)

valid for these 7. Substituting these expressions into (67) and calculating the integral, we
obtain

vj(t) = —hj(a(t))/ X (a(t)) + O(e). (71)

Note that with a;(¢) known, this is a uniform approximation for exact solution of (46)
valid for all ¢.
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After we get the asymptotic expressions (71), we can return to consideration of unstable-
mode equations (61) at § = 1...m. Substituting the (71) into (61), we conclude that

aj = €Gj
= ehj(a) +e2{ — Z hjkhk//\k + Z (Kjklhkhl//\l + fj]glhkhl/(/\k)‘l)>
k k,l
+0(€) (72)

Discarding the terms O(e?) in this evolution equation implies that its solutions, when
substituted into (48) together with v from (71) will produce the residual in the exact
equation (46) of the order of €3, therefore, they approximate exact solutions at time scales
o(e73).

So, it is possible to get arbitrarily precise solutions for stable modes, given sufficiently
precise expressions for G;. The expression (72), therefore, can be used to built the stable
modes with the precision O(€?) instead of O(e). This solution can be substituted back into
unstable-mode equation, which yields the expression for G; with the precision of O(€?),
and consequently for da;/dt with the precision O(e*) etc.

We see, that this iterative procedure yields successively more and more precise evolu-
tion equations. The significant feature of the procedure is that their solutions approximate
exact solutions not only with successively decreasing (in asymptotic sense) error, but also
become valid at successively growing time scales. This becomes possible only by keeping
terms of different order in the same equation.

4.4 Associations with other popular methods
4.4.1 Systems with slowly varying coefficients

The problem of asymptotic description of slowly varying systems of the form
ut = f(u,et,e), ueR" (73)

is trivially reduced to the case already considered: we introduce new dynamic variable
7(t) governed by the equation

t=0+¢ (74)

and immediately face the problem (46,47) for the vector (u,7), with the manifold of
stationary points in R**! given by the equation

f(u,7,0) =0. (75)
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4.4.2 Tikhonov’s fast-slow systems

This is also true for the Tikhonov’s standard form of singularly perturbed systems [10,
chapter 39]:

eup = f(u,v),
v = g(u,v)
if we perform the time scaling
uy = f(u,v)

vy = €eg(u,v)

and note that this system at € = 0 has the manifold of stationary points given by the
equation

f(u,v) =0. (76)

4.4.3 Enslaving principle

The power expansion of an autonomous ODE system near bifurcation of a stable equilib-
rium may be written in the form

" = ev" 4+ N“(v*,v%),
0 = —Lv®+4 N°(v%,0v°).

Here v*® is a vector, L is a matrix, Re (A(L)) > 0, ¢ — 0 is the supercriticity and N
have zero linear parts in their Taylor expansions. This system is transformed by scaling
into that of the form (46), with the stationary manifold v; = 0. The iteration procedure
described above will involve expression for v* via v*, which is just the “slaving principle
of synergetics” [11]. The exact form of the dependence v®(v*) is closely related to the
famous concept of the central manifold [9]; see also Section 4.5 below.

4.4.4 Krylov-Bogoliubov averaging

If the unperturbed system has a manifold of periodical solutions instead of stationary
points, then literal translation of the above formalism seems impossible, because cycles
are more complex mathematical objects than equilibria. Nonetheless, the basic ideas of
the above derivation: variation of arbitrary constants, i.e. the coordinates on the manifold
of unperturbed solutions, and the requirement of orthogonality — remain applicable. The
difference is that the coefficients of the evolution equations include integration of scalar
product (,) over a period. This method was first used by Krylov and Bogoliubov [7].

Finally, it should be noted that the case of stationary manifold in (46) is structurally
unstable, and there should be some special reasons for such a problem to occur in appli-
cations, while the case of isolated periodic solution (limit cycle) is generic, and we always
have at least one arbitrary constant, the initial phase, associated with the fact that f()
does not depend explicitly on time.



4.5 Subcenter manifold

Especially important is the association of the described method is with the method of the
(sub)center manifold, which is both a fundamentally important theoretical concept and
an efficient practical tool.

