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We analyse the asymptotic structure of two classical models of mathematical biology, the models of electrical
action by Hodgkin-Huxley (1952) for a giant squid axon and by Noble (1962) for mammalian Purkinje fibres.
We use the procedure of parametric embedding to formally introduce small parameters in these experiment-
based models. Although one of the models was designed as a modification of the other, their structure with
respect to the small parameters appears to be entirely different: Hodgkin-Huxley’s model has two slow and two
fast variables, while Noble’s model has one slow variable, two fast variables and one superfast variable. The
singular perturbation theory of these models adequately reproduces some features of the accurate numeric so-
lutions, such as excitability and the shape of the voltage upstroke, but fails to reproduce other features, such as
the relatively slow return from the excited state, compared to the speed of the upstroke. We present arguments
towards the viewpoint that contrary to the conjecture proposed by Zeeman (1972), for these two models this fail-
ure is an inevitable consequence of the Tikhonov-style appearance of the small parameters, and a more adequate
asymptotic description may only be achieved with small parameters entering the equations in a significantly
different way.

PACS numbers: 87.10.+e

I. INTRODUCTION by some asymptotic methods, and to devise simpler models
that admit analytical treatment. The most prominent exam-
le of such study was the paper by FitzHugh [7], who has

The idea of the present study came from a 1972 paper bghown that a modification of the van der Pol’s nonlinear os-

Zeeman [1], which was one in his series of works dedicatedjaror can demonstrate qualitative properties very similar to

to possible applications of the then new catastrophe theory, \se of the HH system, and that a collection of appropriate

[2]. In that paper, Zeeman has analysed an apparent diffefy ,_gimensional projections of the four-dimensional trajecto-

ence between two sorts of biological excitable systems, nervgag of the HH system look similar to the phase portrait of the
and heart, and conjectured that this difference may come as g, jified van der Pol system. When considered as a singu-

consequence of them being described by singularly perturbed , nerturbed system, FitzHugh's system allowed a qualita-
systems of equations, with the slow manifolds demonstrating, o analysis explaining its main featuneithout using a com-

catastrophes of different types. Amagzingly, in the following ;. Ever since, FitzHugh's system and its numerous varia-
30 years, there were no published papers directly testing thigyns are very popular as simpie systems qualitatively similar
conjecture. To fill in this gap, was one reason to undertakg, req| excitable systems, and allowing both a better qualita-
this study. tive understanding, and a more efficient numerical treatment
The other reason was more practical. Mathematical modef large numbers of excitable cells, than detailed, realistic
els describing biological excitable systems, particularly nervenodels. Yet, these simplified models are only in qualitative
and heart tissues, are historically the first, and so far the besand notin quantitative agreement with the real systems. More-
in terms of quantitative description of truly biological phe- over, these simplified models are not in any vagyivedfrom
nomena, based on solid experimental information. A specidhe realistic systems, and therefore there is no way to be sure
place in this set belongs to Hodgkin and Huxley's [3] modelthat they reproduce even the qualitative effects correctly.
of the squid giant axon, and Noble’s [4] model of the cells of This makes a case for deriving simplified models from re-
Purkinje fibres of mammalian heart. These were historicallyalistic models, by exploiting their real properties, via a clearly
the first and still the simplest in that family. Since then, thedefined set of assumptions and transformations. One such at-
progress in development of realistic models of different kindsempt made as early as 1973 by Krinsky and Kokoz [8] who
of cells has been enormous, and the current models achieveve considered the HH system as a singularly perturbed sys-
remarkable complexity and accuracy, particularly for cardiadem to reduce its order to three, andathhocempirical ob-
cells [5, 6]. One disappointing, from a theoretical physicist'sservation to further reduce it to two, which ended up with
point of view, feature of all these models is a seemingly aba system whose phase portrait looked similar to that of the
solute necessity of numerical treatment, since they are high=itzHugh’s system, but already without any small parameters
order (at least, of order four, as for both HH and N62) non-left. Although very interesting in a historical perspective, that
linear systems of differential equations, and do not admit expaper failed to have a more lasting impact in its time, in par-
act analytical solution. Purely numerical study, however goodicular, because thad hocmethods used there could not be
the computers may be, always has well known disadvantagetansferred to more sophisticated models.
e.g. lack of insight into dependence of the solutions on the pa- With the advent of computational biology of extended bi-
rameters. Thus, from the very beginning there were attemptslogical systems including large numbers of excitable ele-
to understand the behaviour of the solutions in these modelsents, such as large neural networks or whole heart, the ques-



tion of faithful simplifications of detailed models gains more
and more of practical importance. Various kinds of simplified |parameter/ |Hodgkin-Huxley Noble 1962
models of excitable systems, such as FitzHugh and its vari-|ynction  |System System
ations, and even further caricature-like simplifications, such
as integrate-and-fire neurons, cellular automata etc, have been
; : « ) . o O 1 12
used in large scale computations as a “poor man’s substitute
of realistic models. Now the level of understanding achievable |, . (k) 0.1(~E +25) 0-1(_]? —48)
at such caricature level is to a considerable extent exhausted, e — 1 <e% -1)
On the other hand, the development of computer technology Bl l—E 5
itself has not been in pace with the demand from applications, |, (E) w w
e.g. in biomedical engineering in cardiology. There have been (e -1 (e -1)
several attempts to develop models which would mimic the . o0
properties of realistic models but would be less computational | o (E) 0.07e20 0.17¢ 2
expensive, see e.g. [9-12]. However, all these attempts s
. ; ; -5 0.12(F + 8)
far have been, at least in some points, phenomenological, andg,, (E) 4e T8 CEm
thus have the same principal disadvantages as the FitzHugh's (e75 —1)
attempt, i.e. lack of confidence in quantitative and perhaps . —
even qualitative predictions. Hence, development of meth- |5.(E) 0.125¢ 780 0.002¢ 80
ods of reliable and verifiable derivation of simplified models, 1 1
qualitatively and quantitatively reproducing relevant proper- |3, (E) — e
ties of the detailed models, or deviating from them in a con- (em10 +1) (e 10 +1)
trollable way, can present a considerable advantage for com-{—
) L . TNa 120 400
putations for applications. We believe that the methods of = 0 014
such derivations should be developed starting from the sim- fNal -
plest cases, and then generalised to more sophisticated mod¥x 36 1.2
els. The present paper deals with the two simplest cases. _ (=E=90)
. . . . Jx, (E) 0 1.2¢" 50
The structure of this paper is as follows. In Section Il we in- ! o 100)
troduce Hodgkin and Huxley (1952) and Noble’s (1962) sys- 1 0.015¢ e
tems of equations. In Section Ill we present the relevant bits | 0.3 0
of the singular perturbation theory of fast-slow systems, such
i : , Ena 115 40
as the concepts of fast foliation and slow manifold. Section IV 7 1 100
describes two Zeeman’s toy models and their analysis, as an—% — —
illustration of the method we use later for HH and N62. Sec- | £ 10.613 —60

