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The modern Markov chain models of ionic channels in excitable membranes are numerically stiff. The popular numerical methods
for these models require very small time steps to ensure stability. Our objective is to formulate and test two methods addressing
this issue, so that the timestep can be chosen based on accuracy rather than stability. Both proposed methods extend Rush-Larsen
technique, which was originally developed to Hogdkin-Huxley type gate models. One method, “Matrix Rush-Larsen” (MRL) uses
a matrix reformulation of the Rush-Larsen scheme, where the matrix exponentials are calculated using precomputed tables of
eigenvalues and eigenvectors. The other, “hybrid operator splitting” (HOS) method exploits asymptotic properties of a particular
Markov chain model, allowing explicit analytical expressions for the substeps. We test both methods on the Clancy and Rudy (2002)
INa Markov chain model. With precomputed tables for functions of the transmembrane voltage, both methods are comparable to the
forward Euler method in accuracy and computational cost, but allow longer time steps without numerical instability. We conclude
that both methods are of practical interest. MRL requires more computations than HOS, but is formulated in general terms which
can be readily extended to other Markov Chain channel models, whereas the utility of HOS depends on the asymptotic properties
of a particular model. The significance of the methods is that they allow a considerable speed-up of large-scale computations of
cardiac excitation models by increasing the time step, while maintaining acceptable accuracy and preserving numerical stability.

Index Terms—Markov chain, ion channel, numerical methods, Rush-Larsen method, exponential time-differentiation, operator
splitting

I. INTRODUCTION

MATHEMATICAL models are an essential part of the
modern cardiac electrophysiology. They are used for

hypothesis testing in research and as a guide for clinical
decision. A typical definition of such a model is a high-
dimensional (tens of equations) system of ordinary differential
equations per excitable unit. Detailed simulations of the heart
involve solving such systems for each of millions of cells
placed in a mesh representing the cardiac tissue. Such large-
scale models can be computationally extremely expensive,
hence significant efforts are directed to develop efficient nu-
merical methods for solving such systems.

A typical cardiac excitation model is centered around the
Kirchhoff circuit law which gives

Istim(t) = C
dVm
dt

+
∑
`

I`, (1)

where C is the cell membrane’s capacitance, Vm = Vm(t) is
the transmembrane potential difference, and I`, ` = 1, . . . , L,
are currents through ion-specific channels. The currents, in
turn, are determined by the Ohm’s law,

I` = G`P`(t)
[
Vm(t)− E`( ~X(t))

]
(2)

where E`( ~X) is the ion-specific electromotive force, depend-
ing on the ionic concentrations ~X via the Nerst equation, G`
is the total conductance of channels of type ` when they are all
open, and P` is the probability of those channels to be open.

The components of the vector ~X are intra- and extra-cellular
ionic concentrations, which change in time in the obvious way
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in accordance with the ionic fluxes and the corresponding
volumes; some concentrations in some models are assumed
constant. The dynamics of the open probabilities is much
more nontrivial, as it reflects the conformation dynamics of
the proteins constituting the ion channels .

The classical description of these dynamics, going back to
Hodgkin and Huxley (1952) [1], has the form

P`(t) =
∏
i∈I(`)

yi (3)

with a popular, although different from the original Hodgkin
and Huxley’s, interpretation that the set I(`) corresponds the
subunits of the channel, called “gates”. These subunits are
assumed statistically independent, each of them can be either
in an “open” or a “closed” state, and the channel is open if and
only if each of the subunits is open. Variables yi then are open
probabilities of the gates, and their dynamics are described by

dyi
dt

= αi(Vm)(1− yi)− βi(Vm)yi, (4)

where αi(Vm) are opening rates and βi(Vm) are closing rates.
For instance, the original Hodgkin-Huxley description of

the fast sodium current (INa) channel uses # I(INa) = 4
gates, three of which, called m-gates, have identical opening
α1(Vm) = α2(Vm) = α3(Vm) = αm(Vm) and closing
β1(Vm) = β2(Vm) = β3(Vm) = βm(Vm) rates, and the
fourth, called h-gate, has rates α4(Vm) = αh(Vm) and
β4(Vm) = βh(Vm), hence for this case we have