The procedure of alternating increase of asymptotic precision of the G(a) and v(a)
leads to building asymptotic series in € for these relationships. If these series converge for
some ¢, this means that each of those ¢ we will have an invariant manifold

U(a,e) = U(a) + ev(a,€) (77)
and the motion on that manifold given by
a = G(a,e). (78)

The unique dependence of v on a arises when we resolve the integral equation (67), since
this procedure chooses a unique solution to the differential equation.

In the extended phase space R” x R = {u, €}, manifold U is an intersection of the
manifold U/ by the hyperplane ¢ = 0. It be easily seen that the difference between U and
U at small ¢ is along Vj, which means that I/ is tangent to the center subspace of U. Thus
it is a center manifold or a sub-center manifold; the technical difference is not important
for us here, as all we use is the formalism.

This motivates an alternative approach to building the asymptotic evolution equation:
from the very beginning, to look for representations of (77) and (78) in the form of power
series in e straightaway, instead of coming to (77) via the complicated procedure described
above. This certainly is a very efficient method from a practical viewpoint, which will
be demonstrated later for the SVW equation. The slight disadvantage of this method for
theory and for study purposes is that since for every a and € it focuses on the single solution
out of an infinite variety, it completely ignores the dynamics around the (sub)-center
manifold, and masks its origin. Another drawback of the subcenter manifold approach
is that it is hardly applicable to problems explicitly depending on time. And as far as
actual calculations rather than their motivation are concerned, both methods are strikingly
similar, as we shall see on the same example.

5 Method of the detecting operator

5.1 Preliminary comments

In this section, we will restrict our consideration to one spatial dimension, n = 1; this
simplifies the formulae but addresses the main difficulties. Correspondingly, we will
parametrise the periodic solutions U and its frequency w with k& which is now the wavenum-
ber rather than wavevector, instead of 7. Thus the key formulae slightly change their
shape. The two-dimensional manifold of periodic wave solutions is

u(z,t) = U(kz — w(k)t + ¢o, k) = U(, k), (79)
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with the coordinates of the initial phase ¢y and the wavenumber k, lying in an interval.
Function U(&, k) satisfies the equation

kK*DUge(€, k) + w(k)Ug (€, k) + F(U(€, k) = 0. (80)
and the periodicity condition
U +2n,k) =U(& k). (81)
The linearised operator £ now has the form
L(k) = KD} + w(k)0:F(U (€, k), (82)
and its shift (Goldstone) eigenfunction is
LVy =0, Vo(&, k) = Ue(&, k). (83)
The gauge transformation now looks
UR(&,k) =U(E+ K(k), k). (84)
The SVW Ansatz (8) becomes

u=U(¢,¢z) +v (85)

where
=€ '®(ex,ete), ek 1,v<K 1. (86)

An arbitrary function of the form (85), (86) when substituted into original equation yields
a residual of the order of 1, and, therefore, is inapplicable already on the time scales O(1).
For the base periodic waves (79), their phase ¢ obeys

¢t = w(¢m) (87)

If we consider (87) formally as an evolution equation for ¢, and substitute a solution of it
to (85,1), it will lead to a residual in (1) of the order of ¢, so it is applicable at the time
scales O(1) but not O(e~!). Finding a proper function v(z,t) can improve the precision
at the times (1), as it was done in papers [3, 5], but cannot enlarge the time scale in
which it is applicable.

This situation is similar to that of Section 4.1, and to enlarge the time scale, we should
get and solve a more precise evolution equation for ¢, that would give a smaller residual in
(1), say, of the order of €2. To do that we shall use the technique developed in Section 4,
properly modifying it to this spatially distributed problem.
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5.2 The orthogonality requirement and the detecting operator

As it was made for finite-dimension examples, let us note, that the representation (85) is
ambiguous, when considered with the precision O(e). That is, we can add some arbitrary
sufficiently small function of the order of € to ¢ and then compensate this change by
changing the correction v so that the function u remains the same:

u = U((}S, ¢$) +v
= U(¢ + €x, (¢w + GXw)) + [U - 6U§(¢, ¢w)X - 26Uk(¢a d’w)d’wa + 0(62)] (88)

The assumptions (86) are not violated by this transformation, if the function y is also
e-slow.

