e

e B e e e

Russian Academy of Sciences

Pushchino Scientific Center
Institute of Mathematical Problems of Biology

PREPRINT

V. N. BIKTASHEV, A. M. MOLCHANOV

MACRODYNAMICAL APPROACH
TO THE ANALYSIS OF
NEURAL NETWORKS

PUSHCHINO-1992



YIK 519.95
B.H.Buxraues, A.M.MonyaHOB

"MAxpOMMEANECKE! I0IX00 K AHANESY HeHDOHHHX coTal”

CIEICHRASTCA MAaTeMaTHUeCKUE! MeTOR MJAA AHAMEISA CHOMHHX <HcteM
TiEA HeWpOEEHX ceTell. MeTOR [pelcTaBMAeT Codol  ofolieHne
¥SBECTHOTO OOIXCoN& "CpajHerc moJd", ¥ NO3BCJAeT AHAJMSALOBATL He
TOJBKO CTAUMOHADHHE COCTORHWS, HOC W JUHSMAYeCKHe CBOHCTBA CETH.
MeTox MomeT OHTL THKFE VMHTEDIPeTHPOBSH Kak I'aePRUHCKES ApOHEAYypa
HO OTHOWEHM0 X YDaBHEHMO 3BOJIOMMH [A9 (VEKUEEE pacupeigleHuid.
OdcygzawTch THIM HEHDOHHWX caeTall M Bajaui, A8 KOTODHX MOXeT GHTH
IpEMeHeY  pamEMtt MeToX. Iokesaso, 4YTC B Gro pavitaX MOTYT OHTE
OMECEHH MPOLSCCH CHHXPOHM3ALEM, CeTH BOBCYIVMHX HeAPOHOB, CeTH K3
HEOMUHAKOBHX HelDOHOB M C HeOIWHAKOBHME CBASMMI.

Absiraci. General feaiures of a mathematical method of analyzing
complex systems like neural neiworks are presented. The meihod-is
a generalization of the mean-field approach and allows analyzing
not only "steady-states" but also dynamical properties of the
network. The method can be also interpreted as a Galerkin
procedure for ithe master equation. The types of neural networks
and related problems to which the method can be applied are
diacussed. It 1s shown that method can treat synchronization
processes, networks of excitable neurons and ones of
non~identical neurons and synapses.

Key words: complex systems, neural networks, coupled oscillators,

macrodynamics, Galerkin procedure, masfer eguation, mean-field
equation, pair interaction, summatory funciions.

© Pushchino Research Centre, 1992



Contents

1. Introduction...... e e eaa e tet e e et 3
2. Uniform system of coupled oscillators...........ccivinrninn. 5
2.1. The equations of macrodymamics. ..o i rrnneisennrnann 5
2.2. The simplest example of using the theory................ 7
2.3. The problem of synchronization...........c... ... 8
3. Generalizations. .. ..o iii i i i e e et 9
3.1, EXCitable MeU OIS .« ittt it ittt ittt e e e g
3.2. Non~identical NeuronS. .o .ue e e s eeensenesenneenannnas 10
3.3. Non-identical S8ynaDSesS .. . ..ttt neeininanrnearenasnnn 11
L0 =21 1= 1= 5o 12
F)a oL o )T o - R 13
B2l o= 4 U= - 14

1. Introduction

The analysis of complex systems is a very importani problem in
various fields of science. There are many systems for which the
direct simulations is not possible and, perhaps, never will be,
because of huge number of elements. On the other side, we usually
do not need ic know the deiailed behavior of such a system, but
only interested 1in studying some general (macroscopical)
properties.

Therefore, it is very useful to get examples of sysiems to
which some exact or asymptotical statements in the 1imit N-—w can
be made, where N 1s the number simple subsystems (elemenis, for
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instance) constituting {the whole system.