PINa
(t) = m3h, (5)

dm

dt
= αm(Vm)(1−m)− βm(Vm)m, (6)
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dh

dt
= αh(Vm)(1− h)− βh(Vm)h. (7)

A more recent approach is modelling the probabilities of the
channel molecules, as a whole, to be in specific conformation
states, without the restricting assumptions of statistically in-
dependent subunits and only two states for any subunit. This
gives generic continuous time Markov chain (MC) models. Let
the probability of the `’th channel to be in the k’th state at time
t be uk(t) (“state occupancy”), k ∈ K(`), K(`) = #K(`), and
all such probabilities be considered components of the state
(column-) vector ~u = (uk)

>
= ~u(t). Let gk be the relative

permeability of the state k, then we have

P`(t) =
∑

k=K(`)

gkuk(t). (8)

Typically, gk = δk,k∗ where k∗ is the “open state”. The time
evolution of the state vector is described by the system of
linear ODEs, known in particular as Kolmogorov (forward)
equations, or master equation, of the form

d~u

dt
= A(Vm)~u, (9)

where the non-diagonal components of the matrix A(Vm) are
the transition rates (TR) between the states, and the diagonal
components are defined by the condition

∑
k∈K uk = 1 and

consequently sum of any column of A should be zero.
The ODE system for cellular membrane can be solved

on a computer using standard numerical solvers. A typical
solver iteratively computes the states of the system using
time-stepping algorithms, that is computing the states at times
tn = t0 + n∆t. The size of the time step ∆t is inversely
proportional to the computational cost, measured as CPU time
required for the computation. Increasing the time step is a
straightforward way of reducing the computational cost.

The maximal acceptable time step is limited by consider-
ations of accuracy and stability (see e.g. [2, Sections 5.10,
5.11]). Whereas the former is “relative” in that it depends
on the aims of the research, the latter has a more “absolute”
character in that if stability conditions are not satisfied, the
solution is unusable for any purpose. Typically, when the
time step exceeds the stability limit, the numerical solution is
characterized by wild oscillations around the exact solution,
and quite often will lead to numerical overflow.

Simple explicit solvers suffer from instabilities the most,
and implicit, stable methods, applicable to generic systems of
ODEs, are complicated and often costly. The motivation for
our research was that taking into account the specific proper-
ties of the problem can offer some advantages. Specifically,
we have in mind two distinct considerations.

One consideration is that the TRs can range through several
orders of magnitude, and some of them can be much faster
than other processes described by the excitable cell model.
This split of the speeds of the variables suggest a possibility
to exploit asymptotic methods.

The other consideration is the linearity of the system (9).
Here we are inspired by the example of the exponential inte-
grator algorithm developed by Rush and Larsen in 1978 [3].
It is based on the assumption that the transmembrane voltage,

on which the TRs in the gate model (4) depend, changes only
slightly during one time step ∆t. So during one time step, the
TRs can be approximated by constants, and the equation (4)
is then solved analytically. The solution can be conveniently
defined in terms of the “steady state” ȳi = αi(Vm)/[αi(Vm)+
βi(Vm)] and the “time constant” τi = 1/[αi(Vm) + βi(Vm)]
at a given potential Vm presumed constant:

yn+1
i = ȳi(Vm)− [ȳi(Vm)− yni ] exp

(
− ∆t

τi(Vm)

)
. (10)

The Rush-Larsen (RL) scheme is easy to implement, gives
good results and is very popular in computational cardiac
electrophysiology. Its stability and approximation properties
have been extensively discussed in literature, including its
relation to general exponential integrators family, its extension
beyond gating variables by linearization, and improving its
approximation properties, see e.g. [4], [5], [6]. However it is
designed for a single ODE and is not immediately applicable
for MC models which are systems of coupled ODEs. And
yet MC models are known to suffer from severe numerical
instability issues, just as, or even more than, the gate models
(Fig. 1). The classical techniques for numerical solution of
continuous-time MC models involve finding the eigenvalues
and associated eigenvectors of the transition matrix. Direct
implementation of this approach to very large MCs is problem-
atic, see e.g. [7]. However the MCs describing ionic channels
are relatively small so the direct approach is feasible.