t|o_n M desc_:rlbes .p.ar.ametrlc embedding, the formal procedurs]aABLE I: Parameters and functions of the Hodgkin-Huxley and No-
of introducing artificial small parameters to enable asymptotiG),. 1 962 models.

treatment of experiment-based models, which do not have pa-
rameters but only experimentally measured constants. In Sec-

tion VI we analyse the relative speeds of the four variables iRyhere
both HH and N62 models, to assign them the roles of slow and
fast variables. The main results are presented in Sections VI
and VIII, where we apply all the described methods to the HH
and N62 models. The discussion of the results is presented in
Section IX.

fE(Evh’m’n) = (?Kn4+§K1(E))(EK_E)
+(GTnam’h + Gna, ) (Ena — E)
+9,(E; — E)

is the total current passing through the membrane measured
in pA/cm?, t is time measured ims, E is the transmem-
brane voltage measured inV, Ey, k¥ = Na, K,[ are the
reversal potentials of sodium, potassium and leakage currents
espectively, measured in the same scaléZagj, are cor-
responding maximal specific conductance’s in mmjm2

n, m, h are dimensionless “gating” variable€},; is the

II. HOGKIN-HUXLEY’S 1952 AND NOBLE'S 1962
SYSTEMS OF EQUATIONS

Both HH and N62 systems of equations can be written i
the same form,

e O f (B, hym,n), specmc membrane capacitance it /cm?, «;(E), §;(E),

dt : j = h,m,n, are gates opening and closing ratesxis !,

dh e J(E) = aj/(a] + 3;) are the gates instant equilibrium val-
a = rE)A =)= Bu(B)h = (h(E) = 1)/ (E), ues, andr;(F) = 1/(a; + 3;) are the gates dynamics time
dm _ scales inms. The standard values of parameters and forms of
G = (B = m) = Bu(Eym = (W(E) = m)/7(E),

the functions used in (1) are different for HH and N62 models,
dn and are summarised in Table I.

= nBE)(A=n) = Bu(E)n = @(E) —n)/m(E), (1) In the original Hodgkin and Huxley paper [3], the trans-
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stood physiologically. In this study, we aim to see what math-
FIG. 1: Properties of the channel gates in the Hodgkin-Huxley sys-em"’ltlc"’lI features of these systems provide for these differ-

tem (HH) and Noble's 1962 system (N62). (a,b) The quasi_stationar);-:nces,_par_ticularly the qualitative ones. deman [1] suggested
values of the gateg = 71, h, 7 in HH (a) and N62 (b) systems. Solid that this difference may be understood in terms of asymp-

lines:m(E), dash-dotted linesi(E), dashed linesa(E). (c,d) The
time scalesr in HH (c) and N62 (b) systems. Solid lines;,(E),
dash-dotted linest, (E), dashed linest, (E) in (c) and0.017, (E)

totic properties of the underlying models considered as sin-
gularly perturbed “fast-slow” systems, and suggested &wo
priori model systems demonstrating the required features. In

in (d). this study, we will use the same asymptotic approach as Zee-
man did, but base the analysis on actual HH and N62 mod-

) els. Although the asymptotic theory of fast-slow systems is
membrane voltagé®” was measured with respect to the rest-yye|| known (see e.g. [13]), we give its brief overview in the

ing potential, and in the direction opposite to the one acceptefey; section, for reader’s convenience and also to introduce
later, so the variablé” of [3] and the variablely in (1) are  he terms and notations we use later.

related by

E=-V
Ill.  THE SINGULAR PERTURBATION THEORY OF THE

and the resting potential in HH model correspondg-to= FAST-SLOW SYSTEMS

0 by definition; in fact, parameteF; was not measured but
chosen with a high precision to ensure that. ) )

N62 model was formulated in terms of true experimentally e consider a system df, + k first-order autonomous
observed potentials. It was obtained by modifications of the'dinary differential equations fdr, + &, dynamic variables,
HH system, taking into account the differences in the electro®f Whichk, are “slow a”%Q are “fast’. We denote the vector
physiology of the membrane of Purkinje cells in mammalian®f SIOkaa”ablesxl € R™ and the vector of fast variables
hearts from the membrane of the giant squid axon, known at2 € R"*. Then the system of equations is
that time. The most obvious change is a 100-fold increase

in the value ofr,, (£), which corresponds to a much longer dzy _ filz1, m3), 2)
plateau of the action/pacemaker potential duration in Purkinje dt
cells compared to that in the nerve membrane. The differ- dzy

: _ . € = fao(z1,22) 3)
ences between various voltage-dependent functions in these dt

two models are illustrated in fig. 1.

Figure 2 is the action and pacemaker potentials for thavheree > 0 is a small parameter. The transformation of time
above system of equations (1). The HH action potential} = €' brings this system to the form
i.e. time course of the transmembrane voltage after a rela-

tively small but over-threshold deviation from the stable rest- dry efi(a1, x2) (4)
ing state, has a triangular shape and relatively short dura- dT T2
tion. The N62 pacemaker potentials, i.e. time course of the dzs

i i illati — = [o(z1,22). )
transmembrane potential during spontaneous oscillations, are dT

much longer and have a more rectangular shape, with the char-

acteristic “overshot” spikes labelled by “B”. Systems (2,3) (the slow-time system) and (4,5) (the fast-time
The difference in the morphology and in quantitative char-system) are equivalent to each other for every fixed0, but

acteristics of the solutions of the two models is well under-have different properties in the limit— +0.
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The fast-time system at= 0 becomes and that the initial pointz?, 29) is within the basin of attrac-
tion of the equilibrium(z9, X (29)) in terms of the fast-time
day -0 (6) system (4,5).
dr ' Pontryagin’s theorem states conditions for the trajectories
dxs @ leaving off the slow manifold to start movement along the fast

ﬁ f2(x1ax2)a

foliation. Typically, that happens when a trajectory moving
along the slow manifold reaches the boundary of the attract-
ing region of that manifold, provided that the slow trajectory is
transversal to that boundary. If after taking off the slow mani-
fold, the trajectory then happens to be in the basin of another
stable part of the slow manifold, then, by Tikhonov's theorem,
it will again have a quick transient along the fast foliation with
subsequent slow motion along the slow manifold.

