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Supplementary material:
Exponential integrators for a Markov chain model

of the fast sodium channel of cardiocytes

Tomáš Starý, Vadim N. Biktashev

The numeration of equations in this document continues from the main text, and the literature references are to the literature
list in the main text, repeated in the end of this document for the reader’s convenience.

I. CELL MODEL DEFINITION

This section contains the definition of the model according to the authors’ code [8]. The format of equations and subsections
aims to correspond to the papers where those equations were published to facilitate a straightforward comparison. The known
differences with the papers are marked by the sign: #. Voltages are measured in mV, time in ms and concentrations in
mmol/L.The membrane currents are adjusted to the specific membrane capacitance C = 1µF/cm2[9] and are measured in
µA/µF.

Standard ionic concentrations

[Na+]o =140 # (20)

[K+]o =4.5 # (21)

[Ca2+]o =1.8 (22)

which differs from [9] where [Na+]o = 150; [K+]o = 5.4.

Initial Values of Variables

xs1 =0 # (23)

xs2 =0 # (24)
Vm =− 95 (25)

[Ca2+]NSR =1.8 (26)

[Ca2+]JSR =1.8 (27)

[Ca2+]i =0.00012 (28)
b =0.00141379 (29)
g =0.98831 (30)

d =6.17507× 10−6 (31)
f =0.999357 (32)

Xr =2.14606× 10−4 (33)

[Na+]i =7.9 # (34)

[K+]i =147.23 # (35)

which differs from [9] where [K+]i = 145; [Na+]i = 10, and no initial values were given for xs1 and xs2.

Physical Constants

R =8314 (36)
F =96485 (37)
T =310 (38)
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Cell geometry

L =0.01 (39)
r =0.0011 (40)

Vcell =3.801× 10−5 (41)

AGeo =2πr2 + 2πrL (42)
ACap =2AGeo (43)

Vmyo =2.58468× 10−5 (44)
VNSR =0.0552Vcell (45)
VJSR =0.0048Vcell (46)

Na+-K+ pump : INaK

INaK =1.5fNaK
1

1 + (10/[Na+]i)1.5
· [K+]o

[K+]o + 1.5
(47)

fNaK =
1

1 + 0.1245 exp
(
−0.1 · VmF

RT

)
+ 0.0365σ exp((−VmF )/(RT ))

(48)

σ =
1

7
exp

(
[Na+]o

67.3

)
− 1 (49)

which is identical to [9]

IKs, the Slow Component of the Delayed Rectifier K+ Current

IKs =ḠKsxs1xs2(Vm − EKs) (50)

EKs =(RT/F ) log((4.5 + PNaK150)/([K+]i + PNaK[Na+]o))
# (51)

PNaK =0.01833 (52)

ḠKs =(0.433(1 + 0.6/(1 + (0.000038/[Ca2+]i)
1.4))) · 0.615 # (53)

xs1∞ =1/(1 + exp(−(Vm − 1.5)/16.7)) (54)
xs2∞ =xs1∞ (55)

τxs1 =

(
0.0000719

Vm + 30

1− exp(−0.148(Vm + 30))
+ 0.000131

Vm + 30

exp(0.0687(Vm + 30))− 1

)−1

(56)

τxs2 =4τxs1 (57)

The definition of EKs in equation (51) differs from [11] by the hard-coded term for the [K+]o = 4.5 and [Na+]o = 150 rather
than values defined by equations (20,21) where [K+]o = 4.5 and [Na+]o = 140 are parameters.

The definition of ḠKs in equation (53) is multiplied by 0.615 “to simulate the intramural heterogeneity”, which is slightly
different from the factor 0.652 used in Viswanathan et al. (1999) [11] to simulate epicardial cell.

Otherwise the IKs definition is identical to [11].

dxs1
dt

=
xs1∞ − xs1

τxs1
(58)

dxs2
dt

=
xs2∞ − xs2

τxs2
(59)

IKr, the Fast Component of the Delayed Rectifier K+ Current

IKr =ḠKrXrRKr(Vm − EKr) (60)

ḠKr =0.02614
√

[K+]o/5.4 (61)
Xr∞ =1/(1 + exp(−(Vm + 21.5)/7.5)) (62)
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RKr =1/(1 + exp((Vm + 9)/22.4)) (63)
EKr =((RT )/F ) log([K+]o/[K

+]i) (64)

τxr =

(
0.00138

Vm + 14.2

1− exp(−0.123(Vm + 14.2))
+ 0.00061

Vm + 38.9

exp(0.145(Vm + 38.9))− 1

)−1

(65)

which is identical to [10]. The original notation for RKr was R; we use R for the gas constant in this section, and for one of
the state occupancies of the Markov Chain model elsewhere in the rest of the paper.

dXr

dt
=
Xr∞ −Xr

τxr
(66)

Time-independent K+ current: IK1

IK1 =ḠK1K1∞(Vm − EK1) (67)

EK1 =(RT/F ) log([K+]o/[K
+]i) (68)

ḠK1 =0.75 ·
√

([K+]o/5.4) (69)
αK1 =1.02/(1 + exp(0.2385(Vm − EK1 − 59.215))) (70)

βK1 =
0.49124 exp(0.08032(Vm − EK1 + 5.476)) + exp(0.06175(Vm − EK1 − 594.31))

1 + exp(−0.5143(Vm − EK1 + 4.753))
(71)

which is identical to [9].

