Supplementary material:
Exponential integrators for a Markov chain model
of the fast sodium channel of cardiocytes

Tomas Stary, Vadim N. Biktashev

The numeration of equations in this document continues from the main text, and the literature references are to the literature
list in the main text, repeated in the end of this document for the reader’s convenience.

I. CELL MODEL DEFINITION
This section contains the definition of the model according to the authors’ code [8]. The format of equations and subsections
aims to correspond to the papers where those equations were published to facilitate a straightforward comparison. The known
differences with the papers are marked by the sign: #. Voltages are measured in mV, time in ms and concentrations in
mmol/L.The membrane currents are adjusted to the specific membrane capacitance C' = 1 F/cm?[9] and are measured in

HA/F.

Standard ionic concentrations

[Nat], =140 # (20)
[Kt], =45 # (21
[Ca?t], =1.8 (22)

which differs from [9] where [Na™], = 150; [K*], = 5.4.

Initial Values of Variables

g =0 7 (23)

T =0 # (24)
Vip=-95 (25)
[Ca®T]nsr =1.8 (26)
[Ca®T]jsr =1.8 (27)
[Ca?T]; =0.00012 (28)

b =0.00141379 (29)

g =0.98831 (30)

d =6.17507 x 107° (31)

f =0.999357 (32)

X, =2.14606 x 10~* (33)
[Nat]; =7.9 # (34)
[Kt]; =147.23 # (35)

which differs from [9] where [K*]; = 145; [Na™]; = 10, and no initial values were given for x,; and zo.

Physical Constants

R =8314 (36)
F =96485 (37)
T =310 (38)



Cell geometry

L =0.01 (39)
r =0.0011 (40)
Veett =3.801 x 1075 41)
AGeo =271 + 277L (42)
ACap :2AG€O (43)
Vingo =2.58468 x 107° (44)
Vasr =0.0552Vee (45)
Visr =0.0048V,y (46)
Na™-K* pump : Inax
1 [K*]o
Inag =1.5 . 47
Nak =L N N K, + 15 @7
1
= 48
TNk = 1o t5 exp (—0.1- Y2E) +0.03650 exp((—V;u F)/(RT)) 43)
1 [Nat],

== -1 4

7 7eXp< 67.3 > (“49)

which is identical to [9]

I, the Slow Component of the Delayed Rectifier K Current

Ixs =Gksts1752(Vin — Exs) GO
By, =(RT/F)log((4.5 + Pxax150)/([K*]; + Prnax[Natl,)) # Ob
Prax =0.01833 42
Gis =(0.433(1 + 0.6/(1 + (0.000038/[Ca2*],)14))) - 0.615 # (53)
100 =1/(1 + exp(—(V;n — 1.5)/16.7)) oY
L5200 =Tsloo N
V. + 30 V. + 30 o
Tas1 = (0.00007191 - exp(—O.lZ8(Vm 50y 0‘000131exp(0.0687(v+m S0 1) (56)
Trs2 =4Tzs1 oD

The definition of Ek, in equation (51) differs from [11] by the hard-coded term for the [K*], = 4.5 and [Na't], = 150 rather
than values defined by equations (20,21) where [K*], = 4.5 and [Na™], = 140 are parameters.

The definition of G, in equation (53) is multiplied by 0.615 “to simulate the intramural heterogeneity”, which is slightly
different from the factor 0.652 used in Viswanathan et al. (1999) [11] to simulate epicardial cell.

Otherwise the Ik, definition is identical to [11].

dxsl _msloo — Ts1

58
dt Txsl ( )

dxsZ Ts200 — Ts2
= 59
dt Txs2 ( )

I, the Fast Component of the Delayed Rectifier KT Current

IK’!‘ :GYKrX'rRKr(Vtm - EK?") (60)
Gk, =0.02614+/[K*], /5.4 61)

Xyoo =1/(1 + exp(—(V, + 21.5)/7.5)) (62)



Rir =1/(1 + exp((Vin + 9)/22.4)) (63)

By, =((RT)/F)log([K"]o/[K"];) (64)
Vi 4 14.2 Vin + 38.9 !
Tor = (0'00138 1 — exp(—0.123(V,, + 14.2)) * 0'00061exp(0.145(vm +38.9)) — 1) (63)

which is identical to [10]. The original notation for Rk, was R; we use R for the gas constant in this section, and for one of
the state occupancies of the Markov Chain model elsewhere in the rest of the paper.