Thus, a trajectory with a regular behaviour in a fast-slow
system will consist of slow and fast pieces. Transition from

t to slow motion happens when a fast piece of trajectory
reaches the slow manifold; and transition from slow to fast
motion happens when a slow piece of trajectory reaches the
boundary of the attracting region of the slow manifold. The
dz, slow pieces of trajectory are described by a systery afif-
Fr fi(wy, 22), (8)  ferential eqyations_, and the_ fast pieces are described by a sys-

0 = folar, o) ) tem (_)f ko differential equ_atlons. That means, both §ystems

e are simpler than the original system, thus may admit analyt-

i.e. a system of differential equations (8) with finite con- ical solution, more exhaustive qualitative analysis, or at least
straints (9). The finite constraints defineka-dimensional 0€ €asier for numerical treatment, due to a smaller dimension-
manifold in thek, + k, dimensional phase space, which is ality and absence of the small parameter. _
called theslow manifold This also defines the fast variables = For the purposes of this paper, we will ignore some fine
x5 as implicit functions of the slow variables, = X (z;),  details that make life more complicated than the above ide-
which reduces the original systemiof + k» equations to the ~ alised picture. E.g., the exact moment of the take-off at a

k; equations on the slow manifold, that can be written in theSmall but fixed value of the small parameter, depends on the
form initial conditions in a nontrivial way; namely, some very small

1 fraction of trajectories continue to travel along the slow mani-
Ty fold well into the repelling region before taking off (so called
— = X (x1)). 10

dt Filwy, X (1) (10) “duck” solutions). A more detailed discussion of this and
other related questions and a comprehensive bibliography can
be found in [13].

which means that the slow variables remain constant, and
only the fast variables, vary. A conditionz; = z{ for a con-
stantz{ defines aks-dimensional manifold{ (29, z2) | 22 €
R*2} in the phase space of the systém;, 5)} = RF1 k2,
All such manifolds for all possible) € R*: fill the whole
of the phase spacB* +*2. This k;-parametric family of
non-intersecting:s-dimensional manifolds filling the whole
k1 + ko-dimensional space is called tfest foliationof that
space, because it describes evolution of the system on the f
time scale. Each of the manifolds = 29 makes deaf of
the fast foliation.

The slow-time system at= 0 becomes

If explicit solution of (9) in the formey = X (z1) is possible,

i.e. if the slow variables:;; can be chosen as coordinates on Tikhonov [14] also presented a generalisation of the reduc-

ﬂ}e ?'OVtV_ ma?'t];(l)ldf’ thte pr_oct:)sl.\dure (')Sﬂ?fter! caliﬁdamhaba(tjlc tion theorem, for hierarchical systems that depend on more
eliminationof the fast variables.. erwise, the procedure o 0 parameter, for instance,

still can be used, but another system of coordinates on the
slow manifold is required. dzy

The rigorous grounds for the asymptotic analysis of fast- - fi(@y, w2, x3), z1 € RM,
slow systems has been laid down by classical theorems due to das .
Tikhonov (1952) [14] and Pontryagin (1957) [15]. ‘g = fa(z1, w2, 23), Ty € R™2,
Tikhonov's theorem states conditions when a typical solu- das
tion of the exact system starts with initial conditions at a point 61€2E = f3(x1,x9,23), z3 € R¥s, (12)

(29, 29) demonstrates a “regular” behaviour, which consists
of two parts. The first part of a regular solution is a transientwhere simultaneously; — +0 ande; — +0. In this case, a
period lasting for the time interval < e or ' < 1, close typical trajectory would consist of

to the solution of (7) within the leaf; = 2? starting from
(29, 29) and approaching the poift?, X (2?)). The second
part is slow motion along the slow manifold, it runs on the
time scal_af xlorT o<_e—1 and the soIL_Jtio_n_rgamains _c!ose o 5 4 fast part whenz; and z, change, so that
th(g soluttl)on of (10) withz, = X(xl_) with initial conditions (w1, 22,23) ~ 0, while 21 remain constant, lasting
(_xl,X(:vl)). Apart from the technical cpndmons, the essen- toc e !, followed by

tial assumption for this regular behaviour are that the slow

part of the trajectory goes within an attracting region of the 3. slow motion when all three sets of variables change
slow manifold, defined as set of equilibria of the fast subsys- with f5(z1,z0,23) ~ 0 and fo(x1,x2,23) &~ 0, ONn
tems (7) that are stable (attractive) in linear approximation, the time scalé o 1.

1. a superfast part when onbg change whiler; andzs
remain constant during timesx ¢; 'e; !, followed by



We will say that system (2,3) haasymptotic struc- 15 I 15
i 1 1
ture (k1,k2), and system (11) has asymptotic structure c / c
(klv kg, kg) 0.5 ? 0.5
o A 0
-05 b / 05
IV. THE TWO ZEEMAN'S MODELS _1//'[)//' v 1 L =
-1.5 -15
Zeeman [1] has considered two “toy” models, demonstrat- 0% b 0 0 ) 0 08 1t 15228

ing two different types of asymptotic behaviour of the shape of a)

the action potential, which he believed resembled the shapq_ﬁ .
. S . L G. 3: (a) Phase portrait of Zeeman’s “Heart” model (12)=

of the action potentials in nerve and in cardiac tissue. Thqs, hﬁ)f‘"’. Tﬁme) double grrows represent the flow on the faét fZ)Iiation

Ca”e(_j them the “Nerve” model and the “"Heart” model. With- and the single arrows represent the flow on the slow manifold. In

out discussing how much these models actually relate to nern§is case the slow manifold is the lile= —=* + z. Dotted line

or heart tissue, we briefly discuss them here, for the sake @bpresents the trajectory with the initial poiit =) = (0.2,0.1). (b)

introducing the key concepts and describing the method thafction potential” corresponding to the trajectory of panel (a) with

we will subsequently apply to the HH and N62 systems. the initial point(b, z) = (0.2,0.1). Here the “voltage” is-z.