K1∞ =αK1/(αK1 + βK1) (72)
(73)

Plateau K+ current: IKp

IKp =0.00552Kp(Vm − EK1) (74)
Kp =1/(1 + exp((7.488− Vm)/5.98)) (75)

equivalent to [9] with an update from [10].

IK =IK1 + IKp (76)

Currents through the L-type Ca+2 channel ICaL

ICaL =ICa + ICaK + ICaNa (77)
ICa =dffCaĪCa (78)
ICaK =dffCaĪCaK (79)
ICaNa =dffCaĪCaNa (80)

ĪCa =PCaz
2
Ca

(VmF
2)

RT

γCai[Ca2+]i exp((zCaVmF )/(RT ))− γCao[Ca2+]o
exp((zCaVmF )/(RT ))− 1

(81)

ĪCaNa =PNaz
2
Na

(VmF
2)

RT

γNai[Na+]i exp((zNaVmF )/(RT ))− γNao[Na+]o
exp((zNaVmF )/(RT ))− 1

(82)

ĪCaK =PKz
2
K

(VmF
2)

RT

γKi[K
+]i exp((zKVmF )/(RT ))− γKo[K

+]o
exp((zKVmF )/(RT ))− 1

(83)

PCa =5.4× 10−4 γCai = 1 γCao = 0.341 (84)

PNa =6.75× 10−7 γNai = 0.75 γNao = 0.75 (85)

PK =1.93× 10−7 γKi = 0.75 γKo = 0.75 (86)

fCa =1/(1 + [Ca2+]i/KmCa) (87)
KmCa =0.0006 (88)
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d∞ =1/(1 + exp(−(Vm + 10)/6.24)) (89)
τd =d∞(1− exp(−(Vm + 10)/6.24))/(0.035(Vm + 10)) (90)

f∞ =(1/(1 + exp((Vm + 32)/8))) + (0.6/(1 + exp((50− Vm)/20))) # (91)

τf =1/(0.0197 exp(−(0.0337(Vm + 10)2)) + 0.02) (92)

Equation (91) differs from [9] which has 8.6 rather than 8 in the denominator of the argument of the first exponential. Otherwise,
these equations are exactly the same as in [9].

zNa =1 (93)
zK =1 (94)
zCa =2 (95)
dd

dt
=
d∞ − d
τd

(96)

df

dt
=
f∞ − f
τf

(97)

Ca2+ Current Through T-Type Ca2+ Channels ICa(T )

ICa(T ) =ḠCa(T )b
2g(Vm − ECa) (98)

ḠCa(T ) =0.05 (99)
b∞ =1/(1 + exp(−(Vm + 14)/10.8)) (100)
g∞ =1/(1 + exp((Vm + 60)/5.6)) (101)

ECa =(RT/(2F )) log([Ca2+]o/[Ca2+]i) (102)
τb =3.7 + 6.1/(1 + exp((Vm + 25)/4.5)) (103)
τg =− 0.875Vm + 12 for: Vm ≤ 0; and τg = 12 for: Vm > 0 (104)

which correspond exactly to [10].
db

dt
=
b∞ − b
τb

(105)

dg

dt
=
g∞ − g
τg

(106)

Na+-Ca+ exchanger: INaCa

INaCa =
2.5× 10−4 exp((η − 1)Vm

F
RT )(exp(Vm

F
RT )[Na+]3i [Ca2+]o − [Na+]3o[Ca2+]i)

1 + 1× 10−4 exp((η − 1)Vm
F
RT )(exp(Vm

F
RT )[Na+]3i [Ca2+]o + [Na+]3o[Ca2+]i)

# (107)

η =0.15 # (108)

Here INaCa depends on external [Ca2+]o, [Na+]o as well as internal [Na+]i, [Ca2+]i concentrations, which is different from [9]
where it depended only on external concentrations [Ca2+]o, [Na+]o. The variable η = 0.35 in [9].