If we want to obtain results with the required accuracy, this ambiguity should be elim-
inated. Note that the transformation (88) leads, in particular, to change in the “amount”
of shift mode (83) in the term v, locally in every place. So, the representation becomes
unambiguous if we require that this “amount” is zero with the required precision, as it
was made in Section 4.

Since this requirement should be defined locally, we cannot use simply the scalar prod-
uct with the adjoint modes. Therefore we define a linear operator with the sense of
“detector” of the shift mode, which “measures” the “amount” of the shift mode sepa-
rately in every place. Since we deal with oscillating basic solution, we should use time
integration (see Section 4.4.4). However, this can be avoided, if we use independent vari-
ables £ = ¢(x,t,€), 7 =t instead of z, t. In coordinates £, 7, the perturbed solution is not
oscillating, but only slowly varying in time, and time averaging is no longer required.

In the coordinates (£, 7) the correction v is governed by an equation with coefficients
approximately periodic in space and slowly varying in time. Therefore, after sufficient
span of time the solution v also becomes approximately periodic and can be expanded in
the sum

(& te) = Z Aj(e€, et, €) V(& k(€€ et €)), (89)

where V; are the 2m-periodic eigenfunctions of linear operator £ given by (82), and
k= (0z/0¢) " = k(e€, et ¢€). (90)

Now the requirement of orthogonality may be formulated as follows: this expansion of v
should never contain the shift mode, i.e. Ay = 0. So we need a tool to determine the
function Ag(e€,€), from a given function v(,€), at a fixed time moment. It would be a
linear operator with the property

Dv = AO (91)

for every v of the form (89). We shall call D detecting operator. It seems to be impossible
to ensure (91) exactly, but it would be sufficient for us, if it is valid to the precision €2:

Dov = Ag + O(€2). (92)
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To construct this operator, we define the biorthogonal basis to the eigenfunctions of L,
which consists of eigenfunctions W; of the adjoint operator £,

LT (k)W;(&, k) = X; (k)W (&, k) (93)

so that

2w
| i,V 6. 0) e = 8 (91)
Then we make the first attempt to define the detecting operator, as the local projector
onto the shift (Goldstone) mode:

§4m

Div(€) = / (Wo(C, K(C)), 0(€)) dC. (95)
E—m

Substituting (89) into (95) and using Taylor expansions of the slowly varying functions
around the middle of the integration periods, we get

Div = Ap(ef) (96)
E+m
(A5 + A(OK(€)0) [ Waln. k). Vi) (- €)dn|  (97)
’ & k=k(<€)
+ O(e?) (98)

where for brevity the prime ’ denotes differentiation by the shown argument.

We see that Dy, indeed, is a detecting operator, but the detection error is of the order
of € and not of €? as we wanted. The analysis of (98) also shows the way how to improve
the situation. Note that the error is an oscillating function of ¢ in the order O(e). So an
operator of sliding averaging, e.g.

4w

Ag(e) = 2 / 9(¢) dc, (99)

T o
E—m
would cut this error off, without affecting the main signal Ay. This is proved, again, by
using Taylor expansions of the slowly varying integrands.
Thus we see that the operator

Dy=AoD; (100)

obeys the property (92), i.e. it is the detecting operator needed. Recall, this operator
works in the space of functions of one spatial variable ¢; it depends on time 7 and on € as
parameters, via k().
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Now we can specify the requirement of unambiguity of the representation (85) with
the help of detecting operator in the following way:

Dov = O(e?) (101)

It is possible to make every SVW (85) to satisfy (101), by using the transformation (88).
To do that, we would measure the amplitude of the Goldstone mode in v by the detecting
operator Do, and then use this very amplitude as the correction x to the phase ¢. To
show this, it is convenient to make OU/0k orthogonal to Wy via a gauge transformation
(84) with appropriately chosen K (see below, (105)).

Remark 5.2.1 To eliminate the ambiguity of u with the precision € it might be sufficient
to use the simpler detecting operator of the order of ¢, since the correction ev itself is small
of the order of . The second order of the precision will be required later, to detect the
free term A in the linear equation for v, which contains terms O(1).