Zeeman'’s “Heart” model has asymptotic structyiel)

and can written in the form ) ) ) )
A selected trajectory is shown with dotted line and arrows.

b = x— o, Starting from point A, it reaches the upper stable branch of the
ci = —(a® —xz+b), (12)  slow manifold (B), travels along it leftwards until reaching the
left fold point (C) and cannot go any further as it has reached
whereb is the slow variable and is the fast variable. This the repelling piece of the slow manifold. Therefore the trajec-
example is very similar to the famous system of equations dutory has to make a jump from the fold point to the point D on
to FitzHugh [7]. The slow manifold of this system is a cubic the lower stable branch of the slow manifold, and then travel
parabola back along it to the stable equilibrium point E. Thus, trajec-
tory ABCDE represents a typical action potential. The AB
flx,b) =2 —x+b=0. part corresponds to the jump onset. The BC part represents
] ) . the slow excitation part, the action potential plateau. The CD
The slow yarlableb cqnnot be.chosen as a coordinate on th'spiece is the jump return, and DE is the smooth part of the re-
slow manifold, as this equation cannot be resolved with réym to the equilibrium. The corresponding action potential is
spect to the fast variable But it can be eaS|I_y resolved With  ghawn on fig. 3(b). It has a rather “rectangular” shape which
respect td, and sar can be used as a coordinate. was the reason Zeeman called it the “Heart” model.

The stable (attracting) regions on the slow manifold are de- 7oeman’s “Nerve” model is a system with asymptotic struc-
fined by an additional condition théatf /0x > 0 and the un- ture (2, 1):

stable (repelling) region correspondsdg/dxz < 0. The

boundary between these two regions satisfies the system of a = —2(a+x),
equations b= —(a+1)
f(z,b) = 0, ei = —(2% 4 ax +b), (13)
%(I b) = 0 wherea andb are the slow variables andis the fast variable.
oz’ ’ The slow manifold is defined by the equation
which gives two solutions(x;,b;) = (1/v/3,2/3+/3) and flz,a,b) = 2° +ax +b=0, (14)

(z2,bs) = (—1/+/3,-2/3+/3). These are théold points L , . .
where the fast leaves are tangent to the slow manifold. Afnd the fast foliation is a 2-parametric family of lines=

about these points trajectories moving along the slow maniconst, b = const. Thebistability is observed for those and

fold would take off from it. b for which (14) has three real solutions farthe set of such

Since we have only one fast variable, the fast foliation is ;f'mdbizs defigned by condition7b? _4a3, > 0. On'the contrary,
family of linesb = const. In the leaves witth € (b, b,) the  If 270" —4a” < 0, then (14) has one simple real solution for

fast subsystem has three equilibria, of which two are stabl@"d We call this thenonostabilityregion on the(a, b) plane.

and separated by the unstable one. The _boun'dary between these regions in (&) plane is the
The phase portrait of the system is shown on fig. 3(a). Th&&mi-cubic parabola

solid lines represent stable pieces of the slow manifold, de- 2 43 _

! N 270* —4a”° =0 (15)

fined byz® — x + b = 0 and32? > 1, and the dashed line is

the unstable piece, defined by — x + b = 0 and3z2 < 1.  which corresponds to one triple root (at pofatb) = (0, 0))

They are separated by fold points shown by open circles. Ther one double and one simple roots (all other points) in (14).

fixed point (E) of the flow on the slow manifold is located on  Curve (15) is the projection onto tfie, b)-plane of thefold

the attracting branch and therefore is stable. curve defined as the set of points where the slow manifold is



tangent to the fast foliationd0, 0, 1) - V f(a, b, z) = 0f /0x = V. PARAMETRIC EMBEDDING
0. So the fold curves satisfies these two equations:
fla,b,z) = 0: B tar+b=0, We are going to apply the asymptotic procedure described
of above_ to the I_-|odgkin-HuxIey and Noble (1962) systems of
%(a,b,a}) =0: 3224+ a=0, equations defined by (1) and Table I. The immediate prob-
lem is that these systems do not depend on any parameters,
and can be parameterised by but only contain constants, which have been measured exper-
0 = —322, (16) imentally and have certain values, even if not always known

5 with a good precision.
b = 2z°. (7) Thus, to apply the singular perturbation technique we need
This is a smooth curve in the, b, ) space. Its projection to to introduce the §ma}ll parameters artificially. This is of course
(a, b) plane is also a smooth curve except where it is tangent t8 Standard practice in principle, often successfully used on in-
the direction of the projection, i.e. to the fast foliation. SuchUitive basis. However, since this procedure is the key step in
tangency is characterised to the third condition .tth|s study, we are going to formalise it, to avoid any ambigu-
ity.
O f b,z)=0: 6z =0 '
a2 (@ b)) =0 =0 Definition 1 We will call a system
Thus, the only point where this tangency happens in this
model is the point{0,0,0) where equation (14) has a triple
zero inx. This is thecusp(or pleating by the terminology of
[13]) point of the slow manifold.
The fold curve separates the stable (attracting) and unstab}gm

T = F(z;e), r e R4,

depending on parametgral-parametric embeddingf a sys-

(repelling) regions of the slow manifold. Unlike the “Heart” i = f(x) r e RY
model, where the fold points have cut the slow manifold into ’ ’
three pieces, two stable and one unstable, here the fold curye fl@) = F(z,1) for all z € RY.  Similarly, we de-

only makes two pieces, one stable and one unstable. The Ufine ann-parametric embeddingvith right-hand sides in the
stable piece is projected onto the bistability region of{thé)  form F(z,e1,...,6,) and F(z,1,...,1) = f(z). If ann-
plane, and corresponds to the middle reof the correspond-  parametric embedding has a form of a Tikhonov's fast-slow
ing functionsf (a, b, z). The stable piece includes the monos- system with asymptotic structur@s ..., k,), we call it a

tability region together with the upper and lower branches ofTikhonov)(k, . . . , k, )-asymptotic embedding.
the manifold over the bistability region. ’