Nonspecific Ca2+-activated current: Ins(Ca)

ĪnsK =1.75× 10−7VmF
2

RT
· 0.75[K+]i exp((VmF )/(RT ))− 0.75[K+]o

exp(VmF/(RT ))− 1
(109)

InsK =ĪnsK
1

1 + (0.0012/[Ca2+]i)3
(110)

ĪnsNa =1.75× 10−7VmF
2

RT
· 0.75[Na+]i exp((VmF )/(RT ))− 0.75[Na+]o

exp(VmF/(RT ))− 1
(111)

InsNa =ĪnsNa
1

1 + (0.0012/[Ca2+]i)3
(112)

Ins(Ca) =InsK + InsNa (113)

Pns(Ca) =1.75× 10−7 (114)

This is almost identical to [9] except the latter also made a definition for Ens(Ca) which however was not used.
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Sarcolemmal Ca+2 pump: Ip(Ca)

Ip(Ca) =1.15
[Ca2+]i

0.0005 + [Ca2+]i
(115)

identical to [9].

Ca+2 background current: ICab

ICab =0.003016(Vm − ECa) (116)

ECa =RT/(2F ) log([Ca2+]o/[Ca2+]i) (117)

identical to [9].

Na+ background current: INab

ENa =((RT )/F ) log([Na+]o/[Na+]i) (118)
INab =0.00141(Vm − ENa) (119)

identical to [9].

Ca2+ uptake and leakage of NSR: Iup and Ileak

Iup =0.00875[Ca2+]i/([Ca2+]i + 0.00092) # (120)
Kleak =0.005/15 (121)

Ileak =Kleak[Ca2+]NSR (122)

The definition of Iup in [9] is ambiguous. This version is consistent with one possible understanding.

Ca+2 Fluxes in NSR

d[Ca2+]NSR

dt
=(Iup − Ileak − ItrVJSR/VNSR) (123)

Ca2+ Fluxes in Myoplasm

ItCa =ICa + ICab + Ip(Ca) − 2INaCa + ICa(T ) (124)

∆[Ca2+]i =−∆t(((ItCaACap)/(Vmyo2F )) + ((Iup − Ileak)VNSR/Vmyo)− (IrelVJSR/Vmyo)) (125)

[Ca2+]ion =TRPN + CMDN + ∆[Ca2+]i + [Ca2+]i (126)

B =0.05 + 0.07− [Ca2+]ion + 0.0005 + 0.00238 (127)

C =(0.00238 · 0.0005)− ([Ca2+]ion(0.0005 + 0.00238)) + (0.07 · 0.00238) + (0.05 · 0.0005) (128)

D =− 0.0005 · 0.00238[Ca2+]ion (129)

Fab =
√

(B2 − 3C) (130)

[Ca2+]i =1.5Fab cos(arccos((9BC − 2B3 − 27D)/(2(B2 − 3C)1.5))/3)− (B/3) (131)

This definition merely summarises computations that are done in the code, which de facto describe a time-stepping algorithm
for a system of a differential equation and a finite constraint, rather than the equation and the constraint themselves, hence the
time step ∆t is present in (125). Any attempts of higher-order numerical approximations would have to take this into account.
The explicit solution of the finite constraint given by the cubic formula (131) follows [10] whereas [9] used Steffensen’s
iterations for that purpose.
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Ca2+ Fluxes in JSR

∆[Ca2+]JSR =∆t(Itr − Irel) (132)

bJSR =10− CSQN−∆[Ca2+]JSR − [Ca2+]JSR + 0.8 (133)

cJSR =0.8(CSQN + ∆[Ca2+]JSR + [Ca2+]JSR) (134)

[Ca2+]JSR =(
√

(b2JSR + 4cJSR)− bJSR)/2 (135)

Ditto: ∆t is present in (132).

Sodium Ion Fluxes

ItNa =INa + INab + ICaNa + InsNa + 3INaK + 3INaCa (136)

d[Na+]i
dt

=− (ItNaACap)/(VmyoF ) (137)

[Na+]i is constant in [9], [10], [11].

Potassium Ion Fluxes

ItK =IKr + IKs + IK + ICaK + InsK − 2INaK + Ito + Ist (138)
d[K+]i

dt
=− (ItKACap)/(VmyoF ) (139)

[K+]i is constant in [9], [10], [11].

Ca2+ buffers in the myoplasm

TRPN =0.07[Ca2+]i/([Ca2+]i + 0.0005) (140)

CMDN =0.05[Ca2+]i/([Ca2+]i + 0.00238) (141)

identical to [9].

Ca2+ buffer in JSR and SCQN

CSQN =10([Ca2+]JSR/([Ca2+]JSR + 0.8)) (142)
(143)

identical to [9].