The neural networks are significant examples of systems for
which $he specified problem iz of prineipal. Many of mathemetical
models of neural networks can be formulated in the form

¢, = a,(9;) +.Z bf’j (95 ©;), i=1..¥ ™
J=1
where dynamical variables @, denote states of neurons (or neuron
clusiers) and are vectors of a few dimensions; the functions a;
describe their “own" dynamics and b?'j describe funciloning of
synapses (or intercluster interaction).
Many types of complex systems of another physical origin can
alsc be presented in the form {1).
We wani %o study the "macroscopical" properiies of the system
© (1) in the 1imit N¥—w. In the mosi general formulaiion, even the
definition what are the "macroscopical properties" is a problem
and should be specially stated; we shall call this siatement as
an observation postulate. Usually these properiiles should not
vary considerably if a relatively small number of neurons is
removed or essentially change their properties (see, e.g. {1]).
Another related problem is what is the rule that we should
choose and change the functiions a;s bi,j as N—w. Such a rule we
call a structure postulaie.
These two postulates determine the specifics of any approach
%0 the analysis of a complex sysiem. For instance, the so called
autowave media may be interpreted as neural laitices (ses e.g.
f2]) with nearest neighbors, symmetric and linear connections
" (this is the structure postulate), are macroscopically described
by partial differential equations, and therefore the observation
postulate implies that we neglect the fine structure of the
lattice dynamics.

Another example is the network where all the neurons are
identical and all connected o each other in an identical way.
For this case the mean-field approach seems natural enough {3].

We suggest a generalization of the mean-field approach which
leads to the description of the network in terms of the neurons
states distribution density in "microscopical® phase space {¢},
since these spaces are identical for all neurons.

in +this description the observation postulate claims:
macroscopical properiies are defined by the (weak) limit of the
distribuiion density as N—e. Phis is really a generalization of
the mean-field approach, because the mean—field variable defined
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in [3} is simply one of the Fourier—components of this function.
Regarding all or sufficiently large number of these components
removes the applicability resiriction inherent to the mean—field
approach that the systems should be in the vicinity of a
stationary point.

Moreover, this generaiization allows, in principle, ireatment
of a much more wide class of systems than the neiworks of
identical and identically connected neurons. This Dbecomes
possible after a special choice of the structure postulate.

The +$wo basic ideas of +this approach, namely 1) the
interaction functions bi,j should be represented in factorized
form; 2) the summatory functions can be used 23 macrovariables —
have dbeen already implemented to some special systems (ineluding
the Hamiltonian ones) in vrevious papers of A.M.M. [4-6], and
descend from the dideas of E.Schmidt (see e.g. in [7]) and
A.Ya.khinchin [8,9].

2. Uniform system of coupled osciliators

2.1. The equations of macrodynamics

Pirstly, we consider the following special case. Let the
*neurons® to be oscillators in the so called *phase description”,
as it is done, e.g., in [3] with mj being their phases, with
identical frequencies, so we can put GJEO, and - all the
connections to be identical and depend only upon %the phase
differences:

.1 X
0= Lo (0 @), i=1..N )

Let us expand the function b(@) into the Fourier series:

b (@) = Z B, &' (3)

And now we introduce the macro-variables Sa instead of
microvariables @;:
o1

s
a oy

5 o', a=0,1,2... (4)

J

Automatically, we get that 851 is a {first integral, and
$_,=(8.)%. Differentiating the system (4) by time and
substituting (2) and {4), we get the closed system of equations



for macrovariables:

w=ta} Bg Sqp S-g (53
B

(the macrodynamic system). Note, that the formal derivation of
(5} from {2) is exaclt and is valid for any N, because it has used
only the rearrangement of summation through indices j and aq,
while j runs over a finite number of values 1..N.

When the macrodynamic sysiem is solved, then the individual
dynamics of j~th neuron is governed by the equaiion ’

o, ¥
= J [
;= EBae §; (")

Note that the system {2') together with equation (4), when
reduced to a finite number of Sa, is a special case of a system
of oscillators coupled only due to interaction with common
environment that was studied in [1].

