Spiral wave meander and symmetry of the plane
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Abstract

We present a general group-theoretic approach that
explains the main qualitative features of the meander
of spiral wave solutions on the plane. The approach
is based on the well known space reduction method
and is to separate the motions in the system into su-
perposition of those ‘along’ orbits of the Fuclidean
symmetry group, the group of all isometric transfor-
mations of the plane, and ‘across’ the group orbits. It
has the visual interpretation as passing to a reference
frame attached to the spiral wave’s tip. The system
of ODEs governing the tip movement is obtained. It
is the system that describes the movements along the
group orbits. The motions across the group orbits are
described by a PDE which lacks the Euclidean sym-
metry. Consequences of the Euclidean symmetry on
the spiral wave dynamics are discussed. In particular,
we explicitly derive the model system for bifurcation
from rigid to biperiodic rotation, suggested earlier
by Barkley [1994] from @ priori symmetry considera-
tions.

1 Brief history of the question

Spiral waves provide one of the most striking exam-
ples of pattern formation in nonlinear active media
and have attracted attention since their description
in the Belousov-Zhabotinsky (BZ) chemical reaction
medium [Zaikin, 1970]. They have been described in
many other systems and models [Swinney & Krinsky,
1990; Holden et al. 1991], and in cardiac muscle they
are of potentially vital interest, as they underly some
lethal arhythmmias [Gray & Jalife 1996].

Spiral waves appear as rotating waves of chemical
or other activity, that propagate through a stationary
medium as a wave of synchronization of phase of self-
oscillations or excitation, without any bulk movement
of the medium. Typically they can be approximated
by an Archimedean spiral, rotating with roughly con-
stant speed. Soon after the discovery of spiral waves,
Winfree [1973] examined in detail the dynamics of
the tips of the spirals in the BZ reaction and found
that these dynamics may not necessarily be steady,
but that the spiral tip may describe complicated tra-
jectories, which he called ‘meander’. An extensive
computational, phenomenological study of meander
patterns [Zykov 1986; Karma 1990; Barkley et al
1990; Winfree 1991; Plesser& Miiller 1995] has shown
that they exhibit common features. Early computa-
tional work used simple, two-component FitzHugh-
Nagumo-like models; however, essentially the same
meander patterns have been observed in high order,
detailed models of excitation propagation in heart
muscle [Efimov et al. 1995; Biktashev & Holden
1996], where the particular type of meander relates
to physiological properties of the tissue (Fig. 1).

Barkley et al. [1990] have studied numerically
the change in type of meander in a variant of the
FitzHugh-Nagumo model, and found that the transi-
tion from steady periodic rotation to the meander can
exhibit features typical for a supercritical Andronov-
Hopf bifurcation, namely, a linear decrease of the ah-



Figure 1: Spiral wave, isolines, tip and its trajectory, in a model of ventricular tissue. Medium is colour-
coded according to values of two field components, an activation variable (transmembrane voltage, red
colour component intensity) and a recovery variable ([Ca™*] inactivation gate, green colour component
intensity), details of the model can be found in (Biktashev & Holden 1996). The wave irregularly rotates
counterclockwise. Black lines are the chosen isolines of the two variables, the blue ball at their intersection
is the tip of the spiral wave. The white line shows the trajectory of the tip over last few rotations. The
rotation is approximately biperiodic, modulated by some slow processes.



solute value of the real part of the leading eigenvalue
as the bifurcation is approached and an el/Q—growth
of deviation of the meander pattern from steady ro-
tation in the supercritical region. This led to the
hypothesis that the onset of meander is due to a
secondary Hopf bifurcation from a periodic motion
(the steady rotation) to biperiodic one (the mean-
der). A detailed quantitative experimental study of
tip trajectories in a mathematical model of BZ reac-
tion [Plesser & Miiller 1995] has shown that, with a
good precision, tip meander can often be decomposed
into two periodic motions.