CICR From Junctional SR (JSR)

Irel =Grelryropenryrclose([Ca2+]JSR − [Ca2+]i) (144)

Grel =150/(1 + exp(ItCa + 5)/0.9) # (145)

ryropen =1/(1 + exp((−tc + 4)/0.5)) # (146)

ryrclose =1− (1/(1 + exp((−tc + 4)/0.5))) # (147)

Here is another deviation of the model description from the standard form of a system of ODEs, and this also would have
to be taken into account in any attempts of higher-order schemes. Variables ryrclose and ryropen = 1 − ryrclose ensure that
the calcium release channel is open at a fuzzy time interval around 4 ms after the steepest point of the upstroke of the action
potential. This is done using an additional time variable tc which is linked to the t, that is dtc/dt = 1 most of the time, except
tc is reset to zero each time the dVm

dt reaches a significant local maximum, “significant” meaning dVm

dt > 1 mV/ms. In [9],
Grel is defined differently from (145) and calcium release proceeds with a different dynamics from (146,147), e.g. it starts
sharply 2 ms after the the time of the maximum dVm

dt .
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Translocation of Ca2+ ions from NSR to JSR: Itr

Itr =([Ca2+]NSR − [Ca2+]JSR)/180 (148)

identical to [9].

Total time-independent current: Iv

Iv =INab + INaK + Ip(Ca) + IKp + ICab + IK1 (149)

identical to [9].

Total Current

It =IKr + IKs + IK + ICaK + InsK − 2INaK + INa + INab + ICaNa + InsNa + 3INaK+

3INaCa + ICa + ICab + Ip(Ca) − 2INaCa + ICa(T ) (150)

Membrane Potential

dVm
dt

=− It. (151)

II. INa MARKOV CHAIN MODEL DEFINITION

Up to the choice of notation, we use the model described in [8]. The fast sodium current is defined by

INa = GNa(Vm − ENa)O, (152)

where the channel open probability O is defined by the system of ODEs

dO

dt
=αPOP + αUOU − (αOP + αOU )O (153)

dP

dt
=αQPQ+ αUPU + αOPO − (αPQ + αPU + αPO)P (154)

dQ

dt
=αRQR+ αTQT + αPQP − (αQR + αQT + αQP )Q (155)

dR

dt
=αSRS + αQRQ− (αRS + αRQ)R (156)

dS

dt
=αTST + αRSR− (αST + αSR)S (157)

dT

dt
=αQTQ+ αSTS + αUTU − (αTQ + αTS + αTU )T (158)

dU

dt
=αTUT + αPUP + αV UV + αOUO − (αUT + αUP + αUO + αUV )U (159)

dV

dt
=αUV U + αWVW − (αV U + αVW )V (160)

dW

dt
=αVWV − αWVW (161)

with the transition rates defined by

αRQ = αST = α11 =
3.802

0.1027 e−Vm/17.0 + 0.20 e−Vm/150

αQP = αTU = α12 =
3.802

0.1027 e−Vm/15.0 + 0.23 e−Vm/150

αPO = α13 =
3.802

0.1027 e−Vm/12.0 + 0.25 e−Vm/150

αQR = αTS = β11 =0.1917 e−Vm/20.3

αPQ = αUT = β12 =0.20 e−(Vm−5)/20.3
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αOP = β13 =0.22 e−(Vm−10)/20.3

αUP = αTQ = αSR = α3 =3.7933 · 10−7 e−Vm/7.7

αPU = αQT = αRS = β3 =8.4 · 10−3 + 2 · 10−5Vm

αOU = α2 =9.178 eVm/29.68

αUO = β2 =
α13α2α3

β13β3

αUV = α4 =α2/100

αV U = β4 =α3

αVW = α5 =α2/(9.5 · 104)

αWV = β5 =α3/50

III. DETAILS OF THE HYBRID OPERATOR SPLITTING METHOD

In the hybrid method we use operator splitting. The system of equations (153)–(161) is considered as an ODE

d~u

dt
= A(Vm(t))~u, (9)

for the vector-function ~u = (O,P,Q,R, S, T, U, V,W )
>

= ~u(t), and the transition matrix is split into the sum

A = A0 + A1 + A2 (162)

of the matrix A0 of transition rates that are fast at high values of Vm,

A0 =



−αOU αPO 0 0 0 0 0 0 0
0 −αPO αQP 0 0 0 0 0 0
0 0 −αQP αRQ 0 0 0 0 0
0 0 0 −αRQ 0 0 0 0 0
0 0 0 0 −αST 0 0 0 0
0 0 0 0 αST −αTU 0 0 0

αOU 0 0 0 0 αTU 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, (163)

the matrix A1 of transition rates that are fast at low values of Vm,

A1 =



−αOP 0 0 0 0 0 0 0 0
αOP −αPQ 0 0 0 0 0 0 0

0 αPQ −αQR 0 0 0 0 0 0
0 0 αQR 0 0 0 0 0 0
0 0 0 0 0 αTS 0 0 0
0 0 0 0 0 −αTS αUT 0 0
0 0 0 0 0 0 −αUT 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, (164)

and the matrix A2 of uniformly slow transition rates,

A2 =



0 0 0 0 0 0 αUO 0 0
0 −αPU 0 0 0 0 αUP 0 0
0 0 −αQT 0 0 αTQ 0 0 0
0 0 0 −αRS αSR 0 0 0 0
0 0 0 αRS −αSR 0 0 0 0
0 0 αQT 0 0 −αTQ 0 0 0
0 αPU 0 0 0 0 −(αUP + αUO + αUV ) αV U 0
0 0 0 0 0 0 αUV −(αV U + αVW ) αWV