er _Xroo - Xr

dt T, (66)
Time-independent Kt current: I,
Ix1 =Gx1Kloo (Vi — Ex1) (67)
Ex1 =(RT/F)log([K*]o/[K*]:) (68)
Gxi1 =0.75 - /([K+],/5.4) (69)
a1 =1.02/(1 + exp(0.2385(V,,, — Fx1 — 59.215))) (70)
8 :0.49124 exp(0.08032(V,,, — Ex1 + 5.476)) + exp(0.06175(V,,, — Ex1 — 594.31)) 71
K 1+ exp(—0.5143(V,,, — Ex1 + 4.753))
which is identical to [9].
Kle =ax1/(ax1 + Pk1) (72)
(73)
Plateau Kt current: Iy
Ixp =0.00552K,(V,, — Fxk1) (74)
K, =1/(14exp((7.488 — V,,,)/5.98 (75)
P
equivalent to [9] with an update from [10].
Ix =Ix1 + Ikp (76)
Currents through the L-type Ca™t? channel Icar,
ICaL :ICa + ICaK + ICaNa (77)
Ica =df fcalca (78)
Icax =df fealcak (79)
ICaNa :dffCa]CaNa (80)
7 o (VinF?) 1cailCa*" i exp((2caVin F)/ (RT)) = ¥0a0[Ca®* o
Ica =Pcazc, (1)
RT exp((zcanF)/(RT)) -1
T — Py 22 (VmF2) YNas [Na+]i eXP((ZNanF)/(RT)) - 7Nao[Na+]o (82)
CaNa = Na*Na ™" porp exp((znaVm F)/(RT)) — 1
T s V) K exp(aVin )/ (RT)) = ol )
* K RT exp((2xVin F)/(RT)) — 1
Poa =54%x107%  yowi =1  Ycao = 0.341 (84)
Pna=6.75% 1077 Axai =0.75  YNao = 0.75 (85)
P =1.93x10"" 4k, =075 3k, = 0.75 (86)
foa =1/(1+ [Ca®**];/ K pca) (87)

K.nca =0.0006 (88)



doo =1/(1 + exp(—(V; + 10)/6.24)) (89)

74 =doo (1 — exp(— (Vi + 10)/6.24))/(0.035(V,y, + 10)) (90)
foo =(1/(1+ exp((Vin + 32)/8))) + (0.6/(1 + exp((50 — V;,)/20)))  # o1
7 =1/(0.0197 exp(—(0.0337(V,,, + 10))) + 0.02) (92)

Equation (91) differs from [9] which has 8.6 rather than 8 in the denominator of the argument of the first exponential. Otherwise,
these equations are exactly the same as in [9].

ZNa =1 (93)
Z2Ca =2 95)
dd ds—d
at (96)
df fe—f
A& Gn

Ca?* Current Through T-Type Ca®* Channels Icacr

Icary =Gcar)b*9(Vi, — Eca) (98)
GCa(T) =0.05 (99)
boo =1/(1 + exp(— (Vi + 14)/10.8)) (100)
oo =1/(1 + exp((V;,, + 60)/5.6)) (101)
Eca =(RT/(2F)) log([Ca**],/[Ca®**];) (102)
7, =3.7+6.1/(1 4+ exp((Vi, + 25)/4.5)) (103)
7g = — 0.875V;, 4 12 for: V,,, <0; and 74 = 12 for: V,,, >0 (104)
which correspond exactly to [10].
db boo— D
= 1
dt Th ( 05)
dg g —yg
2 1
dt Tg (106)
Nat-Ca™ exchanger: INaca
s = 2.5 x 1074 exp((n — 1) Vi 25 ) (exp(Vin ) [NaT]3[Ca**], — [Nat]3[Ca®1];) " (107)
L4+ 1 x 1074 exp((1 — 1) Vi o) (exp (Vi 27 ) [NaT]3[Ca®F], + [NaT]3[Ca®t];)
n=0.15 # (108)

Here Inaca depends on external [Ca2+}o, [Na™], as well as internal [Na™];, [Ca2+]i concentrations, which is different from [9]
where it depended only on external concentrations [Ca®"],, [Na™],. The variable = 0.35 in [9].