The question of possible resonances between the
two periods arises naturally. Consideration of the
1 : 1 resonance led Barkley [1994] to propose a model
form ODE system for this bifurcation. This model
system was chosen to mimick both the bifurcation
and the Fuclidean symmetry by means of the sim-
plest possible ODE system. Subsequent exploration
of this system has led to the observation that no lock-
ing or entrainment between the two frequencies oc-
cur, which has proved to result from the symmetry
built into the foundation of this system. Thus, it
has become evident that the explanation of the phe-
nomenon of spiral wave meander lies in the Fuclidean
symmetry of the plane on which they rotate. This is
in agreement with general rigorous results by Rand
[1982] within the context of rotating fluids in hydro-
dynamics and Renardy [1982] on bifurcations from
rotating waves in abstract evolution equations pos-
sessing continuous symmetry groups.

In this paper, we apply ideas of the theory of dy-
namical systems with symmetry to the explanation of
spiral wave meander. The abstract theoretical con-
struct we use has a very clear “physical interpreta-
tion”, which is to reduce the system with symmetry
to a generic one, by moving to the frame of reference
attached to the tip of the spiral. If the dynamics of
the reduced system is “coherent”, i.e. has a low di-
mensional attractor, then the motion of the tip can
be described by an appropriate closed ODE system.

After this paper was submitted, we were informed
of the related work of Fiedler [1995], Wulff [1996a,b]
and Golubitsky et al. [1996].

2 Problem formulation

The simplest and commonest class of mathematical
models generating spiral waves is the reaction diffu-

sion systems on the plane,

Oyu = DV u + f(u), (1)

with u(r,t) = (u1,us,...) € R, 1> 2,1 = (x,y) € R2.
Our arguments can be extended to a much wider
class of systems, as the essential point lies in the
symmetry. Apart from the invariance against shifts
in time, (1) is invariant under the group of the iso-
metric transformations of the plane R? — RZ, the
Fuclidean group denoted E(2) (we shall neglect re-
flections and consider only the orientation-preserving
transformations). That is, if u(r,?) is a solution to
(1), then @(r,t) = T(g)u(r,t) is another solution, for
any g € E(2), where action T'(g) of g € F(2) on the
function u is defined as

T(g)u(r,t) = u(g™'r,1). (2)

We are interested in spiral wave solutions of such
systems, though it is not easy to specify this class of
solution formally. Rigidly rotating waves are inde-
pendent of time in an appropriately rotating frame
of reference; however, as we are interesting in mean-
dering not rigidly rotating waves, this circumstance
is not much helpful. In fact, for our current purposes
it is enough to mention that the isotropy subgroup
of spiral wave solutions is trivial, i.e. they are not
invariant under any nontrivial Euclidean transforma-
tion,

Vi,Yg #1 T(g)u(r,t)# u(r,t). (3)

It is well known that the behaviour of dynamical
systems with symmetries can be drastically differ-
ent from those without symmetry, i.e. generic sys-
tems [Anosov & Arnold, 1985], and a standard way
to study symmetrical systems is to reduce them to
generic ones and then apply the results of the generic
theory. For continuous groups, this can be made by
separation of the system movement onto superposi-
tion of that ‘along the group’ and ‘across the group’,
the second being described by a generic vector field
that lacks the symmetry of the parent system (1).

3 Abstract scheme

Let us consider a differential equation

v

— =F



Figure 2: Decomposition of the movement in space
B onto movement along a manifold M and along the

group G. Here V,V' e M, U,U’' € B, and ¢g,¢9' € G.

in a Banach space B, which is invariant under the
action T of a Lie group G, dim G = k < oo, i.e.

T(g)F(U), (5)

for all U € B and g € (G, and so any transformation

F(T(g)U) =

T(g) maps any solution to another solution.

The original phase space B is foliated by the orbits
of G, and the well known space reduction method
can be used to reduce an original differential equa-
tion admitting symmetry G to one without symme-
tries [Anosov & Arnold 1985, p.31]. The basic idea
is to identify whole orbits of the symmetry group in
phase space with points of the orbit manifold or or-
bit space. The original vector field, corresponding to
(4), projects onto a vector field in the orbit space.
The differential equation defined by this field has no
symmetry and is called the quotient system.