0 0 0 0 0 0 0 αVW −αWV


. (165)

Every timestep is then done in three substeps, each using one of the three matrices Am, m = 0, 1, 2:

~un+1/3 = exp(∆tA0(Vm(tn))) ~un, (17)
~un+2/3 = exp(∆tA1(Vm(tn))) ~un+1/3, (18)
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~un+1 = ~un+2/3 + ∆tA2(Vm(tn)) ~un+2/3. (19)

Note that Vm in all cases is evaluated at t = tn, in which we simply follow the original Rush-Larsen idea of “freezing”
Vm for the duration of the time step. The matrix exponentials in (17) and (18) can be understood in terms of matrix Taylor
series [7], or the product of the matrix exponential by the corresponding vector ~u can be understood just as the solutions of
an initial-value problem for the corresponding system of ODEs with constant coefficients. The mapping (17) is calculated by
solving the following initial-value problem, defined by the matrix A0 (163),

dO

dt
= −αOUO + αPOP, O(0) = On, (166)

dP

dt
= −αPOP + αQPQ, P (0) = Pn, (167)

dQ

dt
= −αQPQ+ αRQR, Q(0) = Qn, (168)

dR

dt
= −αRQR, R(0) = Rn, (169)

dS

dt
= −αSTS, S(0) = Sn, (170)

dT

dt
= αSTS − αTUT, T (0) = Tn, (171)

dU

dt
= αOUO + αTUT, U(0) = Un, (172)

dV

dt
= 0, V (0) = Vn, (173)

dW

dt
= 0, W (0) = Wn, (174)

and then evaluating the result at t = ∆t to give On+1/3, . . . , Wn+1/3. We note now that equations (169) and (170) are
decoupled and we can solve them to get

R(t) = Rn e−αRQt, (175)

S(t) = Sn e−αST t. (176)

We then substitute (175) into (168) to obtain a closed initial-value problem for Q(t),

dQ

dt
+ αQPQ = RnαRQ e−αRQt, Q(0) = Qn, (177)

the solution of which is

Q(t) = Qn e−αQP t −Rn
αRQ( e−αQP t − e−αRQt)

αQP − αRQ
. (178)

(179)

Similarly, we substitute (176) into (171) to obtain

T (t) = Tn e−αTU t − Sn
αST ( e−αTU t − e−αST t)

αTU − αST
. (180)

(181)

We then proceed in the same manner, by substituting the obtained solution (178) for Q(t) into (167) to obtain P (t), and the
solution (180) for T (t) into (172) to obtain U(t), and finally the found solution for P (t) into (166) to obtain O(t). With the
obvious solutions to (173) and (174), the result of all these steps is mapping

On+1/3 = µOUOn +KPOPn +KQOQn +KRORn, (182)
Pn+1/3 = µPOPn +KQPQn +KRPRn, (183)
Qn+1/3 = µQPQn +KRQRn, (184)
Rn+1/3 = µRQRn, (185)
Sn+1/3 = µSTSn, (186)
Tn+1/3 = µTUTn +KSTSn, (187)
Un+1/3 = Un + (1− µTU )Tn +KSUSn + (1− µOU )On +KPUPn +KQUQn +KRURn, (188)
Vn+1/3 = Vn, (189)
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Wn+1/3 = Wn, (190)

where µjk = e−αjk∆t and

KPO =
αPO(µPO − µOU )

αOU − αPO
, (191)

KQO =
αPOαQP (µQP − µOU )

(αPO − αQP )(αOU − αQP )
− αPOαQP (µPO − µOU )

(αPO − αQP )(αOU − αPO)
, (192)

KRO =− αPOαQPαRQ(µQP − µOU )

(αQP − αRQ)(αPO − αQP )(αOU − αQP )
+

αPOαQPαRQ(µPO − µOU )

(αQP − αRQ)(αPO − αQP )(αOU − αPO)
+,

+
αPOαQPαRQ(µRQ − µOU )

(αQP − αRQ)(αPO − αRQ)(αOU − αRQ)
− αPOαQPαRQ(µPO − µOU )

(αQP − αRQ)(αPO − αRQ)(αOU − αPO)
, (193)

KQP =
αQP (µQP − µPO)

αPO − αQP
, (194)

KRP =− αQPαRQ(µQP − µPO)

(αQP − αRQ)(αPO − αQP )
+

αQPαRQ(µRQ − µPO)

(αQP − αRQ)(αPO − αRQ)
, (195)

KRQ =− αRQ(µQP − µRQ)

αQP − αRQ
, (196)

KST =− αST (µTU − µST )