Nonspecific Ca*-activated current: Is(ca)

_ ViF? 0.75[K*); exp((Vin F) /(RT)) — 0.75[K*],

Ihsx =1.75 x 10~ 109
K X RT oxp(Vo F/(RT)) — 1 (109)
. 1
Ins :Ins 110
e 1 (0.0012/[Ca2 ;)3 (110)
- Vi F?2 0.75[Na't]; exp((V;n F)/(RT)) — 0.75[Na™]
Ins ) :1.75 10—7 m . 3 m o 111
N X RT exp(Von FJ (RT)) — 1 (11D
_ 1
Ins a :Ins a 112
¥ M1+ (0.0012/[Ca2T);)3 (112)
Ins(Ca) =Insk + InsNa (113)
Pps(cay =1.75 x 1077 (114)

This is almost identical to [9] except the latter also made a definition for E;,5ca) which however was not used.



Sarcolemmal Ca*? pump: Iy (ca)

[Ca®*],
Licy =1.15—M——— 115
p(Ca) 0.0005 + [Ca®*], (115)
identical to [9].
Ca™? background current: Icqp
Icap =0.003016(V,,, — Eca) (116)
Ec. =RT/(2F)log([Ca’*],/[Ca®"];) (117)
identical to [9].
Na' background current: I,
Ena =((RT)/F)log([Nat],/[Nat];) (118)
Inap =0.00141(V,,, — Ena) (119)
identical to [9].
Ca?™ uptake and leakage of NSR: I, and Icqp
L, =0.00875[Ca®"];/([Ca®T]; +0.00092) # (120)
Kjear, =0.005/15 (121)
Leak =Kiear[Ca® T |nsr (122)
The definition of I,;, in [9] is ambiguous. This version is consistent with one possible understanding.
Ca™? Fluxes in NSR
d[Ca®*
% =(Lup = Diear — I Visw/Vivsr) (123)
Ca®" Fluxes in Myoplasm
Iica =Ica + Icap + Ip(Ca) — 2INaca + ICa(T) (124)
A[Caer}i = — At((([tCaACap)/(meo2F)) + ((Iup - Ileak)VNSR/meo) - (IrelVJSR/meo)) (125)
[Ca®t]ipn =TRPN + CMDN + A[Ca®t]; + [Ca®t); (126)
B =0.05 + 0.07 — [Ca* 6, 4+ 0.0005 + 0.00238 (127)
C =(0.00238 - 0.0005) — ([Ca**];5,,(0.0005 + 0.00238)) + (0.07 - 0.00238) + (0.05 - 0.0005) (128)
D = —0.0005 - 0.00238[Ca’ion (129)
Fu, =+/ (B2 -30) (130)
[Ca’®T]; =1.5F, cos(arccos((9BC — 2B — 27D)/(2(B% — 3C)'%))/3) — (B/3) (131)

This definition merely summarises computations that are done in the code, which de facto describe a time-stepping algorithm
for a system of a differential equation and a finite constraint, rather than the equation and the constraint themselves, hence the
time step At is present in (125). Any attempts of higher-order numerical approximations would have to take this into account.
The explicit solution of the finite constraint given by the cubic formula (131) follows [10] whereas [9] used Steffensen’s
iterations for that purpose.



Ca%* Fluxes in JSR

AlCa* sk =At(Lyy — Irer) (132)
bisr =10 — CSQN — A[Ca®t]s5r — [Ca®t]ssr + 0.8 (133)
CJSR =0.8(CSQN + A[Caer]JsR + [CaZJrL]SR) (134)
[Ca*ssr =(1/ (bsp + 4casr) — bisr)/2 (135)
Ditto: At is present in (132).
Sodium Ion Fluxes

ItNa :INa + INab + ICaNa + InsNa + 3IN&K + SINaCa (136)

d[Na™];
[ dt ] = - (ItNaACap)/(meoF) (137)

[Na™]; is constant in [9], [10], [11].

Potassium Ion Fluxes

ItK :IKr + IKs + IK + ICaK + InsK - 2INeLK + Ito + Ist (138)
T (L Acap)/ (Vigo ) (139)
dt = tK41Cap myo
[K*]; is constant in [9], [10], [11].
Ca*" buffers in the myoplasm
TRPN =0.07[Ca*"];/([Ca®*]; + 0.0005) (140)
CMDN =0.05[Ca**];/([Ca®T]; + 0.00238) (141)
identical to [9].
Ca’" buffer in JSR and SCON
CSQN =10([Ca"3sr/([Ca* sk + 0.8)) (142)
(143)
identical to [9].
CICR From Junctional SR (JSR)
ITEl :GTEIryropenryrclose([Ca2+]JSR - [CaQ+]i) (144)
Gret =150/(1 + exp(Iyca + 5)/0.9) # (145)
YT open =1/(1+ exp((—tc +4)/0.5)) # (146)
I¥Tepose =1 = (1/(1+ exp((—t. + 4)/0.5))) # (147)