In this paper, we discuss two methods for numerical solution
of MC models based on these two considerations.
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Fig. 1. Instability of INa Markov chain model at longer time steps. The
model was solved using forward Euler method using three different step sizes:
∆t = 10µs, ∆t = 40µs, and ∆t = 44µs. The top panel shows the
membrane potential (Vm), the bottom panel shows state occupancy of the
open state O.
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Fig. 2. Markov chain model of INa channel.

TABLE I
CHANGE OF STATES VARIABLES TERMINOLOGY.

Standard Our initial value
O O 4.386 × 10−8

C1 P 5.329 × 10−5

C2 Q 1.064 × 10−2

C3 R 8.018 × 10−1

IC3 S 1.436 × 10−1

IC2 T 1.907 × 10−3

IF U 1.111 × 10−5

IM1 V 8.417 × 10−4

IM2 W 4.118 × 10−2

II. METHODS

A. Models

To test the suggested numerical methods we have chosen
the MC model of the INa channel by Clancy and Rudy [8]
(Fig. 2), which is one of the most popular MC models. We
used the formulation of the MC model and the whole cell
model into which it was incorporated, as implemented in the
authors’ code kindly provided by C.E. Clancy. It most closely
corresponds to the Luo-Rudy model [9] with modifications
described in [10], [11], and some further minor differences.
For the sake of reproducibility of our results, we describe
the whole model in the supplementary material, highlighting
all the differences from the published models that we have
detected. For the same purpose, we put a simplified version
of the C code we used in the simulations described below in
the supplementary materials.

For convenience, we changed the notation for the MC states
and TRs. The states were named in alphabetical order, starting
with O for the open state, in a clockwise direction as in Fig. 2.
See Tab. I and Tab. II for the correspondence with the original
notation. The model contains 9 interconnected states. The state
O represents the conformation of the ion channel that allows
the flow of ions between the intracellular and extracellular
environment. The remaining states (P , Q, R, S, T , U , V and
W ) represent non-conductive conformations of the channel, so
we can say that for this model gk = δk,1, where u1 = O. There
are 11 possible bidirectional transitions between states, but
some of the corresponding 22 TRs are described by identical
functions, so there are only 14 distinct TR definitions. We
denote the TRs by α with a subscript showing the direction
of the transition, e.g. αPO is the transition rate from state P
into state O. See Tab. II for the link with the original notations.

The TRs are shown on Fig. 3 as functions of the transmem-
brane potential Vm in a physiologically relevant range. The
values of TRs vary across several orders of magnitude, from
10−11 ms−1 to 102 ms−1. Some of the TRs are high at the
lower potentials, some are fast at higher potentials, and some

TABLE II
CHANGE OF TRANSITION RATES (TR) TERMINOLOGY.

Standard Our
α11 αRQ, αST

α12 αQP , αTU

α13 αPO

β11 αQR, αTS

β12 αPQ, αUT

β13 αOP

α2 αOU

β2 αUO

α3 αUP , αTQ, αSR

β3 αPU , αQT , αRS

α4 αUV

β4 αV U

α5 αV W

β5 αWV

are uniformly low.
The conductive (open) state O is the only state that has

immediate effect on the INa current. The remaining 8 states of
the model can affect the current only indirectly by transitions
to the open state O. The time evolution of a generic state
occupancy state uk is described by a differential equation of
the form

duk
dt

=
∑

k′∈K′(k)

(αk′,kuk′ − αk,k′uk) , (11)

where K′(k) is the set of all the states interconnected with
state k, which can be readily found from the diagram. For
example, the occupancy of the open state, O, is described by
the following equation:

dO

dt
= αPO P + αUO U − (αOP + αOU )O.

By taking the sum of the equations (11) for all k, one
can see that the sum of the right-hand sides equals to zero,
and therefore the system observes a states conservation law,
which is consistent with the definition of uk as probabilities,
implying

∑
k∈K uk = 1. This is of course a generic property

of a continuous Markov chain. So the differential equations in
the model are not independent, which creates a possibility of
reducing the number of equations from 9 to 8, by computing
one of the occupancies through the conservation law rather
than from its differential equation. However the computational
gain from this is insignificant, and instead we used any
deviations from the conservation law as an indicator of the
accuracy of the computations.