It is easy to see that Sa are the Fourier components of the
phase distribution density defined as

s(@,1) = } 8 (p9;(t)) (6)
- J

So the system (5) is simply the Fourier transform of the master
equation for s(®,t). If the weak limit of s8(p,t) as N—w is a
smooth funciion, then we can analyze only a few number of S,,
i.e. we have reduced the system of N egquations for individual
neurons o the system of 2 few number of equations for
macrovariables. This is the goal of the theory.

For the special case of

b(@p)= 2B cos (@+0) {7}
we get from (5) that
& _ 4 i0 _ _~iB
Sa=tab [e®s, 5, - s8] @)
i.e. the evolution of & macrovariable is coupled only with
"neighboring" macrovariables and with the '"principal”

macrovariable 81. Note, that .:5'1 is that very macrovariable
considered as mean-field in ref. [31.



2.2. The simplest example of uging the theory

The system (2) has two obvious 1iypes of “"stationary®
soiutions. One of them is

@ =0y VS (9

where

@, = b (0) (10)
— wtptal synchronization" and is valid for any N, and the other
can be written as

0; = 2j/N + ¢ § b(g)dP “an
-~ %{otal disorder" and is only asymptotically valid ag N-ww.

The stability analysis of the solution (9) for any N was made
(for a more general model) in the paper by Shnol [1]. Concisely
speaking, the result reads: the synchronous regime for the sysiem
of N oscillators is siable if and only if such a regime is stable
for 2 oscillators. The stability analysis for (10) 1s a more
difficult problem because it cannot be done for any finite ¥ but
must be periormed in the limit Netow.

Let us study the solution (11) in the case (7) in terms of
macroeguations (8). In terms of macrovariables the solution (11)
has the form

Sa =0, 0=0 (12}
Linearized eguations are
Lo -iB & .
S1 ={1{BNe S1,
Sa =0, d=1 13

Therefors, the necessary stability condition of &isord@r is
8e{-T,0). (14)

Note, that if we consider stochasiical system instead of
dynamical, e.g. if @, are no} zero, but independent Caussian
" white noises, even though arbitrarily small, then (14) becomes
also the sufficient condition.

It is interesting, that the criterion obtained is analogous to
that of stability of synchronized solution (9) cited above: the
"total disorder" solution for many neurons is stable if and only
if the counter-phase soluticn is siable for 2 osciliators.



For general b(g) the linearized system is

Sy = i BN { BO + B—a ) Sy (15)
and necessary stability condition is
arg(Ba)e (—-m,0) (18)

for all d.

2.3. The problem of synchronization

generally speaking, the approach is reasonable if we can take
into consideration only few number of macrovariables inatead of
very large number of microvariables. This is possible only if the
distribuiion density is & smooth functiorn, hecause the

" macrovariables are iis Pourier components.

This implies, particularly, that the approach camnot be
applied to studying the synchronization phenomena, because in
that case the distribution density becomes gingular. This
pessimistic statement can be, however, disproved by the following
two considerations.

Tirstly, if we add to the sysiem an additive noise, then ihe
ngingular" synchronization becomes impossible. In this case it is
sutficient te consider the number of macrovariables inversely
proportional %o the noise amplitude. Perhaps, some analogous
effect can yield the "iniernal" noises, i.e. statistical
scattering of the neuron parameters (see in this respect [10]1).