Here is another deviation of the model description from the standard form of a system of ODEs, and this also would have
to be taken into account in any attempts of higher-order schemes. Variables ryr .. and ryr,,., = 1 —1ryr ), . ensure that
the calcium release channel is open at a fuzzy time interval around 4 ms after the steepest point of the upstroke of the action
potential. This is done using an additional time variable ¢. which is linked to the ¢, that is d¢./d¢ = 1 most of the time, except

t. is reset to zero each time the % reaches a significant local maximum, “significant” meaning % > 1mV/ms. In [9],

G 1s defined differently from (145) and calcium release proceeds with a different dynamics from (146,147), e.g. it starts
dV,,

sharply 2ms after the the time of the maximum “g=.



Translocation of Ca®" ions from NSR to JSR: I,

identical to [9].

I, =([Ca®T]nsr — [Ca®T]5sr) /180

Total time-independent current: I,

identical to [9].

Total Current

It :IK’I‘ + IKS + IK + ICaK + InsK - 2INaLK + INa + INab + ICaNa + InsNa + 3INaK+
3INaca + Ica + Icas + Ip(Ca) — 2INaca + ICa(T)

Membrane Potential

Up to the choice of notation, we use the model described in [8]. The fast sodium current is defined by

I, =Inab + INak + Ip(ca) + Ikp + Icab + Ik1

dv,,
Smo_ g
dt ¢

II. Ino MARKOV CHAIN MODEL DEFINITION

INa - GNa(Vm - ENa)O7

where the channel open probability O is defined by the system of ODEs

with the transition rates defined by

doO
T =apoP + ayoU — (aop + aou)O
dP
I :anQ + aypU + appO — (OéPQ + apy + Ozpo)P
d
dii? =arqR + arQT + apqP — (agr + aqr + agp)Q
dR
r =agrS + agr@ — (ars + arg)R
ds
yrs =arsT + arsR — (asT + asgr)S
dT
’r :aQTQ + agrS + ayrU — (OéTQ +ars + OéTU)T
dU
< =orvT +apuP +avyV +aou0 = (aur + avp + avo + avy)U
dv
E =apyU + awyW — (aVU + OZVW)V
d
dfvz/ =aywV —awy W
e — e — ot — 3.802
RQ — &sT — 11 _0.1027e—vm/17.0 + 0.20 e_Vm/lso
o — o — o — 3.802
QP — &TUy — 12 _0.1027€_Vm/15'0 +0.23 e—Vm/150
o — oo — 3.802
PO T3 70 1027 e~ Vin /120 1 (.25 ¢ Vim /150
agr = ars = P11 =0.1917¢~Vn/203

apg = oyT = 512 =0.20 e—(Vm—S)/20.3

(148)

(149)

(150)

(151)

(152)

(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)

(161)



app = P13 =0.22 o (Vm—10)/20.3

ayp = arg = asp = a3 =3.7933 - 1077 e~ Vm/77
apy = agr = ars = B3 =8.4- 1073 +2-1075V,,

aou = ag =9.178 ¢Vm /2968
Q13023

BusbBs

ayy = a4 =as/100

ayo :BQ =

ayy = By =ag3
ayw = a5 =az/(9.5 - 10%)

awy = fs =a3/50

III. DETAILS OF THE HYBRID OPERATOR SPLITTING METHOD
In the hybrid method we use operator splitting. The system of equations (153)—(161) is considered as an ODE