Theresting staten this model is(a, b, 2) = (—1,0,1) and The typical use of this procedure has the form of a re-
it belongs to the upper (“recovery”) branch of the stable parplacement of a small constant with a small parameter. If a
of the manifold over the stability region. Thus we have thesystem contains a dimensionless constamthich is “much
excitable behaviour: perturbation displacing the system fronsmaller than 1", then replacement @fwith ea constitutes a
the resting state beyond the threshold, represented by the ub-parametric embedding; and then the limit- 0 can be con-
stable branch of the slow manifold, fall down to the lower sidered. In practice, constamtvould more often be replaced
stable (“excitation”) branch of the slow manifold, and returnwith parametek, but in the context o€ — 0 anda = const
to the resting state from there. Unlike the “Heart” model, nowthis, of course, does not make any difference fi@m
there are various opportunities. A trajectory can reach the fold There are infinitely many ways a given system can be para-
line and make a jump return to the upper branch of the slownetrically embedded. In terms of asymptotics, which of the
manifold moving towards the resting state, or it can reach thagmbeddings is “better” depends on the qualitative features of
state moving entirely within the slow manifold, circumvent- the original systems that need to be represented, or classes of
ing the cusp point, as now the upper and lower branches aolutions that need to be approximated. If a numerical simu-
connected to each other via the monostable region. lation of the interesting properties can be done easily, then the
It is not possible to determine analytically, which of the two practical recipe we use in this paper is to look at the solutions
possibilities is realised for a given trajectory. Tpigase por-  of the embedding at different, progressively decreasing values
trait, showing the slow manifold, the fold line, and a selectedof the artificial small parameter and see when the features
trajectory computed numerically, and a corresponding actiowf interest will start to converge. If the convergent behaviour
potential on fig. 4. This selected trajectory shows a marginais satisfactorily similar to the original system with= 1, the
case: its return path goes very near to the cusp point. Thembedding is adequate for these features.
corresponding action potential of this “nerve” model demon-
strates a jump onset of excitation, but a moderately smooth
return to equilibrium. This looks similar to the HH action po- ~ VI. ANALYSIS OF THE RELATIVE SPEED OF THE
tential, which was the reason Zeeman called this a “Nerve” VARIABLES
model. Note, however, that small change in the initial condi-
tions of the trajectory can result in a jump return, if the trajec- To obtain the asymptotic embeddings of the two systems
tory fails to go around the cusp. we need to decide which variables shall be called slow and



FIG. 4: Phase Portrait of The Zeeman’s "Nerve” model (3} 10~>. The semi-transparent surface is the slow manigld- ax + b = 0.

The thick solid line is the fold line (17), the thin lines are its projections to the coordinate planes, the filled circles are the c{sppoint

and its projections. A selected trajectory (initial conditidasb, z) = (—0.8,0.25, —0.1)) and its projections are shown by dash-dotted lines.

(a) The slow manifold, trajectory and the fold curve, with their projections. (b) The trajectory and the fold curve with their projections, but
without the slow manifold. (c) Action potential (“voltage”z vs. time), corresponding to the trajectory of (a) and (b).

e ]

which shall be called fast. Itis reasonable to decide thatbased [ . ..~ I
on the characteristic times of those variables. The three gat—~ |~z 7T o I T
ing variables have in their equations functions,, ,, which E1 ™ E 4 T
have just that meaning. The equation fordoes not have a & &, o
function calledrz, so we define the instant characteristic time = = ol L
of a variablej as the inverse of the corresponding diagonal _1L//in/ T,
element of the Jacobian of the right-hand sides, N ]
20 0 500 1000 1500 2000
(b) t (ms)
o (di\|" 50
(E.h === B B B
TJ( 9 ,m,n) 83 (dt) ’\p K K
> o ¢ Cy
g D D
Obviously, forj = h, m,n this gives the same functions as &
defined in (1), but also can be used for= E. After that we %0
decide that the variables with smaltewill be called fast, and A - AL A
the Val’lab|eS W|th |argef W|” be Ca“ed SIOW 0 2 4 6 _1000 500 1000 1500 2000
Theser’s are not constants, though, but functions, and theséc) t (ms) (d) ¢ (ms)

functions depend on different arguments, so they cannot be

compared directly. To make them comparable, we considefrIG. 5: (a,b) Graphs ofz(t) (dotted lines),r...(t) (solid lines),
typical solutions at selected initial conditions. This gii&s:,  ™»(t) (dashed lines), and,(t) (dash-dotted lines), corresponding
h andm as functions of, which, in turn, defines all the char- {0 the solutions(¢) shown on (c,d) for (a,c) HH and (b,d) N62 sys-
acteristic time scales of the variables, tHg, as functions of ~ ©MS:

t,viaT;(t) = 7;(E(t), h(t), m(t),n(t)), wherej = E h,n

orm.

Figure 5(a) demonstrates that during the action potential in
the HH model, variable& andm are always faster than vari-
ablesh andn, and that, compared to each other,s slower
thanFE in the beginning of the action potential, but faster than
E in the most part of the action potential. So we consider HH
as a (2,2) system, with andn as slow variables anéi and
m as fast variables.

Figure 5(b) shows that during the pacemaker potentials in The above analysis suggests that the adequate asymptotic

the N62 modelyn is always the fastest, thdf andh inter-  embedding of this system {g, 2), with slow variables, n)
change at around the overshot spikes, and that all three @fnd fast variablesH, m).

these are always faster thanSo we consider N62 as a (1,2,1)
system, where is the slow variable E and h are fast vari-
ables andn is the superfast variable. Thus, we consider the following one-parametric embedding

VII. A (2,2)-ASYMPTOTIC EMBEDDING OF THE
HODGKIN-HUXLEY SYSTEM
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The slow manifold corresponding to the embedding (18)
is a two-dimensional manifold in the four-dimensional phase
spaceR*={(n, h, E,m)}. Itis defined by equating the right-
hand sides of thex and E equations to zero,

fE(Evhamvn) = Oa
m(E)—m = 0.