Remark 5.2.2 The above construction shows, how the process of increasing the precision
of detection can be continued iteratively. Such an increase will be required if we need more
and more precise evolution equations.

Remark 5.2.3 Detecting operators for modes other than Vj can be constructed similarly,
by using other adjoint eigenfunctions W; instead of Wj.
5.3 The evolution equation

By the assumptions made, the function v obeys the following asymptotic equation, in
coordinates ¢ = ¢, T = t:

Ur = k2(€§a €7, G)vaﬁ + Q(Efa €T, 6)”5 + F(Céa €T, E)U + h(f, k()a ak()/aéa Q()) + 0(62)

(102)
Here k(), defined by (90) and (), defined as
Q(eé, et e) = —(0t/04) ™" (103)
are known slowly varying functions, and h has the form
h =Ue(Q — w(k)) + Up(Qke — kr) + D(Ug + Ugrk) k ke (104)

It is now the time to choose the initial phases of U for different k for the gauge transfor-
mation (84). Namely, we require that

f (Wol&, k), Ui(€, k) dE =0, V. (105)
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When this is fulfilled, we apply the operator Dy to both sides of (102) and conclude that
[Qe€, e, €) — w(k(€&, €T, €))] Dave + Doh = O(?) (106)
Since v = O(e), equation (106) means that
Dyh = O(e). (107)
Selecting here terms O(1), we get
Q(e€, eT,€) — w(k(e€, eT,€)) = O(e) (108)
After substituting this result back into (106), we conclude that
Doh = O(?). (109)
In principle, this is already the required result, just slightly disguised. After some algebra,

involving the detecting property (101) of D, slowness of the functions k and €2, and then
changing to the original independent variables z, ¢, equation (109) leads to

¢t = —w(bs) + R(¢s)baw + O(€?), (110)

where
R(F) = 74 (Wo(€, k), D(Ue(€, k) + 2KT¢ (€, k) de. (111)

Equation (110) is the desired evolution equation of the precision €. It coincides with the
equation obtained by heuristic considerations in Section 2.

Remark 5.3.1 The technique of the detecting operator can help in deriving more precise
evolution equations, in the way it was done for the finite-dimension example in Section 4.
Some new features occur on this way:

e More precise detecting operators are needed,

e Nonlinear terms in the Taylor expansion of the function f(u) should be taken into
account,

e The amplitudes of the stable modes should be determined, therefore the detectors
for these modes are needed.
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5.4 Degenerated (conservative) waves: an example

As already noted, autowaves are an example of “generic” waves, not depending on special
properties of the PDE system, like conservation laws. Thus the family of the basic, plane
periodic wave solutions is the poorest possible. In conservative systems, the conservation
laws add new parameters to the families, corresponding to the conserved quantities. For
instance, in systems where total energy is conserved, waves of different amplitudes are
possible, that have different energy content.

In this section, we will show that the developed technique of the detecting operator can
be used to treat slowly varying waves in such systems, by taking into account the available
multi-parametric family of basic waves, but without directly exploiting the conservation
laws.

As an example, we choose the well known nonlinear Klein-Gordon equation

Uyt — Ugg T f('u') =0 (112)

for the scalar field u; here f(u) is a nonlinear function. The 2-parameter family of peri-
odical wave solutions, depending on parameters k and a, is determined by equations

u=U(, a), & =kr — wt, w? = E(a) + k?,
Ba)Ug +/(U) =0,  U(E+2ma) = U(E,a). (13)

where k is the wave number, w(k,a) is the frequency and F is an arbitrary constant, that
is related to the conserved quantity in (112) and could be used to distinguish between the
waves of different amplitudes a.

Remark 5.4.1 There is no unique way to define the amplitude a, as the shape of different
basic waves in the same equation may be different. In different situation different choices
of parameter a may be preferable. For instance, it might seem natural to choose quantity
E as the amplitude parameter, thus allowing E(a) = a. But this does not work for linear
waves, where F is the same for all amplitudes and thus cannot be used to distinguish
between them.

We present the derivation of the evolution equations briefly, as the technique was
already described in detail, and now we only present the main milestones and points
specific to this particular problem.