du
— = AV, (t))u, 9
= AWVt ©)
for the vector-function @ = (O, P,Q, R, S, T,U,V, VV)T = 1(t), and the transition matrix is split into the sum
A=A)+ A+ Az (162)
of the matrix Ag of transition rates that are fast at high values of V,,,,
_—OtOU apo 0 0 0 0 0 0 0_
0 —Qapo aQp 0 0 0 0 0 O
0 0 —agp  QRQ 0 0 0 0 O
0 0 0 —QRQ 0 0 0 0 O
Ay = 0 0 0 0 —asT 0 0 0 0], (163)
0 0 0 0 asT —QaTy 0 0 O
aoyu 0 0 0 0 aTy 0 0 0
0 0 0 0 0 0 0 0 O
| 0 0 0 0 0 0 0 0 0]
the matrix A of transition rates that are fast at low values of V,,,,
[—aop 0 0 0 0 0 0 0 0]
aop  —apQ 0 0 0 0 0 0 0
0 apg —agr 0 0 0 0 0 0
0 0 agr 0 0 0 0 0 0
A = 0 0 0 0 0 arg 0 0o 0}, (164)
0 0 0 0 0 —QaTs ayT 0 0
0 0 0 0 0 0 —aygr 0 O
0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0]
and the matrix A, of uniformly slow transition rates,
[0 0 0 0 0 0 ayo 0 0 ]
0 —Qpy 0 0 0 0 ayp 0 0
0 0 —agQr 0 0 arqQ 0 0 0
0 0 0 —QRS QSR 0 0 0 0
Ag =10 0 0 QRS —QSR 0 0 0 0 (165)
0 0 aQr 0 0 —arQ 0 0 0
0 apy 0 0 0 0 —(OéUP + ayo + OéUv) ayy 0
0 0 0 0 0 0 ayy —(OéVU + Oévw) awv
_0 0 0 0 0 0 0 ayw —awv_
Every timestep is then done in three substeps, each using one of the three matrices A,,, m =0,1,2:
Upy1/3 = exXp(ALA(Vin(tn))) Un, (17)

’Jn+2/3 = eXp(AtAl(Vm(tn))) ﬁ7l+1/37 (18)



ﬁn-‘rl = ﬁn+2/3 + AtAQ(Vm (tn)) Un+2/3' (19)

Note that V,,, in all cases is evaluated at ¢ = ¢,,, in which we simply follow the original Rush-Larsen idea of “freezing”
V. for the duration of the time step. The matrix exponentials in (17) and (18) can be understood in terms of matrix Taylor
series [7], or the product of the matrix exponential by the corresponding vector # can be understood just as the solutions of
an initial-value problem for the corresponding system of ODEs with constant coefficients. The mapping (17) is calculated by
solving the following initial-value problem, defined by the matrix Ag (163),

dO
E = —aoyO + apoP, O(O) = On, (166)
dP
I = —apoP + agpQ, P(0) = Py, (167)
d@
T —agp@ + argR, Q(0) = Qn, (168)
dR
WP anoR R(0) = R, (169)
ds
& s S(0) = S, (170)
dT
E = aSTS — aTUT, T(O) = Tn, (17])
dU
E = aoyO + aryT, U(O) =U,, (172)
dv
dw
aw _y W(0) = Wi, (174)
dt
and then evaluating the result at ¢ = At to give Op41/3, ..., Wy11/3. We note now that equations (169) and (170) are
decoupled and we can solve them to get
R(t) = R, e~ re!, (175)
S(t) = S, e @sTt, (176)
We then substitute (175) into (168) to obtain a closed initial-value problem for Q(t),
d
dif + aQPQ = RnaRQ eiaRQtv Q(O) = Qna (177)

the solution of which is
—agpt __ e—aRQt)

Q) = Queoert — g, 2nale

178
OéQp — OéRQ ( )
(179)
Similarly, we substitute (176) into (171) to obtain
—aryt _ —asrt
T(t) = T, e—orvt — 5, 257 ), (180)

ary — asr
(181)

We then proceed in the same manner, by substituting the obtained solution (178) for Q(t) into (167) to obtain P(t), and the
solution (180) for T'(¢) into (172) to obtain U(t), and finally the found solution for P(¢) into (166) to obtain O(t). With the
obvious solutions to (173) and (174), the result of all these steps is mapping

On+1/3 = povOn + Kpo P, + KQan + KroR,, (182)
Poi1/3=pnpoPn + KopQn + KrpRn, (183)
Qnt1/3 = perQn + KrqRa, (184)
Ryy1/3 = prRa, (185)
Sny1/3 = ST Sn, (186)
Trt1/3 = prvTyn + Ks7Sn, (187)
Unt1/s = Un + (1 = prv) Ty + Ksu Sy + (1 — pov)On + Kpu P + KquQn + Kru Ry, (188)

Vis1yz = Vo, (189)



Wis1/3 = Wh,
where j1j; = e~ %At and
__apo(ppo — Hou)
Kpo =
Qou — apo

K __ apoaqgp (NQP - ﬂOU)
Qo = -

OéPoaQP(uPo — pou)

(apo — agp)(ou —agp) (apo
K o OéPoOtQPOéRQ(uQP - HOU)
RO = —

—agp)(aou — apo)’
apoaQPYRQ (MPO - ,UOU)

aApoAQPAORQ (MRQ — piov)