1.5 2

0 0.5 1
T (ms)

(b) This can not be resolved explicitly with respect to the fast vari-

ables(E, m), but can be resolved with respect(ia, i), giv-

FIG. 6: The asymptotic embedding of the Hodgkin-Huxley sys-ing

tem. (a) The action potentials in (18) with the initial condition JE— 20
(E,m,h,n) = (15,0.0530,0.5961,0.3177), original system with m = m(E), (20)
¢ = 1 (solid line), and withe = 102 (dashed line). (b) Same, in the 9k (Ex — E)n* +g,(E, — E)
Ina(Ena — E)*(E)

fast time (19). h
This explicit representation of the slow manifold is convenient

hSM(TL7 E) = —

of (1): for visualisation, and can be used to describe explicitly the
slow motion in terms of(n, E) as coordinates on the slow

dn _ manifold.
FT (n(E) = n)/ma(E), The fast foliation is a two-parameter set of plares=
dh _ const andn = const in R*={(n, h, E,m)}. The flow within
7 = (WE)=h)/(E), each of these planes is described by the system of two equa-
dE tions, which in the fast tim& = ¢ /e state:

€e— = C]\}le(E,h,m,n),
de dE .
dm d7 - CM fE(E,h,TTL,TL),

e = (Mm(E) —m)/mm(E), (18) dm

with one artificial small parameter This embedding takes ] ) )

into account the real relationship between the characteristic SOme typical phase portraits of this system at selected val-
time scales of dynamic variables during typical action potent€s of parameters and /. are shown on fig. 7. As antici-
tial solution. This system is singularly perturbed with respectPated from the formal speed analysis, which of the two vari-
toe. ables is faster depends on their values, and the trajectories in

The corresponding system in the fast tiffie= ¢ /e is the (m,_E) phase plane can be almost vertical or almost hor-
izontal in different parts of it. The system can have from one

dn _ to three equilibria. The most typical picture observed during
qr = €@(B) —n)/m(E), the selected action potential solution, is the type shown on
dh _ fig. 7(b), with two stable equilibria and one unstable equilib-
T = e(h(E) — h)/mh(E), rium. The trajectory starting from point labelled A represents
dE the behaviour similar to the onset of the action potential as
— = C]\}le(E, h,m,n), shown on figures 2(a), 5(c) and 6, when the voltage experi-
ST ences a period of stagnation or even a slight temporary de-
am- _ (M(E) —m)/7m(E), (19) crease, before the gates open up and allow the fast upstroke
dr of the voltage.

which is regularly perturbed with respectdo T_he stable equilibria (_)f all leaves const?tute the attractiye
First we consider the limit — +0 numerically. The effect regions of the slow manlfo_ld. Let us _descrlbe th_e boundaries

of this limit onto the shape of the action potential is shownOf these regions. We consider eqyaﬂons (21.) . as

on fig. 6. We can see that the excitability of the model is pre_constant parameters. .T‘he Jacobian of the right-hand sides of

served, and we observe the jump upstroke to the excited stat@,l) at an equilibrium is:

which becomes infinitely fast for infinitely small However, A(E,m)

the asymptotic embedding abolishes the smooth return to rest/em = m

as in the system with smad] the return to rest includes a fast ’

piece. This suggests that if this smooth return is essential, . C]QlafE/aE C&lﬁf,;/am

then the Tikhonov asymptotic embedding, contrary to Zee- o (Tmm’ —(m— m)T;n)TJLQ —r1 '

man’s expectation, is not sufficient, and one should consider

some more adequate appearance of the small parameter(s)H@wever, since at an equilibrium = m(£), this reduces to:

the system. Note that this conclusion comes from the numeric . .

experiment with the embedding, prior to, and thus indepen- T = Cu 8le{8E Cor afE{am] .

dent of, any analytic work. mTy, -7

m




-20

(b)

FIG. 7: Phase portraits of the fast subsystem (21) at selected values of paranaeters (a) (n, h) = (0.61,0.01), (b) (n, k) = (0.37,0.02),
(c) (n,h) = (0.14,0.05). Solid lines: the vertical null-clines» o« m(E) — m = 0. Dashed lines: the horizontal null-clinds
f(E, h,m,n) = 0. Filled circles: stable equilibria, *: a saddle point. Dotted lines: selected trajectories.

An equilibrium is stable in linear approximation iff R
Tr (Jgm) < 0 anddet (Jg,,) > 0. We have E
10fs . ;20

Tr (JEm) = C]\fla—E - ml g:
=0y (Gxn" +gnam’h+7) —7,' <0, (22) S

o= o= 3

: ; ; ; 0 50 100 0 50 100

for all physiologically sensible values of the variables, so the E (mV) E (mV)

first stability condition is always satisfied. Further,

) @

and the zeros of this function determine the boundary of th
attractive regions on the slow manifold. In terms of the struc

oz
OF

01 dm

det (JEm) om dE

01\7/11 7_% 1 (

(a) (b)
FIG. 8: Functionsy; (F) (dots),q2(F) (dash-dots) ang(E) (solid)
defined by (26) for (a)y; = 10.613 and (b) £;=25. The fold line
of the slow manifold corresponds to the valuestbivherep(E) is
betweeny; (E) andgz (E). Vertical dashed line i& = E, ~ 31.92,
%orresponding to the cusp point.

ture of the phase portraits of the fast subsystems (21), con-

dition det (Jg.,) = 0 can be viewed a{VE . Vm) =0,
i.e. tangency of the two null-clines at a double equilibrium.
In terms of the geometry of the slow manifold, this condition

means tangency of the fast flow to the slow manifold, i.e. de-
fines the fold curves. In more detail, the fold curve satisfies

the following three equations,

E=0: fp(E h,m,n)=0,
m=0: m—-—-m=0, (24)
G
det (Jgm) =0 : F(E,m);‘?)i; %d%:o‘

where
wE) = m*(E)/ (m*(E)),
p(E) = (B — Ey)(Ena — Ex)™"/ (m°(E))’,
@(E) = (BExa — E)(E - E)(Ene — E) 7Y,
@(E) = (BEna — E)(E — Ex)(Ene — Ex)™". (26)

As n must be real, equation (25) only makes sense when
N(E) = —(q1(E) — u(E))/(¢2(E) — u(E)) > 0. The graph

of functionsu(E) andg; »(E) for the standard values of the
parameters is shown in figure 8(a). There are two disjoint in-
tervals,E € (—9.37...,14.66...) U (41.25...,45.68...),