αTU − αST
, (197)

KSU =1 +
αSTµTU − αTUµST

αTU − αST
, (198)

KPU =1− αOUµPO − αPOµOU
αOU − αPO

, (199)

KQU =
αPO

αPO − αQP

(
1− αOUµQP − αQPµOU

αOU − αQP

)
− αQP
αPO − αQP

(
1− αOUµPO − αPOµOU

αOU − αPO

)
, (200)

KRU =− αPOαRQ
(αQP − αRQ)(αPO − αQP )

(
1− αOUµQP − αQPµOU

αOU − αQP

)
+

+
αQPαRQ

(αQP − αRQ)(αPO − αQP )

(
1− αOUµPO − αPOµOU

αOU − αPO

)
+

+
αPOαQP

(αQP − αRQ)(αPO − αRQ)

(
1− αOUµRQ − αRQµOU

αOU − αRQ

)
−

− αQPαRQ
(αQP − αRQ)(αPO − αRQ)

(
1− αOUµPO − αPOµOU

αOU − αPO

)
. (201)

At the second sub-step, the mapping (18) is calculated by solving the following initial-value problem, defined by the matrix
A1 (164),

dO

dt
= −αOPO, O(0) = On+1/3, (202)

dP

dt
= αOPO − αPQP, P (0) = Pn+1/3, (203)

dQ

dt
= αPQP − αQRQ, Q(0) = Qn+1/3, (204)

dR

dt
= αQRQ, R(0) = Rn+1/3, (205)

dS

dt
= αTST, S(0) = Sn+1/3, (206)

dT

dt
= αUTU − αTST, T (0) = Tn+1/3, (207)

dU

dt
= −αUTU, U(0) = Un+1/3, (208)

dV

dt
= 0, V (0) = Vn+1/3, (209)

dW

dt
= 0, W (0) = Wn+1/3. (210)

Here we proceed similar to the first sub-step. We note that the equations (202) and (208) are decoupled, and solve them to
get O(t) and U(t). The result for O(t) is substituted to (203) and the result for U(t) is substituted to (207) to obtain closed
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initial value problems, which are solved to produce P (t) and T (t). The solution for P (t) is substituted to the (204) to give
Q(t). Finally, we substitute the Q(t) into (205) and T (t) to (206) which yield R(t) and S(t) respectively. With the obvious
solution to V and W the mapping is as follows:

On+2/3 = µOPOn+1/3, (211)
Pn+2/3 = LOPOn+1/3 + µPQPn+1/3, (212)
Qn+2/3 = LOQOn+1/3 + LPQPn+1/3 + µQRQn+1/3, (213)
Rn+2/3 = LOROn+1/3 + LPRPn+1/3 + (1− µQR)Qn+1/3 +Rn+1/3, (214)
Sn+2/3 = LUSUn+1/3 + (1− µTS)Tn+1/3 + Sn+1/3, (215)
Tn+2/3 = LUTUn+1/3 + µTSTn+1/3, (216)
Un+2/3 = µUTUn+1/3, (217)
Vn+2/3 = Vn+1/3, (218)
Wn+2/3 = Wn+1/3, (219)

where µjk = e−αjk∆t again, and

LOP =
αOP (µOP − µPQ)

αPQ − αOP
, (220)

LOQ =
αPQαOP (µOP − µQR)

(αPQ − αOP )(αQR − αOP )
− αPQαOP (µPQ − µQR)

(αPQ − αOP )(αQR − αPQ)
, (221)

LPQ =
αPQ(µPQ − µQR)

αQR − αPQ
, (222)

LOR = 1 +
αPQ(αOPµQR − αQRµOP )

(αPQ − αOP )(αQR − αOP )
− αOP (αPQµQR − αQRµPQ)

(αPQ − αOP )(αQR − αPQ)
, (223)

LPR = 1 +
αPQµQR − αQRµPQ

αQR − αPQ
, (224)

LUS = 1 +
αUTµTS − αTSµUT

αTS − αUT
, (225)

LUT =
αUT (µUT − µTS)

αTS − αUT
. (226)

The third sub-step mapping (19) is calculated by solving the following initial-value problem, defined by the matrix A2

(165),
dO

dt
= αUOU, O(0) = On+2/3, (227)

dP

dt
= αUPU − αPUP, P (0) = Pn+2/3, (228)

dQ

dt
= αTQT − αQTQ, Q(0) = Qn+2/3, (229)

dR

dt
= αSRS − αRSR, R(0) = Rn+2/3, (230)

dS

dt
= αRSR− αSRS, S(0) = Sn+2/3, (231)

dT

dt
= αQTQ− αTQT, T (0) = Tn+2/3, (232)

dU

dt
= αPUP + αV UV − (αUP + αUO + αUV )U, U(0) = Un+2/3, (233)

dV

dt
= αUV U + αWVW − (αV U + αVW )V, V (0) = Vn+2/3, (234)

dW

dt
= αVWV − αWVW, W (0) = Wn+2/3. (235)