(an — aRQ)(apo — OéQP)(aOU - aQP)

OéPoOéQPOtRQ(NPo - MOU)

(agp — arqg)(apo — agp)(ou — apo)

(agr — arg)(apro — arg)(aou — arqg)

)

K ,O‘QP(,UQP — [PO)
Qp =
apo — agp
aQpParQ(KQP — 1PO)

aQpParQ(IRQ — [1PO)

Krp =—
(agp — arg)(apo — agp)

arQ(HQP — HR
Kno = — Q(kg Q)’

(agp — arg)(aro — agrqg)’

aQp — ARQ
ast(pru — BST
Kop = — (u 7 )7
ary — asT
o -
Keu =1+ STHTU TU/JST7
ary — asT
o — o
Kpy =1 — OU PO POMOU
oy — PO
K . apo (1 QOUHQP — aQPMOU) (1 YoUu PO — OéPOMOU)
QU — - o ’
apo — aQp aoU — aQp apo — CVQP Qou — @po
apo« e -«
Koy — POORQ (1 _ aoupgp QPMOU) n
(agp — arq)(aro — agp) aou — aQp
QQPQARQ (1 __ GouHpro — OéPOMOU) +
(aQP — aRQ)(apo — OéQP) oy — apo
apoaQp (1 QOUMRQ — OéRQMOU)
(agp — arg)(apo — rQ) QoU — QRQ
_ QQPQARQ ( _ Gouppro — aPOMOU)
(agp — arg)(apo — arqQ) QoU — apo

(agp — arq)(apo — arg)(aov —apo)’

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)
(198)
(199)

(200)

(201)

At the second sub-step, the mapping (18) is calculated by solving the following initial-value problem, defined by the matrix

Aq (164),

a0
dt
ap
dt
daQ
dt
@
dt
ds
dt
g
dt
au
dt
1%
Y
dw

T

= —aopO,

= aopO — apqP,
= apqgP — agrQ,
= aQr@Q,

= arsT,

= ayrU — arsT,

= —ayrU,

0(0) = Oy 13
P(0) = Py,
Q(0) = Qn+1/3,
R(0) = Rn+1/37
S(O) = Sn+1/3’
T(0) = Ths1/3s
U(0) = Untays,
V(0) = Vitass,

W(O) = Wn+1/3'

(202)
(203)
(204)
(205)
(206)
(207)
(208)
(209)

(210)

Here we proceed similar to the first sub-step. We note that the equations (202) and (208) are decoupled, and solve them to
get O(t) and U (t). The result for O(t) is substituted to (203) and the result for U () is substituted to (207) to obtain closed



initial value problems, which are solved to produce P(t) and T'(t). The solution for P(t) is substituted to the (204) to give
Q(t). Finally, we substitute the Q(¢) into (205) and T'(¢) to (206) which yield R(t) and S(t) respectively. With the obvious

solution to V' and W the mapping is as follows:

On+2/3 = 1opPOnt1/3,

Poyoy3=LopOni1/3+ prqQPuyiy3,

Qni2/3 = LoQOn+1/3+ LroPat1/3 + LQr@n+1/3:

Ryi2/3 = LorOpy1/3 + LprPpyi1/3 + (1 — pQr)Qny1/3 + Riuyiys,
Snt2/3 = LusUpy173 + (1 — prs)Thi1/3 + Sng1/3s

Toyo3 = LurUpt1/3 + prsTht1/3,

Unt2/3 = purUnyiy3,

Viyosz = Vagiys,

Wiasz = Wiiiys,

—OchAt

where pj, = e again, and

o= aop(pop — 1PQ)
op =
apg — aop
apgaop(por —pQr)  apaop(ipPg — HQR)
apq —aop)(aqgr —aor) (apq — aor)(agr —apq)’
L. — 2rQ(hrQ — 1QR)
PQ — )
QQR — OPQ
Lop =1+ apg(aopqr — @QRriOP) _ aop(QPQUQR — AQRIPQ)
(apg —aop)(agr —aor) (apg —aor)(agr — apg)’
QApQUQR — CQRMPQ

LOQ:(

@211)
212)
213)
(214)
215)
(216)
217)
218)
(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)
(228)
(229)
(230)
(231)
(232)
(233)
(234)

(235)