B. Numerical Methods
1) Forward Euler

The standard forward Euler (FE) method is the simplest
timestepper for differential equations. It defines the solution at
the next time step, ~un+1 = ~u(tn+1), in terms of the same at the
previous time step, ~un = ~u(tn), using one-step forward-time
finite different approximation of the time derivative, which for
the system (9) gives

~un+1 = ~un + ∆tA(Vm(tn))~un. (12)

The time discretization step ∆t = tn+1− tn is presumed here
the same for all steps of a simulation.
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Fig. 3. Transition rates (TR) of INa Markov chain model. The left panel shows fast TR at high potentials: subsystem A0; the middle panel shows fast TR
at low potentials: subsystem A1; and the right panel shows slow TR in the entire range of potentials: subsystem A2.

2) Matrix Rush-Larsen
The proposed Matrix Rush-Larsen method (MRL) assumes

that the matrix A(Vm) changes only slightly during one time
step and therefore can be approximated by a constant. The
solution of (9) can then be written in terms of the matrix
exponential,

~un+1 = exp [A(Vm(tn)) ∆t] ~un. (13)

We assume that the matrix A(Vm) is diagonalizable, i.e. can
be represented in the form A(Vm) = S(Vm)Λ(Vm)S(Vm)−1,
where matrix S(Vm) is composed of the eigenvectors concate-
nated as column vectors, and matrix Λ(Vm) contains eigen-
values placed on the corresponding places on the diagonal. A
sufficient condition of diagonalizability of a matrix is that all
its eigenvalues are distinct, and this is the generic situation;
but we of course check that it actually takes place in every
case. Then the matrix exponential is calculated as

~un+1 = S(Vm) exp (Λ(Vm)∆t) S(Vm)−1~un, (14)

where the exponential exp [Λ(Vm)∆t] of the diagonal matrix
Λ(Vm)∆t is obtained by exponentiation of its diagonal ele-
ments.

As the numerical solution of the eigenvalue problem is com-
putationally expensive, we precompute the matrices S(Ṽj),
S(Ṽj)

−1 and Λ(Ṽj) for a fine grid of physiological potentials,
Ṽj = Vmin + j∆V , j ∈ J = {0, 1, . . . jmax}, Ṽj ≤ Vmax,
Vmin = −100, Vmax = 70, ∆V = 0.01 (all in mV) before
compile time and save them in a file.

At start time, the eigenvalue and eigenvector matrices are
loaded from the file and we precompute, for ∆t used in the
particular simulation, the transition matrices

T j = T
(
Ṽj

)
= S

(
Ṽj

)
exp

[
Λ
(
Ṽj

)
∆t

]
S
(
Ṽj

)−1

(15)

for all j ∈ J . At the run time, the solver simply refers to the
tabulated transition matrix T j ,

~un+1 = T j(n)~un (16)

where Ṽj(n) is the tabulated transmembrane potential that is
the nearest to Vm(tn).

Along with the code, we provide precomputed files for a
voltage step size of ∆V = 0.1 (size of 4.85 MB), that are

sufficient to obtain accurate results. The tables with ∆V =
0.01 mV of 48.5 MB size, used for the simulations presented,
are available from the authors upon request.

The method of tabulation (tab.) can be applied to all the
presented numerical methods. However, its benefit is most
essential in the MRL method, because matrix exponentiation
is computationally expensive. The accuracy of the tabulation is
dependent on the voltage step (here 0.01 mV) which is a matter
of choice depending on memory availability and allowable pre-
compile and start-time computation time.