To obtain the quotient system for (4) explicitly,
let us “parameterize” the orbit space by a manifold
M € B of codimension k& which is, for simplicity, ev-
erywhere transversal to the orbits. Then any point
U in the region D = GM C B can be uniquely rep-
resented in the form (see Fig. 2)

U=T(g)V, VeM,geg, (6)

(9,V) are coordinates on D (here we neglect
the possibility of the same group orbit crossing the
manifold more than once; this will be addressed later
in Sec. 5). Differentiating (6) by time and using
commutativity (5), we immediately obtain

i.e.

v . dT(g)
— + T Y g) ==V = F(V).

Vo Wy —pey. @)
The vector field F(V') can also be uniquely decom-
posed into the two components, (F(V')),, which is
tangent to M at V, and (F(V')); which is tangent to
the group orbit crossing M at V,

FV) = (F(V)p + (F(V))g - (8)

Substituting this into (7) and equating components
along M and along G separately, we obtain a differ-
ential equation on M,

= (F(V)) (9)
and another on G,
Ty _ 7(g) (V). (10)

dt

Note, that Eq. (9) for V does not depend on ¢, which
is a consequence of commutativity (5). Equation (9)
is the target quotient system, lacking the symmetry
of the original system and determining the motion
along the manifold M which is separated from the
motion along the group which can be found after-
wards by integrating (10).

If the transformations T'(g) are explicitly defined,
the vector fields (F(V')) 4 and (F(V')), can be found
explicitly; the standard approach is to expand the
vectors tangent to group orbits in the basis of the
group representation generators.

To conclude, we have shown that Eq. (4) can be
replaced by (9), which is a generic differential equa-
tion, i.e. it is not invariant under any nontrivial ac-
tion of G, defined on the manifold M; and then the
solution of the parent system (4) is restored through
integration of (9), (10) and (6). This procedure is
valid subject to two most important conditions,

e M is everywhere transversal to the orbits of G,

e trajectories of (4) do not leave the region D =

gM.



4 Application for spiral waves

To apply the above construction to the spiral waves,
we choose G = E(2) and its representation 7' on B
given by (2). The choice of the Banach space B is not
quite obvious: e.g., we cannot use L2(R2,RZ) since
spiral waves do not vanish at infinity and thus do not
belong to this space, and we cannot use C(RQ,RI)
since arbitrary small rotations can produce finite
changes in functions of this space and so the rep-
resentation T is not differentiable. Hence, B con-
sists of bounded continuous vector functions which
are asymptotically “circular” at infinity, so that small
rotations change them slightly; a formal construction
of such a space can be found in [Wulff, 1996a,b].
Condition (3) means that the isotropy subgroup of
spiral waves is trivial. So, all we need is to choose
the reduction manifold M to satisfy the transversal-
ity condition, which for our problem means that we
should define a class of functions {v(x,y)} by condi-
tions which would be violated by any motion of the
plane. A simple and obvious choice of such conditions

18
’01(0,0) = U0
172(0,0) = U (11)
9,v1(0,0) = 0

with appropriately chosen constants wig and wugp;
components 1 and 2 are chosen just for example. The
idea is that first and second conditions make impos-
sible translations — small or finite, if they originate,
locally or globally, from a unique solution, while the
third one makes impossible rotations — if gradient
of v at the origin is nonzero. For small transforma-
tions, this can be guaranteed e.g. by (Voy,Voy) #0
(finite transformations will be discussed in the next
section).

Generators of the representation 7' defined by (2)
are 0z, 0y and 0y = y0, — x0,, for translations along
x, y and rotation around the origin respectively. FEx-
panding (F(V)); in this basis, to

(F(V))g = (¢, V)v 4 wdgv
brings (9) to the form
O = DV2iv 4 f(v) — (¢, V)v — wiyv, (12)

where ¢(t) = (cz(t),cy(t)) can be interpreted as a
translation velocity and w(t) as a rotation velocity.

The system of PDE (12) and finite equations (11)
can be viewed as a dynamical system in the phase
space M = {c,w,v} where v is a vector-function of
r and ¢, ¢y and w are scalar variables. This is the
target quotient system, corresponding to the abstract
quotient system (9).