LPR =1 + )
QQR — @pQ
Lus =1+ QUTHTS — OéTS,uUT7
ars — aur
Lo ayr(HuT — prs)
ur = .
ars — aur
The third sub-step mapping (19) is calculated by solving the following initial-value problem, defined by the matrix A,
(165),

dO
E = OKUOU, O(O) = O’n+2/37
dP
o aypU — apy P, P(0) = Ppyo/3,
dQ
T argT — agrQ, Q(0) = Qnia/3,
dR
i asrS — agsR, R(0) = Ryy9/3,
ds
o = arsB— asgrS, S(0) = Sny2/3,
dT
i aqQr@ — arqT, T(0) = Tyyo/3,
dUu
FT apyP + ayyV — (avp + avo + ayy)U, U(0) = Upay3,
dVv
o apyU + awyvW — (avy + ayw)V, V(0) = Viqa/3,
dw
T aywV —awy W, W(0) = Wy 1o/3.

Unlike the previous sub-steps, this system is not solved exactly, but its solution is approximated by the forward Euler method

as follows:
On+1 = Onqay3 + (@uoUnyo/3)At,
Pruy1 = Ppyoys + (aupUnyo/s — apuPrgass)At,
Qni1 = Quio/z + (arQThi2/3 — aQrQnia/3)At,

(236)
(237)
(238)



Ruy1 = Ryqo/3 + (asrSnt2/3 — @rsRyqa/3)At, (239)

Snt1 = Snioss + (arsRuto/3 — asrSny2/3)At, (240)
Tog1 = Thyoys + (QrQui2/s — ar@Thy2/3)At, (241)
Un+1 = Upiass + [apuPoyass + avoVigas — (aup + avo + auv)Unya/s] At, (242)
Vi1 = Viyoys + [aovUnsa/s + awvWiiass — (ave + avw)Vigoss] AL, (243)
Wht1 = Wigass + (avw Vigoss — awy Wiypo)s)At. (244)

This completes the definition of the hybrid method.

IV. DETAILS OF ERROR ANALYSIS

As proclaimed in the main text and as we shall see below, the local truncation errors at time step [t,,,t, + At] in all three
methods are given by expressions of the form

E(tn) A + O (A, (245)
giving the upper estimate of a global error for the interval ¢ € [tmin, tmax] Of the first order,

sup  [|@®t — @™ < sup (E(1)) (tmax — tmin) AL + O (AF%) (246)

[tmin,tmax] tmin,tmax

where the estimates of the coefficients £ are different for the three methods.
To obtain these estimates, let us consider the quasi-linear system (9), rewritten as

dit
— = AVn(0)i = A7
on the interval ¢t € [t,, ty41], the1 = tn + At. Using matrix exponential, the result can be written in the form
tn"l‘At
U(tpi1) = exp / A At | d(ty) = T (tn, At)ii(t,) (247)

tn

The accuracy in finding @(t,,+1) at a given #(t,) depends on accuracy of the approximation of operator T' and on the norm
of vector %(t,). Since each component of @ is restricted to the interval [0,1] and sum of its components is fixed to 1, we
have ||@|| < 1 for any choice of norm, in which any vector, that has exactly one component equal to unity and the rest equal
to zero, is a unit vector.

Hence from this point on we focus on the approximation of the timestep transition operator 71'.

Expanding (247), first the integral, then the exponential, in the Taylor series, we have

tn+AL
T = exp / (A(tn) + At —tn) +O((t' — tn)Q)) dt'| =exp [A(tn)At + %A(tn)AtQ +0 (Af)

tn
1. 1 1. 2
=1+ {A(tn)At + §A(tn)At2 +0 (At?’)} +5 [A(tn)At + 5A(ﬁn)At2 + 0O (At3)] + O (At?)
=14 A(t,)At + % {A(t") + A2(tn)] At + O (A%,
where the dot designates time differentiation. FE approximates this operator as
Trp(tn, At) =14+ A(t,)At,

hence for the principal term of the norm of the error we have

(14l + yAp)

DN | =

1 .
— 1 _ 2 _ 142 <
&p = lim |[Ter - T|/At" = S[|A" + A <
For the MRL, we have
1
Tyre = exp (A(t,)At) = 1+ A(t,)At + §A2(tn)At2 +0 (A,
therefore
Evre, = SIA] = 2 A Vi)
MRL — 2 - 2 m

where the prime designates differentiation by V,,,.
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Fig. 1. (a) Matrix norms affecting the apriori error estimates, as functions of the transmembrane voltage. Norms || A||,|| A, || are in ms ™1, || A’||,|| AL, |l.€os
are in ms—2. (b) The coefficients of the apriori error estimates, as functions of time. £og component shown by points as it overlaps with Eog most of the
time. The action potential V5, (¢) is shown for reference.