3) Hybrid Operator Splitting
The MRL achieves the purpose in principle but is relatively

costly as multiplication by a dense K × K matrix T j(n) is
required at each time step. On the other hand, it did not
at all exploit the specific structure of the TR, illustrated by
Fig. 3, that is, that the matrix A(Vm) is sparse and some TRs
are much faster than others for some voltage ranges. Hence
we propose a hybrid operator splitting method (HOS), which
combines FE and MRL, and exploits the asymptotic structure
of the TRs. In this method, we set

A(Vm) = A0(Vm) + A1(Vm) + A2(Vm)

as described in Fig. 3: A0 contains only TRs that are fast at
high values of Vm (αRQ, αST , αQP , αTU , αPO and αOU );
A1 contains only TRs that are fast at low values of Vm (αPQ,
αUT , αQR, αTS and αOP ); and A2 contains only uniformly
slow TRs (αRS , αQT , αPU , αSR, αTQ, αUP , αVW , αWV ,
αUO, αUV and αV U ). Explicit expressions for Aj are given
in the Supplement.

Every timestep is then done in three substeps,

~un+1/3 = exp(∆tA0(Vm(tn))) ~un, (17)
~un+2/3 = exp(∆tA1(Vm(tn))) ~un+1/3, (18)
~un+1 = ~un+2/3 + ∆tA2(Vm(tn)) ~un+2/3. (19)

In our case the matrix exponentials in the two fast subsystems
(17) and (18) are found analytically, through solving the
corresponding ODE systems. This is possible because some
of the equations corresponding to the matrices A0(Vm) and
A1(Vm) are coupled in a specific manner and can be solved
one by one where solution of one equation is substituted in
the next etc. The full expressions and the method of derivation
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are given in the Supplement; here we present the solution for
state O in the equation (17) as an example:

On+1/3 = µOUOn +KPOPn +KQOQn +KRORn,

where

KPO =
αPO(µPO − µOU )

αOU − αPO
,

KQO =
αPOαQP (µQP − µOU )

(αPO − αQP )(αOU − αQP )

− αPOαQP (µPO − µOU )

(αPO − αQP )(αOU − αPO)
,

KRO = − αPOαQPαRQ(µQP − µOU )

(αQP − αRQ)(αPO − αQP )(αOU − αQP )

+
αPOαQPαRQ(µPO − µOU )

(αQP − αRQ)(αPO − αQP )(αOU − αPO)

+
αPOαQPαRQ(µRQ − µOU )

(αQP − αRQ)(αPO − αRQ)(αOU − αRQ)

− αPOαQPαRQ(µPO − µOU )

(αQP − αRQ)(αPO − αRQ)(αOU − αPO)
,

µjk = e−αjk∆t.

The slow subsystem (19) uses FE, and since it contains
only uniformly slow TRs, it can tolerate large time-steps,
allowed by other components of the cell model, without loss
of stability.

C. A priori error estimates

Estimates by standard methods (e.g. [2, Chapter 5], see
details in the Supplement), show that all three numerical
schemes have local truncation errors of the second order,
i.e. E∆t2 + O

(
∆t3

)
, although the coefficients E vary: for

FE we have EFE ≤ 1
2

(
‖A‖2 + ‖dA/dVm‖|dVm/dt|

)
,

for MRL we have EMRL = 1
2‖dA/dVm‖|dVm/dt|, and

for HOS it is composed of contributions of the three
substeps plus the error due to operator splitting, EHOS ≤
1
2 |dVm/dt| (‖dA0/dVm‖+ ‖dA1/dVm‖+ ‖dA2/dVm‖) +
1
2 ||A2||2 + EOS, where EOS = 1

2‖[A1,A0] + [A2,A0] +
[A2,A1]‖, and [X,Y ] ≡ XY − Y X . So comparison of
MRL and HOS with FE depends on the solution, but in any
case accuracy of HOS it contingent on A0, A1 and A2 not
being large at the same time, to ensure relative smallness of
EOS.

D. Implementation

Most of the algorithms described here were implemented
in C language in double precision floating point arithmetics
and compiled using GNU Compiler Collection (GCC) (version
4.7.2). The exception is computation of eigenvalues and eigen-
vector tables, which was done using mathematical software
Sage [12] (version 5.9). Simulation were performed on Intel
Core i5-3470 CPU with the clock frequency 3.20GHz under
GNU/Linux operating system (distribution Fedora 18).