The SVW Ansatz is

u(-’L‘,t, 6) = U(qs(x’ t’ 6),0/(.%.’ t’ 6)) + U("Ll’t7 6)’
B b)) = Bler,et,o)
a(z,t,e) = Alex,et,e),

v=0(), ®,A4A=0(Q). (114)
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Linear approximation for v is

Lv+h =0, (115)
where
Lo = vy — vge + [(U(¢, a))v (116)
and
h= (¢} — w*(a,60))Uge + (b1 — $a)Ug + 2(drat — $aas)- (117)
The representation (114) is ambiguous with respect to the transformation
¢ — ¢+edp

a — a+eda
v = v—eUzda — eUgd¢ + O(€?)

So we should impose the conditions implying da = 0, 6 = 0.
The calculations will be simplified if we use the following identities specific to the
evolution equation (112):

ngUa d¢ = ngU& d¢ = %‘UaUga d¢é =0, (118)
dG
fofUa dé = — f UeUga d€ = (119)
where
G(a) = ng dé. (120)

Note that these identities are not crucial for the method as such, only simplify the calcu-
lations.

Remark 5.4.2 Since choice of the amplitude parameter a is arbitrary (recall Remark 5.4.1),
equation (120) does not really define function G(a); rather, it defines the quantity G for
a given shape of U, and what value of a designates the shape is another issue.

From these identities we can see, in particular, that to construct the detectors we may
use the kernels OU /¢ and 0?U/0¢? for detecting d¢ and da, respectively. Here we recall
Remark 4.2.1 that the projectors do not have to be build from the adjoint eigenfunctions.

So we impose the following conditions of unambiguity:

’D{Uﬁ}’l) = 'D{U&}U =0. (121)



Here D{s} denotes the second-order detecting operator constructed from function s as a
kernel, in the same was as it was done in (95), (99) and (100). From the equation

D{Ug}(ﬁ’u + h) = 'D{Ug}h =0 (122)

we get the following evolution equation:

G(@) (B~ dua) + 5 (11 — dr0s) =0, (123
and from
D{Ua}(Lv + h) = D{Ugc}v + D{Us}h = D{Us}h =0 (124)
get the second evolution equation:
# = P($ar0) = Bla) + 2. (129

Suppose the wave propagates to the right and the function w(k, a) is positive, and introduce
the local wave number k£ = 0¢/0z. Then the second evolution equation (125) can be
rewritten as

¢ = —w(¢z, a) (126)
or
ki + wiky + weag = 0. (127)

Using (126), we express 0¢/0t and 8%$/0t* in (123) via spatial derivatives, and get the
equation

(WG + Gwy)ar + (kGy — wywaG)ag + G(1 — wi)ky, = 0. (128)

Equations (127) and (128) are the required SVW equations for the nonlinear Klein-Gordon
equation (112). Tt is easy to see that a linear case they correspond to the well known eikonal
equation for the phase and transport equation for the amplitude:

(a®)¢ + (wka®)z = 0. (129)

Here we made the most usual choice of amplitude parameter, G(a) = a® (recall Re-
mark 5.4.2), and used the explicit form of the dispersion relationship, w? = E + k2.

For a nonlinear case, it is convenient to choose the amplitude parameter a = G(a).
Then equation (128), with the help of (126), can be rewritten in the form

(w(k,a)G(a)): + (kG(a))e =0 (130)

As it should be, equations (127), (130) coincide, up to the notations difference, with
evolution equations obtained by the Whitham method, see e.g. monograph [2, page 516].
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6 The subcenter manifold approach

In the previous section, we extended the asymptotic procedure used in the model finite
dimensional problem of Section 4 to the PDEs, by applying it in every point of space.
Another way to do such extension was suggested by Roberts [12]. This approach considers
the whole phase distribution ¢(z), in its entirety, as a coordinate on the manifold U. Thus,
instead of a finite dimensional manifold, we consider a functional manifold.