An explicit equation of the fold curve can be given if we i, \which ¢1(E) < u(E) < ¢2(E) and thusN (E) > 0. Thus
chooseE as a parameter. Then, resolving (23) with respecthe fold curve consists of two disjoint branches.

to A, m andn, we get:

h o~ 9 pE)
Ine ©2(B) — w(E)’
m = m(E),
(9 a(B) - p@E\
"o ( Ik Q2(E)—M(E)) ’ @5)

The cusp point is defined by condition that system (21) has
a triple equilibrium, or, equivalently, that the null-clines of
that system have second-order tangency, or, equivalently, that
the fold curve (24) is tangent to the fast leaves, i.e. planes
n = const, h = const. This leads to the following condition,
additional to the three equations (24):

oF OF dm

8—E+%d—E=0. 27)
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Using the definition ofF'(E) we find from here that thé-  as they did in Zeeman’s “Heart” model. However, as far as
coordinate of the cusp points, if any, is given by the in-we could see, this possibility has not been realised in the HH
flexion points of the graph of the functiol/ (E) = (E — model at any reasonable variations of parameters, and the ac-
Enq)m?(E). For the standard parameter values, there is onlyion trajectories always have a jump return.
one such pointE, ~ 31.92. The value ofN (E) at this point
is negative N (E,) ~ —0.021. Therefore, the slow manifold
at the standard parameter values does not have cusp points. VIIl. A (1,2,1)-ASYMPTOTIC EMBEDDING OF THE

We now demonstrate that a variation of parameters in the NOBLE (1962) SYSTEM
HH system is possible that give§(E,) > 0, so the slow
manifold has a real cusp point. From (25) we can see that Ourformal analysis of the relative speeds in the N62 model
the sign of N(E.) depends on the relative location of the ze- has shown that: is the fastest variabldy andh are of inter-
ros of the functionsy 2(E) — u(E) to E,.. Note that the mediate speeds comparable to each othernandhe slowest
function u(F) is determined by the properties of the acti- variable. This understanding leads to the followirig2, 1)
vation gates of the Na channel, and variations of those arasymptotic embedding:
not physiologically feasible. On the contrary, the parameters

En., Fx andE; are determined by the ratios of the intra- and dn — (A(E) — n)/m(E)

extracellular concentrations of the corresponding ions, which dt R

can be changed during the experiments, and can vary phys- dE O (B, b

iologically depending on the ionic balance of the organism. g T M &5(E, hym,n),

From fig. 8(b) one can see that the closest to iheroot of dh —

¢12(E) = p(E) is the left root ofg, (E), obviously strongly T (R(E) = h)/Th(E),

correlated with the root of;, (E) = 0, i.e. E = Ej. Inci- dm .

dentally, as we noted above; is the least reliable parameter cergy = (ME) —m)/Tm(E). (28)

of the model, as its value has not been measured, but chosen

using indirect considerations. We have found that by changFirst, we consider the limi; — 0. The corresponding slow

ing E; from its standard value af0.613, we can shift the left manifold is defined by equating the right-hand side of+ihe

zero of g, (F) — u(F) through E, = 31.92. Notably, this equation to zero, which gives: as a single-valued smooth

parameter variation does not involve functidf(E) whose  function of E,

inflexion point isE,, so the value of’, remains unchanged.

Figure 8(b) shows what happensgq ¢2 andy for E; = 25. m =m(E).

We haveN (E) > 0 at the cusp poinE, = 31.92. As a re- . ) . .

sult, atE; = 25 and all other parameters at standard values, his makesn a uniquely and everywhere defined function of

we haveN(E,) ~ 0.0012 > 0, and there is a cusp point, the slqwer varlables, i.e. the slow manifold is uniquely and

(h,n, E,m) ~ (0.0013,0.1860, 31.92,0.6711). reve(3|bly projected onto tr@, h, E) space. Th|s _slqw man-
Note that the conditioV (E,) > 0 is equivalent to the con- |folt_1 is always attractive. This a]lows ad|§1bat|c elimination of

dition of having the single interval wittv (E') > 0, i.e. the V?‘”ab'e”l frc_)m th_e system. Figure 10 ilustrates results O.f

slow manifold has a real cusp point if and only if the two fold direct numerical simulations, |Ilustrat|ng.the accuracy qf this

lines join into a single fold line. This can be seen by considerProcedure. We see that replacemenmﬁvnh m(E) _has vir-

ing the marginal case when the graphs of the functigh) tually no effect on the shape of the action potential. In other

andu(E) have a point of tangency; straightforward calcula—Wo_rdS’ _numen(_:al_ experiment shows that \_/arlabzlecan be_
tions show that this always happens at the point of the zero cﬁdlabatlcally eliminated from the system with good quantita-

the second derivative d¥/ (E), i.e. atFE,. tive accuracy. .
The phase portraits resulting from the above analysis for After this elimination, we have @, 2) Tikhonov system,
both values ofFE; are shown in figure 9. As the phase dn
space of the system is four-dimensional, we depict only three- i ((E) —n)/T(E),
dimensional projections of the portraits. We use (20) to draw ah _
the slow manifolds, and (25) to draw the fold curves. Figure 9 e1— = (h(E)—h)/m(E),
also shows typical trajectories that go from a starting point (A) d%

along the fast foliation until they reach the slow manifold (B), 61—
then along the slow manifold, until the fold curve (C), where dt
we have a jump return down the fast foliation to the lower,ypare
part of the slow manifold (D). Then the trajectories eventually
move to the equilibrium point (E). Fe(E h,n) = fg(E,h,m(E),n).

In the system with the modified value &f; there exists,
theoretically, an alternative for the trajectories. Namely, with This “reduced” system has two fast variablegnd £, and
a different flow on the slow manifold, the trajectories could only one slow variablep. Therefore, the slow manifold is
have returned to the equilibrium without a jump return, butone-dimensional, and the fast foliation is two-dimensional.
only going along the slow manifold, around the cusp point,Thus, Zeeman'’s conjecture on the cusp singularity in the slow

= CA7[17E<E7 h,n)’ (29)
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FIG. 9: (a,d) The three-dimensional projections of the phase portraits of the Hodgkin-Huxley system and (&,8) &isymptotic embed-

ding ate = 103, together with (c,f) corresponding action potentials, for (aBg)= 10.613 and (d—e)E; = 25. The semi-transparent
surface is the slow manifold (20). On (a,b,d,e), the thick solid lines are the fold curves and the thin solid lines are their projection
on the coordinate plang’s = const, n = const and E = const. The trajectories and their projections are shown by dotted lines.
The initial point of the trajectories i§F, h,m,n) = (15,0.5961,0.0530,0.3177). The filled circle on (d,e) represents the cusp point
(E,h,m,n) = (31.92,0.0013,0.6711,0.1860). Labels A-E mark the feature points of the solution on the coordinate ptasesonst and

n = const on (a,b,d,e) and are also marked on the graphs on (c,f).