The errors of the three substeps of HOS are described by the above formulas for FE (for As) and for MRL (for Ay, A1), and

in addition to those, we have the error due to operator splitting. To estimate the latter, let us compare the exact solution with
tn +At

the result of the successive application of the substeps as if they were done exactly. Let B,,, = [ A, (t)dt, m =0,1,2.
tn

Then the exact solution is
T = 1+(Bo+Bl+B2)+%(30+Bl+B2)2+O(At3)
=1+ (Bop+ Bi1+ B2)+ %(B(z) + B} + B3+ ByB, + BBy + BoBy + ByBy + B1By + B2B;) + O (At?’) )
and the result of the three substeps, with eBo applied first and eB? applied last, is
Tos = (1 + By + %B% +0 (At3)> <1 + B+ %B% +0 (At3)> <1 +Bo+ %BS +0 (At?’))

1
=14 B>+ By + By+ (B + Bl + B + 2B:B1 + 2B:By + 2B1By) + O (A%)

SO

Tos—T = % ([Ba, B1] + [B2, Bo) + [B1, Bo]) + O (At?) = % ([Az, A1)+ [As, Ag] + [A1, Ag)) A + O (AF®)

where we use the standard notation for the matrix commutator, [X,Y] = XY — Y X. Finally, by the triangle inequality
(subadditivity) of a matrix norm, the upper estimate of the error coefficient £rrog is given by the sum of the error coefficients
of the three constituent steps and of the operator splitting.

To summarize, we have the following estimates of the leading terms of the approximation errors for the three methods as

en < 5 (IAI +dA/aVin | [aVin ]

Ennt, = 5 |AA/AV 4V /|

105 < 51AVin /] (14 A0/dV, | + AL /AVo | + [dA/AVn) + 3| As > + o,
Eos = 3[A1, Ao] + [A2, 4] + [ 45, Al (248)

An important observation is that the apriori estimates of the errors cannot be made based on the properties of the MC alone
as they depend on the rate of change of the voltage.

The graphs of the Frobenius norms of the matrices involved in the estimates (248) are shown in Fig. 1(a). Evidently || Al
dominates other norms throughout the voltage range; however, it is relatively small for intermediate values of V,,, and this is
precisely when dV,,,/d¢ is large during a typical AP, making the related components of the errors more significant. So a more



adequate idea of the relative magnitudes of the errors of the three methods should take into account properties of specific
solutions. Figure 1(b) shows the values of the error estimates (248) for the typical AP which was used for other numerical
illustrations in the paper. We see that the error associated with FE is the largest of the three, with the maximal magnitude of
about 2700 ms~2, achieved early during the plateau of the AP, thus guaranteeing no more than 10% global error on a time
interval of 1ms long for time steps as short as At &~ 0.04 us, and its main contributor is || A||® rather than ||A||. The error
associated with MRL is the smallest of the three, with the maximal magnitude of about 118 ms~?2, achieved during the upstroke
of the action potential, giving 10% global accuracy on 1ms interval for At ~ 0.8 us. The error of the HOS is intermediate
between the two. Its maximum of about 125 ms™2, i.e. very similar to that of MRL and achieved at the same time, as its main
contributors are the same V;n-dependent errors of the exponential integrator substeps as in Eyrr. Outside the AP upstroke,
the error of HOS is dominated by the operator splitting error £os, which however never exceeds 19 ms~2. The ratio of the
error coefficients of the two methods varies widely during the AP solution: £rg/EmrL € (3.18,00) (remember Eyry, = 0
when dV,,,/dt = 0) and Erg/Enos € (2.30,161), with the smallest values achieved during the upstroke when the exponential
solvers are least accurate.

Clearly, the estimate of the global error given by (246) is over-cautious, or “pessimistic”, as it presumes that local errors
take maximal values allowed by the matrix norms, and accumulate but not compensate on the whole interval [tmin, tmax]- AS
the numerical experiments described in the main text show, the actual errors are much smaller. Still, the analysis done here
can be useful in identifying relative contribution of different sources of errors and identifying “bottlenecks”. Specifically, we
see that

« the exponential solvers are more accurate than FE: even in the worst case, during the upstroke, they give two to three
times smaller error;

o the principal limitation of the accuracy of both exponential solvers is the dependence on V,,, which affects accuracy
mostly during the upstroke, hence any attempts to improve the accuracy should in the first instance address this issue.
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