III. RESULTS

Figure 4 shows the detail of the first millisecond of simu-
lated cardiac excitation, the onset of an action potential (AP).
The INa Markov chain model was solved using the three
suggested integration methods: forward Euler (FE), matrix
Rush-Larsen (MRL), and hybrid operator splitting (HOS), as
described in the methods section. The model was solved with
time step ∆t = 10µs, ∆t = 40µs, and ∆t = 100µs, except
for FE, which was also solved for ∆t = 1µs, to be used as a
reference, but not for ∆t = 100µs, due to instability.

The model excitable cell was initially at the resting state,
and at the time t = 1 ms, an AP was initialized by instan-
taneous injection of potassium ions, raising the membrane
potential to Vm = −35 mV. The initial conditions of the states
of the INa MC model are specified in Tab. I and the initial
states of the remaining variables of the model can be found in
the supplementary material. Before the initiation, more than
90% of the channels reside in the states R and S, which
require at least three transitions to get to the open state. After
the initiation, the channels start to transit rapidly towards the
open state O and then to the state U . Within about 0.7 ms
almost all channels reside in the state U . Then, the channels
slowly transit to the state V , where they stay until the resting
potential Vm is recovered. The states U and V are similar to
the situation when the inactivation gate h is closed in the gate
model. The states S and T have less than 10% occupancy
during all the stages of the action potential.The plot of W is
omitted, as this variable changes very little during the time
interval shown.

The results for the time step ∆t = 10µs are consistent in
all panels. The FE is still stable at time step ∆t = 40µs,
however, compared to MRL and HOS, the FE solution is less
accurate, resulting in a higher peak and faster decay of both
the open state O occupancy and the resulting INa current.

Comparison of the solutions for O(t) with the reference
O∗(t), obtained by FE with ∆t = 1µs, is shown on Fig. 4
(first column, fourth row). We see that MRL and HOS ap-
proximate O∗ better than FE at the same time steps. This is
consistent with results of evaluation of the error estimates over
the AP solution: we have max(EFE) ≈ 2700, max(EMRL) ≈
118, max(EHOS) ≈ 125, with max(EOS) ≈ 19, all in ms−2,
and min(EFE/EHOS) ≈ 2.3, min(EFE/EMRL) ≈ 3.2 (see the
Supplement). This suggests that exponential integrators can
be useful, for their accuracy, even when instability is not a
concern, say in systems with slower dynamics, such as IKs.

At longer time steps, FE is unstable (Fig. 1 illustrates a
mild case of the instability), while MRL and HOS continue
to provide stable solutions. At ∆t = 100µs, the peak of the
most important component of ~u, the occupancy of the open
state O, is slightly lower than at shorter timesteps. On the other
hand, the decrease of the peak of the total INa current in these
two methods (HOS, MRL at ∆t = 100µs) is relatively small
compared to the decrease of the open state occupancy. Also,
the decay of the INa current in the MRL ∆t = 100µs is slower
than in the other cases. Note that the lead of the APs onsets
at ∆t = 100µs against smaller time steps is comparable to
the value of ∆t.
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Fig. 4. Cardiac cell action potential (AP) simulations (detail of the first second) with INa Markov chain model solved using: hybrid operator splitting method
(HOS) – light colours; matrix Rush-Larsen (MRL) – semi-dark colours; and forward Euler (FE) – dark colours; The left column shows: membrane potential
(Vm), sodium current (INa), error calculated as deviation from the states conservation law, and deviation of the state occupancy O from the solution using FE
with ∆t = 1µs (O∗); the other two columns show the state occupancies. The model was solved with time step ∆t = 10µs, ∆t = 40µs, and ∆t = 100µs
represented by thick, middle thick, thin lines respectively.

TABLE III
ELAPSED SIMULATION TIME [S]. CELL MODEL [8] 100 PULSES WITH

CL=1000 MS.

∆t = 10µs ∆t = 40µs ∆t = 100µs
INa Model INa Total INa Total INa Total
FE 4.88 22.34 1.24 5.59
FE (tab.) 2.48 19.98 0.60 5.01
MRL (tab.) 2.96 20.45 0.74 5.16 0.28 2.06
HOS 8.11 25.71 2.01 6.43 0.81 2.58
HOS (tab.) 2.81 20.31 0.71 5.11 0.29 2.05

Approximation of the whole APs rather than just their onsets
is illustrated in Fig. 5.