The formalism is based on consideration of the starting PDE system (1) as an ordinary
differential equation in a Banach space Y:

da o
& =f@) (131)

where 4(t) is a function of time with values in a Banach space ), representing the spatial
distribution of the field u(z,t):

4:R—=Y; & u(zt) (132)

The procedure is inspired the (sub)center version of the asymptotic procedure, as
discussed above in Section 4.5. It is based on the Ansatz

u(z,t) =Up(z, )], (133)

where square brackets [] denote functional dependence. We will need only local depen-
dence, so we will assume that [¢] denotes dependence on ¢ and all its spatial derivatives,
U(p,0¢/0z;,0¢/0z;0x;,...). Ansatz (133) can be written in Banach-vector form as

~

a(t) = U(1)), (134)

where ngS is the vector of a smaller functional space X', representing the spatial distribution
of the phase ¢(z,t) at a particular time instant ¢:

b:R—X; & px,t) (135)

and U : X — V.

Space @ is “smaller” than ), e.g. in the sense that it consists of scalar functions rather
than Rf-valued functions as . Another non-formalised difference is that ¢ will represent
functions ¢(z,t) as in (9), i.e. with slowly varying spatial derivatives.

The evolution of the phase ¢(z,t) is sought in the form

= Glg(z, 1) (136)

or

— =6(6(t) (137)



where (j X - X
Then, the operators & and G are sought in the form of formal (asymptotic) power
series in the small parameter ¢,

u=>ume,  G=> Gme (138)
n=0 n=0
or
u=> ume, g=>3 gme. (139)
n=0 n=0

Then we use the procedure described in Section 4, expressed in terms of U and G as
a guidance, but immediately translate obtained expressions to the straightforward form,
without hats.

The orbit derivative of (133) by the system (136) yields

a’u,/at = U¢g + Z/{V¢Vg + 0(62) (140)

since, as we mentioned, I is function of ¢ and all its derivatives, and derivatives of higher
orders are, according to (9), of higher asymptotic orders in e.
In turn, differentiation of G by spatial variables, using the chain rule, yields

0G /0xi = Gydi + G, dij + O(€). (141)

Here and below, we denote spatial derivatives of ¢ by subscripts corresponding to the
spatial coordinate, so that ¢; means 0¢/0z; etc.; and also assume summation by repeated
indices.

Substituting now (141) and (140) into (1), with account of expansions (139) yields

w = UPGO+UGO +UPGH +ulY60 g+ 0(e)
= f(u) + Dug, o, = fU?)+FUUD
+D (u(;?; bidi + 21/{;(2], bidij + Ug)) bii + Uﬁ@@)
+0(€?) (142)

Then we consider sequentially different orders in € of this equation.

Order O(1). Equating terms of (142) of the order O(1) we have

~Uy0 G = FUO) + DU pipi. (143)

This coincides with the equation (5) for the basic waves if

u® =y, GO = —w; (144)
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and ¢;¢; is identified with 1. So, together with the requirement of periodicity in ¢, this
provides a nonlinear eigenvalue problem determining the basic solution A(?) = U and the
main frequency —G(®) = w as functions of the local value of the slowly varying phase

gradient 1 = ¢;¢; = (Vo)2.

Order O(¢). In the order O(e), equation (142) gives an equation which is convenient to
interpret as a linear equation for U(V):

LUt =h (145)
where the linear operator £ is
L =nD0sy +w(n)0p + F (146)
and the free term A depends on G,
0 0) (0 0 0
h=gOU? +UVGY — DU i — 2DUS) bidss. (147)

Linear operator £ defined by (146) is singular, and its zero eigenvalue is provided by
the Goldstone mode V) = 0U/0¢. By the Fredholm alternative, (145) is solvable iff the
free term is orthogonal to the eigenfunction Wy,

LTWy=0 (148)
of the adjoint operator £,
Lt = 77D8¢2) —w(n)dy + FT (149)

As before, we fix the arbitrariness in U and Wy by requiring (21) and (22), and then
the answer for G looks

G — (f (wo, DU ) d¢) Bii +2 (;{ (wo, DU ) d¢) $idis (150)

Noting that 4(©) depends on ¢ only via 1 = $?, we arrive ultimately to the evolu-
tion equation precisely coinciding, up to the notation difference, with (23), with identical
definitions of P and Q.
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