Equation (10) for ¢(¢) is easy to treat by using
the isomorphism between the plane R? on which the
wave rotates, and the complex plane C. A natural
representation T¢ of F(2)on C is the group of similar
movements of the complex plane, i.e. if g = {R,0}
is rotation through an angle © around the origin,
followed by translation by vector R = (X,Y), then g
is represented by

Tc ({R,0}):z2— R+ ze'© (13)
where R = X +1Y € C. Infinitesimal transformation
dg = {dR,dO} is represented in C by Tc(dg) : z —
z4+dR+1izd0, and in the functional space by T'(dg) =
I+ (dR,V)+dO-dy. Thus Eq. (9) is represented in
C by

T ({R + dR, 0 + dO}) = Te ({R, 0}) Tc ({cdt,wdt})

Substition of the definition of T¢ (13) gives

R+dR+exp (10 + id0)-z = R+exp (10)-(cdt + exp (twdt) - 2)

where obviously ¢ = ¢, + icy, which leads to
0,0 = w(t),-
MR = c(1)e®.

This is the equation on the group in the coordinates

(R,0).

(14)

5 Visual interpretation

The first two condition of (11) say that the origin is
an intersection point of two isolines, that of vy and
vg, and the third one says that the isoline of vy is tan-
gent to the z-axis. Function v(r)is just function u(r)
moved somehow (by T(¢g~!)) along the plane. Inter-
section of two isolines is often used as a definition of
the tip of the spiral wave. So, in other words, condi-
tions (11) say that function v is function u considered
in a frame of reference with its origin at the tip of the
spiral wave and with y axis along the gradient of uq
at the tip (see Fig. 3).



Figure 3: Frame of reference (£, 7) related to the tip
of the spiral. The tip is the intersection of isoline
uw = wug (dashed) with isoline v = vy (dotted). The
origin of (£, 7n) is at the tip, shifted by vector R from
(z,y)-origin, £&-axis is tangent to the u-isoline, rotated
by angle © from z-axis.

Coordinates £, n in the tip frame are related to
those z, y of the laboratory frame by

z=X+4+£cos® —nsinO
y=Y 4+ £sin® 4 ncos O

Performing this change of variables in the original
system (1), with X, Y and O varying with time, af-
ter elementary though tedious calculations we can
directly obtain Eqs. (14, 12).

To conclude, the physical interpretation of the
newly obtained equations is: (11) is a definition of
the spiral tip, (14) is its motion equation, and (12) is
an equation for the field in the tip’s frame of refer-
ence.

Now we can easily interpret the assumption made
in Sec. 3 that any group orbit crosses the manifold
only once. In terms of this application, this simply
means that we consider only solutions with one wave

tip.
6 Some simple consequences
The simplest attractor in the quotient system is an

equilibrium (w,c,v) = (wo,co,v0). In this case, all
the evolution is motion along a closed group orbit, i.e.

the spiral moves as a rigid body, and this movement
is rotation:

0 =
R =

Op + wot,

Ro + coexp (i10). (15)

Let us suppose that the equlibrium (wp, ¢g, v) un-
dergoes a Hopf bufurcation. Then the dynamics of
the quotient system can be described by

z Z(z) = ez+ipuz—azlz|* + O(]z]")
w = Qz) = wotwz+w_1z+0(z*)
¢ = C(z) = ct+eaz+e1z+0(z%)

v V(z) = wo+wviz+v_12+0(]2]?),

(16)
where z is a normal-form complex coordinate on
the central manifold, Z(z) is a vector field on this
manifold, and functions Q(z), C(z) and V(z) deter-
mine the shape of the central manifold in the space
M =A{w,c,v}.

System (14, 16) with the last equation left out, is
formally equivalent to Barkley’s [1984] model system
obtained from symmetry considerations. To see this,
let us introduce new variables s € R and @ by

cexp(i0) = sexp(1®),

resolve the system with respect to z to determine the
function (s, w), where w = & (which is a well defined
operation if wq and ¢; are nonzero), and then exclude
z. We then obtain

R = sexp(i®)
w H(s,w)
F(s,w)
G(s,w)

(17)

o
$
W

where H(s,w) = 1.
[Barkley 1994] reads

Meanwhile, system (3) from

R = sexp(i®)

D = w h(s?,w?
:f ; s fh((.SQ,,wQ)) (18)
W= w 9(527 w2)

(the particular choice of the form of F() and G() was
for parity purposes, to represent the symmetry due
to reflections).