Further increase of the time steps (not shown) in MRL and
HOS gives significant errors in the AP, e.g. at ∆t = 200µs
there is a 30 mV overshoot. Stability persists for much longer:
for HOS the solution becomes unphysical (a negative con-
centration) at about ∆t = 2 ms without loss of stability, and
for MRL an instability occurs at about 7.5 ms, although the
solution is then also very different from the true AP.

Table III illustrates the efficiency of the three methods at
three different time steps ∆t. This was done by measuring

time taken by simulations consisting of 100 pulses with a
cycle length (CL) of 1000 ms without any output. The pulses
were initialized by an instantaneous injection of potassium
ions of a sufficient amount to set the membrane potential
to Vm = −35 mV. The table shows times taken by the
whole cell model (“Total”) and by the Markov Chain model
computations (“INa”). The times shown are median values
from six separate simulations in each case to minimize the
effect of other processes running on the computer.

At ∆t = 10µs, FE is the most efficient method. Compu-
tation of INa accounts for 21.8% and 31.5% of the overall
computation cost in FE and HOS respectively. Tabulation
allows reduction of the computation cost of INa by 49.1% and
65.3% in FE and HOS. MRL was used only with tabulation
using the precomputed eigenvalues and eigenvectors matrices
and the computational cost at the ∆t = 10µs is comparable
with FE. These proportions are consistent with the results at
time step ∆t = 40µs and ∆t = 100µs for MRL and HOS. So,
at the same time step, the computational costs of the proposed
methods are slightly higher, but the accuracies are somewhat
better, compared to FE. The most important benefit of HOS
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Fig. 5. Approximation properties of HOS (∆t = 100µs) and MRL (∆t =
100µs) compared to FE (∆t = 10µs)during a single cell simulation of
4 action potentials with cycle length (CL) of 1000 ms (logarithmic scale):
membrane potential Vm (top panel), open state occupancy O (bottom panel).

and MRL is, however, the possibility of using larger time steps.

IV. CONCLUSION

Both proposed methods maintain stability at larger time
steps, and improve the accuracy of the solution at the same
time step, compared to the explicit ODE solver (FE). When
tabulated, those methods are comparable to FE in computa-
tional cost. As expected, using larger time steps results in
reduction of computational cost.

MRL method extends the popular RL method, developed for
gate models, to Markov chain models. MRL is more universal
than HOS, and may be made “automatic”. The only restriction
of our implementation is the assumption of diagonalizability
of matrix A(Vm) for all voltages. If in another model this
happens not to be the case, then some more sophisticated
approach would be needed. If non-diagonalizability is a regular
feature, say due to identical definitions of some of the TRs,
then a Jordan form can be used instead; if it only happens at
selected voltages, then interpolation of matrices T (Vm) may
be sufficient.

HOS method depends on the possibility to split the transi-
tion rates to multiple (three in our case) sub-systems according
to their speeds, and solve each of the subsystems on its own.
Our solution benefits from the possibility of solving the fast
subsystems analytically. Implementing the analytical solution
results in even better speed-up as the resulting timestepping
matrices are sparse. However, the possibility of a suitable
analytical solution is not guaranteed for a general MC model.
In this case, the fast time subsystems can be solved using
diagonalization like in the MRL method, which might require
additional computational time.

Finally we comment on the order of approximation. In this
paper we considered first order schemes, and they are most
popular in practice. However, the approximation order can be

improved by using more sophisticated methods, both for the
whole cell model (say using Runge-Kutta approach) and for
the exponential solvers. For the original Rush-Larsen scheme,
higher-order variants have been proposed and tested [4], [5],
and the same ideas can be extended to the matrix case as
well. Naturally, HOS method may then need to involve a more
sophisticated operator splitting method to correspond.

Another appealing direction for further research is applica-
tion of the proposed methods to other important MC models.
MRL is straightforward for any MC where TRs depend only
on one variable, otherwise tabulation will be a bit more
problematic. The success of the HOS approach will depend
on the asymptotic properties of the TRs.
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