Secondly, let us recall that the "cut off" system (5) with
finite number of 5y is the Tesult of Galerkin projection to the
trigonomeirical baszs IT we are io analyze the regimes that are
hardly approximated in this basis, then we can chose another one,
mey be singular. '

Po illusirate the latter 1idea, let us congider - the
synchronization prosess in the system (2,7} with its
macrodynamical version {(8). It is already known that 1f 8<{0,%)
_then the disorder state (10) is unstable and the synchronized
state {(9) is stable. So we might suggest that the 3$ypical
trajectory of the system is from the vicinity of fotal disorder
to the vicinity of totally synchronized state. To describe such a
trajectory within the frames of the same approx1matlon, we need
to choose a (macroscopical) manifold that would comprise both
these stabes. Let us choose this manifold in the form
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(@.t) = — 85 + 8{p ~ @) 17
sl op 0 84 Ol =~ By

it is 2-parametric, because the normalization requires
sg =1 - 8y {18}
The total disorder corresponds ic the 1imit so=1, and
synchronization to s1=f. On this manitold we have
o

S =1: Sy =84 @ (19}
It 1is convenient 3o use 81 as a complex coordinate on the
manifold. Other macrovariables are expressed as

o1

(¢4
Sy =8, 7 18] (20)

o 1

By substituting 8y cbtained from eq. (20) into egq. (8), we get
the closed equation for S;:

. i0 -

8y = i B 81(9 |511 -e ) 21)
which is the desired cui-off macrodynamical egquation. It is easy
to see that the equaition has the expected properties: if (18) is
violated, then the iypical trajectory leaves the viciniiy of the
disorder siate (11,12) and approaches tc the synchronized state
(9,10).

3. Generalizations

3.1. Excitable neurons

Now we Dproceed to generalizations of the "basic" model (2) in
the direction of the "most general” model (1). Firstly, let us
consider nonirivial "own" dynamics (@), still identical feor all
neurons. lLet it also be expanded into Fourier series:

ip
alp) = Zaue {22)
u_ .

‘Then the macrovariables (4) satisfy the equations

S, = WIS (o + bysy) (23)
v

Since a(®) can have Zeros, we can now take into consideration not
only oscillators, but also excitable neurons. A simple model of
this kingd for nearly-stationary states was suggested in
ref. [3].



Note, that ithe method can be easily generalized to the case
when the phase space is not a circie, but any-other manifold. The
only condition is that we could approximate dgistributions on this
manifold; that is, it should have not too large "total volume",
oiherwise the @alerkin procedure 1is hardly applicable. In
particular, the phase space should have few gimensions.

So, further generalization for arbitrary functions al@}.
b(p,P) in any phase space {@} is obvious, if only they are
identical for all neurons and neuron pairs. To discard this
restrictions, some essential assumptions must be made, i.e. we
need a lucky siructure postulate.

3.2. Non—identical neurons

As a next stage, lei us assume that neurons are not identical,
though the connections remain "uniform".

The main assumption, that will permit us to treat the caseofl
different neurons, is the foliowing structure postulate:

where A, are time—independent vectors of few dimensions. If
b, j(¢,¢)sb(m*¢), as before, then we can rewrite (1) in the form

(Pj = a (hj- (Pj) + b ((Pj, L)

;\,J = 0 (25)

Now we consider "expanded" phase space
Q;
{@y={ed(A}, @5 = {;f ] @6)

In terms of variables Qj the system (24} is again the system with
identical neurons, as in previous section. The variability of
neuron properiies 1s now transformed into the variability of
initial conditions for teyxpanded" neurons, and the second part of
the structure postulate requires that neuron distribution in {A}
can be subject to Galerkin procedure.

of course, the choice of the galerkin basis in the parameter
subspace {A} should be made depending upon the properties of this
space.

consider the simplest example. Let {@} be again the unit
circle, and aj($)=a(hj,m)shj, i.e. the oscillators vary only in
their own freguency. Generally, if the macrovariables are defined

10
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as

H{p.
S = Zfa (A;) e (27)

where {fd} is a basis in {A}, then the macrosysiem has the form
Sap = ”"Z{as B 7 UBZ S 5, | @O

where the siructure constants Va B and UB are defined by

2 Uy Fu(w) =1 (29)
a

E ap Tp(®) = © Fo(w) (30}
If Fp is the basis of pawer functions,
Fol@) = o, a=0,1,2... (31)