Unlike the previous sub-steps, this system is not solved exactly, but its solution is approximated by the forward Euler method
as follows:

On+1 = On+2/3 + (αUOUn+2/3)∆t, (236)
Pn+1 = Pn+2/3 + (αUPUn+2/3 − αPUPn+2/3)∆t, (237)
Qn+1 = Qn+2/3 + (αTQTn+2/3 − αQTQn+2/3)∆t, (238)
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Rn+1 = Rn+2/3 + (αSRSn+2/3 − αRSRn+2/3)∆t, (239)
Sn+1 = Sn+2/3 + (αRSRn+2/3 − αSRSn+2/3)∆t, (240)
Tn+1 = Tn+2/3 + (αQTQn+2/3 − αTQTn+2/3)∆t, (241)

Un+1 = Un+2/3 +
[
αPUPn+2/3 + αV UVn+2/3 − (αUP + αUO + αUV )Un+2/3

]
∆t, (242)

Vn+1 = Vn+2/3 +
[
αUV Un+2/3 + αWVWn+2/3 − (αV U + αVW )Vn+2/3

]
∆t, (243)

Wn+1 = Wn+2/3 + (αVWVn+2/3 − αWVWn+2/3)∆t. (244)

This completes the definition of the hybrid method.

IV. DETAILS OF ERROR ANALYSIS

As proclaimed in the main text and as we shall see below, the local truncation errors at time step [tn, tn + ∆t] in all three
methods are given by expressions of the form

E(tn)∆t2 +O
(
∆t3

)
, (245)

giving the upper estimate of a global error for the interval t ∈ [tmin, tmax] of the first order,

sup
[tmin,tmax]

‖~uexact − ~unumeric‖ ≤ sup
[tmin,tmax]

(E(t)) (tmax − tmin)∆t+O
(
∆t2

)
, (246)

where the estimates of the coefficients E are different for the three methods.
To obtain these estimates, let us consider the quasi-linear system (9), rewritten as

d~u

dt
= A(Vm(t))~u = A(t)~u

on the interval t ∈ [tn, tn+1], tn+1 = tn + ∆t. Using matrix exponential, the result can be written in the form

~u(tn+1) = exp

 tn+∆t∫
tn

A(t′) dt′

 ~u(tn) ≡ T (tn,∆t) ~u(tn) (247)

The accuracy in finding ~u(tn+1) at a given ~u(tn) depends on accuracy of the approximation of operator T and on the norm
of vector ~u(tn). Since each component of ~u is restricted to the interval [0, 1] and sum of its components is fixed to 1, we
have ‖~u‖ ≤ 1 for any choice of norm, in which any vector, that has exactly one component equal to unity and the rest equal
to zero, is a unit vector.

Hence from this point on we focus on the approximation of the timestep transition operator T .
Expanding (247), first the integral, then the exponential, in the Taylor series, we have

T = exp

 tn+∆t∫
tn

(
A(tn) + Ȧ(tn)(t′ − tn) +O ((t′ − tn)

2
)
)

dt′

 = exp

[
A(tn)∆t+

1

2
Ȧ(tn)∆t2 +O

(
∆t3

)]

= 1 +

[
A(tn)∆t+

1

2
Ȧ(tn)∆t2 +O

(
∆t3

)]
+

1

2

[
A(tn)∆t+

1

2
Ȧ(tn)∆t2 +O

(
∆t3

)]2

+O
(
∆t3

)
= 1 + A(tn)∆t+

1

2

[
Ȧ(tn) + A2(tn)

]
∆t2 +O

(
∆t3

)
,

where the dot designates time differentiation. FE approximates this operator as

TEF(tn,∆t) = 1 + A(tn)∆t,

hence for the principal term of the norm of the error we have

EFE = lim
∆t→0

‖TEF − T ‖/∆t2 =
1

2
‖A2 + Ȧ‖ ≤ 1

2

(
‖A‖2 + ‖Ȧ‖

)
.

For the MRL, we have

TMRL = exp (A(tn)∆t) = 1 + A(tn)∆t+
1

2
A2(tn)∆t2 +O

(
∆t3

)
,

therefore

EMRL =
1

2
‖Ȧ‖ =

1

2
‖A′‖| ˙Vm|

where the prime designates differentiation by Vm.
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Fig. 1. (a) Matrix norms affecting the apriori error estimates, as functions of the transmembrane voltage. Norms ‖A‖,‖Am‖ are in ms−1, ‖A′‖,‖A′m‖,EOS

are in ms−2. (b) The coefficients of the apriori error estimates, as functions of time. EOS component shown by points as it overlaps with EHOS most of the
time. The action potential Vm(t) is shown for reference.