Further bifurcations will normally lead to the in-
crease in the dimensionality of the embedding space
of the attractor. For instance, a secondary Hopf bi-
furcation can give birth to an invariant torus which



can subsequently break up leading to dynamical
chaos. This scenario would naturally be described
in model systems of higher dimensionality. Note that
this viewpoint differs from that of Barkley [1994] who
tried to reproduce the whole of Winfree’s [1991] para-
metric portrait of the FitzHugh-Nagumo system in
full in terms of the same model system, and in par-
ticular, to describe the bifurcation of meander into
hypermeander.

This “meander-hypermeander” bifurcation may be
explained as the birth of a chaotic attractor in the
reduced system. To the extent that a chaotic sig-
nal ¢(t) exp [w(t)dt has properties analogous to that
of truely stochastic noise, it would be natural to ex-
pect that its time integral R(t) would have properties
analogous to that of Wiener processes, — i.e. grow at
large times in average as O(1}/2). Hence, the hyper-
meander patterns described by Winfree [1991] and
Nagy-Ungvarai et al. [1993] could be explained as
a Brownian walk along the symmetry group. The
fact that a torus breakup into a chaotic attractor
may occur soon after a secondary Hopf bifurcation
[Afrajmovich & Shilnikov, 1983] is consistent with
Winfree’s observation of no other boundaries between
the bifurcation lines “rigid rotation-meander” and
“meander-hypermeander”.

7 Discussion

In this paper, we have proposed a way to study sys-
tematically spiral wave meander. The idea starts
from a group-theoretic construct using abstraction of
the manifold of group orbits, and leads to a system of
equations (11, 12, 14) which has a clear interpretation
and is suitable both for a theoretical analysis and for
simulation. As a partial case, this technique results in
a model system for the bifurcation from rigid rotating
to biperiodic meander, which is formally equivalent
to the previously proposed model system [Barkley
1994]. However, here we have explicitly derived, this
system, and the construct described is a general ap-
proach to treat a broader variety of related problems,
e.g. the problem of hypermeander.

There are still someopen questions. The reduced
dynamical system defined by (11,12) lacks the sym-
metry of the original one, so we have assumed that it
can be treated as a ‘generic’ system, and all results
of the dynamical system theory without symmetry
can be used. However, this system is defined in an

unusual way, and an accurate mathematical consid-
eration is required in particular cases. For the case of
the Hopf-Barkley bifurcation considered above, such
a rigorous consideration within the approach based
on the Lyapunov-Schmidt reduction has been made
by Wulff [1996a,b]. It is interesting to mention in
this respect that, as Barkley [1994] has pointed out,
in the cases considered so far, the bifurcation to me-
ander happens supercritically, while in generic sys-
tems both supercritic and subcritic cases are ‘equally
possible’.

Another open question is related to the alternative
theory reducing description of perturbed spiral wave
dynamics to ODEs (see e.g. [Biktashev & Holden
1995]), based on another basic mathematical idea,
that of central (inertial) manifold. As it was dis-
cussed in [Biktashev & Holden 1995], the applica-
bility of that approach depends upon the solvabil-
ity of eigenvalue problems for the adjoint linearized
operator in spaces of functions rapidly decaying far
from the spiral core; the physical interpretation of
this condition is that the spiral wave is sensitive only
to perturbations located near the core. In the con-
text of the theory of [Biktashev & Holden 1995], this
property can be considered as definitive for ‘proper’
spiral waves. However, in the present paper, the con-
ditions of transversality (11) or, more generally, (3)
seem fairly generic, and the coherent low-dimensional
behaviour considered in Sec. 6 is completely due to
the vicinity of bifurcation. A natural interpretation
is that meander patterns like those observed in spiral
waves may be much more widespread than observed
so far.

Combination of the two theories can be performed
as either as generalization of [Biktashev & Holden
1995] for meandering spirals, or development of the
present theory to account symmetry breaking per-
turbations. Such a combination can be helpful e.g.
in studying meandering spirals under external peri-
odic forcing, which has been studied recently from a
phenomenological viewpoint [Mantel & Barkley 1996;
Grill et al. 1995].
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