(which is appropriate if © vary in a finite interval), we get
structure constants

Uy = %00 (32)
Va’g = 6a+1,ﬁ (33)

and the macrosquations
Sop = W {Scm,p. + Z Set, v So, -y } (34)

3.3. Non—identical synapses

The formal approach used in the previous subsection can also
be applied +to oconstruct ‘“macrodynamical? neiworks with
non-identical connections between neurons. Again, we assume that
the connection of +{-th neuron %c j-th one does not depend
immediately upon i and j, but is-a function of a few number of
parameters, which, in turn, depend upon i and J {structure
postulate):

= z b (;\'1‘.’ hj.{pt, (DJ);
J

A= 0 (35)

kN



Here {A j} are some Dbarameters determining interneuronal
cormections.

For instance, consider the equations like (2) but with varying
connection weights:

b (A"!..' AJ’ (Pi. (PJ-) = \

‘L'U((P.L_LPJ)

LY Byp falM) Tph) € + c.o.3 _(38)
o,B,v

(here * denotes complex conjugation -and vg.g." is the term
complex' conjugate te that written down). Here {fa} is again a
pasis on the parameter space {A}. Macrovariables are defined as

S = L Zalty) et an
Let ’
Fq) Fg) = ] Fogy Sy ) (38)
Then the macrosystem is 7
R Buys So,ue 570 39)
v, 7,8

where Baﬁ'T are some combinations of Fﬁﬁ'f and Bo.ﬁ'v'
4. Discussion

We have proposed an asymptotical approach 1o the problem of
analysis of large neural networks and another complex systems.
Informally speaking, the main postulates of the approach claim:
the variability of elements and their connectiong remains
nfinite" when N--w; and therefore the macroscopical properties of
the system can be described in ferms of the weak 1imii of the
neuren distribution density in the expanded space
"phase+parameters" . _

If this weak 1limit is sufficiently smooth, or, more generally,“
is close in a sense to & tinite—dimensional manifold, then the
mester equation cen be approximaited by a finite~dimensional
system through the galerkin procedure. This tinite—-dimensional
nmacrodynamical® system may help in qualitative analysis of
simplest cases and may sServe a8 2 basis for numerical procedures

12
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in gensral.

The physical (biological) sense of the "structure parameters®
A in (25), (35) depends upon the problem being solved. An example
of the parameter of the neurons varieiy was shown in Section 3.2
- it is the own freguency. If the mathematical model of a neuron
contains parameters then any or all of them can be usad.

But biological sense of parameterization of intercomnections
is much less obvious, and probably is very specific to the
Problem, and in some problems may be absent. One of possible
physiological interprefations may be related with the Dale's
principle declaring that the type of a synapse is determined by
the types of the pre- and post-synaptic membranes. .

In this respect, it is interesting to study whether the
networks of the Hopfield +type can be described with this
formalism or neot. I% appears probable, because 3the structure
postulate (36) seems anslogous to the Hebbian rule. Here the
structure parameters A have no relations with physiology but are
determined by neiwork hystory (learning). The popular gquestion
about the information capacitance of such a network has no sense
in our formaliem, because we imply N—ew. Bui all the quesiions
about convergence dynamics, non-symmetric connections etc. remain
sensible.

Another possible meaning of the structure parameters A of the
connections variety is the space locaiion of connected neurons.
In this terms, i1 becomes possible to describe the networks with
quasilocal, space—dependent connections.

4 natural generalization of the formalism can be made for
stochastical systems. Say, if the system (1) is supplemented with
additive independent white Gaussian noise, then the master
equation becomea Focker-Plank equation. As we have already
mentioned, in this case the synchronization stops being a
singularity, and the Galerkin procedure becomes simpler. From
this point of view, {he proposed formalism if even more adeguate
to stochastic systems: than to determinisiic ones.
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