The errors of the three substeps of HOS are described by the above formulas for FE (for A2) and for MRL (for A0, A1), and
in addition to those, we have the error due to operator splitting. To estimate the latter, let us compare the exact solution with

the result of the successive application of the substeps as if they were done exactly. Let Bm =
tn+∆t∫
tn

Am(t) dt, m = 0, 1, 2.

Then the exact solution is

T = 1 + (B0 + B1 + B2) +
1

2
(B0 + B1 + B2)2 +O

(
∆t3

)
= 1 + (B0 + B1 + B2) +

1

2
(B2

0 + B2
1 + B2

2 + B0B1 + B1B0 + B0B2 + B2B0 + B1B2 + B2B1) +O
(
∆t3

)
,

and the result of the three substeps, with eB0 applied first and eB2 applied last, is

TOS =

(
1 + B2 +

1

2
B2

2 +O
(
∆t3

))(
1 + B1 +

1

2
B2

1 +O
(
∆t3

))(
1 + B0 +

1

2
B2

0 +O
(
∆t3

))
= 1 + B2 + B1 + B0 +

1

2

(
B2

2 + B2
1 + B2

0 + 2B2B1 + 2B2B0 + 2B1B0

)
+O

(
∆t3

)
,

so

TOS − T =
1

2
([B2,B1] + [B2,B0] + [B1,B0]) +O

(
∆t3

)
=

1

2
([A2,A1] + [A2,A0] + [A1,A0]) ∆t2 +O

(
∆t3

)
where we use the standard notation for the matrix commutator, [X,Y ] ≡ XY − Y X . Finally, by the triangle inequality
(subadditivity) of a matrix norm, the upper estimate of the error coefficient EHOS is given by the sum of the error coefficients
of the three constituent steps and of the operator splitting.

To summarize, we have the following estimates of the leading terms of the approximation errors for the three methods as

EFE ≤
1

2

(
‖A‖2 + ‖dA/dVm‖|dVm/dt|

)
EMRL =

1

2
‖dA/dVm‖|dVm/dt|

EHOS ≤
1

2
|dVm/dt| (‖dA0/dVm‖+ ‖dA1/dVm‖+ ‖dA2/dVm‖) +

1

2
||A2||2 + EOS,

EOS =
1

2
‖[A1,A0] + [A2,A0] + [A2,A1]‖. (248)

An important observation is that the apriori estimates of the errors cannot be made based on the properties of the MC alone
as they depend on the rate of change of the voltage.

The graphs of the Frobenius norms of the matrices involved in the estimates (248) are shown in Fig. 1(a). Evidently ‖A‖
dominates other norms throughout the voltage range; however, it is relatively small for intermediate values of Vm and this is
precisely when dVm/dt is large during a typical AP, making the related components of the errors more significant. So a more
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adequate idea of the relative magnitudes of the errors of the three methods should take into account properties of specific
solutions. Figure 1(b) shows the values of the error estimates (248) for the typical AP which was used for other numerical
illustrations in the paper. We see that the error associated with FE is the largest of the three, with the maximal magnitude of
about 2700 ms−2, achieved early during the plateau of the AP, thus guaranteeing no more than 10% global error on a time
interval of 1 ms long for time steps as short as ∆t ≈ 0.04µs, and its main contributor is ‖A‖2 rather than ‖Ȧ‖. The error
associated with MRL is the smallest of the three, with the maximal magnitude of about 118 ms−2, achieved during the upstroke
of the action potential, giving 10% global accuracy on 1 ms interval for ∆t ≈ 0.8µs. The error of the HOS is intermediate
between the two. Its maximum of about 125 ms−2, i.e. very similar to that of MRL and achieved at the same time, as its main
contributors are the same ˙Vm-dependent errors of the exponential integrator substeps as in EMRL. Outside the AP upstroke,
the error of HOS is dominated by the operator splitting error EOS, which however never exceeds 19 ms−2. The ratio of the
error coefficients of the two methods varies widely during the AP solution: EFE/EMRL ∈ (3.18,∞) (remember EMRL = 0
when dVm/dt = 0) and EFE/EHOS ∈ (2.30, 161), with the smallest values achieved during the upstroke when the exponential
solvers are least accurate.

Clearly, the estimate of the global error given by (246) is over-cautious, or “pessimistic”, as it presumes that local errors
take maximal values allowed by the matrix norms, and accumulate but not compensate on the whole interval [tmin, tmax]. As
the numerical experiments described in the main text show, the actual errors are much smaller. Still, the analysis done here
can be useful in identifying relative contribution of different sources of errors and identifying “bottlenecks”. Specifically, we
see that
• the exponential solvers are more accurate than FE: even in the worst case, during the upstroke, they give two to three

times smaller error;
• the principal limitation of the accuracy of both exponential solvers is the dependence on ˙Vm, which affects accuracy

mostly during the upstroke, hence any attempts to improve the accuracy should in the first instance address this issue.
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