50 \ | g 1 This is confirmed by direct numerical simulations illus-
_ L 9 0_5§ trated on fig. 11(a). The pacemaker potentials in the system
> 0 g | with smalle; = 0 are somewhat shorter, mainly at the ex-
E — o pense of the slow returns fey = 1 becoming jump returns
R -50 2_05 for e; — 0, and also by further quickening of the fast onsets.
* Correspondingly, the period of oscillations is shorter. Another
-1000—550 1000 1500 2000 a 1200 200 600 800 observation can be made on the regular limit fig. 11(b), i.e.
() t (ms) (b) t (ms) behaviour of the system in the fast time: the overshot of the
voltage at the onset of the pacemaker potential is due to the

FIG. 10: The first asymptotic embedding in the Noble-1962 systemi,nteraCtion of the two fast variablés andh, as itis preserved

(28) ate, = 1 ande> — 0, leading to adiabatic elimination of the When the slow motion ok is frozen.

gatem. (a) The pacemaker potentials in the original systems 1 i ; ; : :

(solid line), and in the reduced systesn,= 0 (dotted line), for initial e Bgﬁo(:]nse dimensional slow manifold of (29) is defined by
point(n, E, h,m) = (0.3276, —70.6426,0.6025, 0.0786). (b) The q
behaviour ofm(t) (dashed line) andr(E(t)) (dotted line) during

one pacemaker potentiakl(¢) * 0.01 shown by solid line for com- _
parison). The two curves.(t) andm(E(t)) are indistinguishable at h —h(E) =0,
this resolution. fu(E h,n)=0.

manifold is not applicable here even in theory, and we arél'his system of equations cannot be explicitly resolved with
bound to have a jump return. respecttd E, h), but is easily resolved with respect(th, n),
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FIG. 11: The second asymptotic embedding in the Noble-1962 foo 50E (mV) °
system (29) ate; — 0. (a) Singular limit. Solid line: so-
lution of the original systeme( = 1), dotted line: close to F|G. 12: Graphs of10 « det (J) (E) (solid line, ms?) and
the reduced systemey( = 107°), for initial point (n, E,h) =  Tr(.J)(E) (dashed lines, ms), whereJ = Jg, is defined by (31).
(0.3276, —70.6426, 0.6025). (b) The corresponding regular limit.
Same initial conditions as in (a), in the fast tifie = t/¢;.

50

As can be seen from figures 12, conditidet (Jg,) < 0
is satisfied in intervals® € (—oo, E},,) U (E%,,, E3.,) U

giving parameterisation of the manifold l&y (E% . 100, whereE}, = —77.37, E2., = —55.54, B4, —

h = RE), e et the interval of nstabilty h
_ (3T _ 7 us, we see that the interval of instability due to the

n = nsy(E) = [(M*hgna + Ina, ) (Ena — E) positive trace,(EL,, EZ,), lies wholly inside the interval

+ Gw,(BE)(Ex — E) + (Bl — E)) / (G5 (E — Ex))]"* . (E,, E3.,) where the equilibria are unstable due to nega-
o _ ) tive determinant. Therefore, the stability of the equilibria of
The fast foliation consists of planes= const, with coor-  the fast subsystem, hence attractive and repelling pieces of

dinates(h, E). The dynamics on the fast leaves, in terms ofthe slow manifold, can be determined based on the sign of the

the fast timel” is described by the system determinant only, at least for the standard values of the pa-
dE _ rameters. And this criterion produces three disjoint attracting
ar = Cyf fe(E, h,n), pieces of the slow manifold.
dah Incidentally, the sign oflet (Jg;), and thus the stability
- = (E(E) —h)/mh(E), (30) of different parts of the slow manifold, can be deduced from
dT the slope of its(n, E') projection. Indeed, this projection is
wheren is a constant parameter defining the leaf. defined byn = ngp (E), where
The stability of an equilibrium in the fast subsystem is de- _ _
termined by the Jacobian of the right-hand side of (30), fe(E,ME),nsm(E)) = 0.
ol Y 197 We differentiatef(£), and thus find the slope of the slow
= ABR) O 01 5/0F o af,El/ 8h] manifold projectio(n :313

J p— —_ —_— 7
ET0E ) T | (k= (=) -

OO JOE Cy 0f 5/Oh
Th_lh *Th_l

dnsy Of g(n) - ofp  Ofp dh
(31) (w—{an>(ﬁ*mﬁ)

becauséh = h(E) at an equilibrium. The stability in linear Comparing this with (32) and noticing that

approximation require®r (Jg,) < 0 anddet (Jgr) > 0. We 9F p(n)
have gn = 4gxn’(Ex — B),

Tr (Jgn) = C;{l(()f—E—r,jl — ij}l <afE + afEdm) ,Th—l we see thatlet (Jg;,) has the opposite sign tingy, /dE as
OF oE  Oom dE long asE > FE, i.e. during any physiologically sensible
Unlike (22), we are not guaranteed that this func-action/pacemaker potential. _
(0fg/0m) (dm/dE) > 0. The graph ofTr(Jg,)(E) the slope of the projection of the slow manifold to ifte, n)
in the physiological range of is shown in fig. 12. It Plane, seefig. 14(a,b), is negative. .
shows that stability conditiorr (Jz,) (E) < 0 is vio- Figure 13 shows the different types of phase portraits of the
lated in a rangeE € [EL ., E2 ], where EL ~ —68.25, fast subsystem, taken at selected values.cfhese portraits
E2 ~ —57.01, illustrate the null-clines, equilibria, and selected trajectories.
Further, Onfig. 14, one can see also the projection of the slow manifold
_ L and the selected trajectory to the E) plane, for the original
ofp %@) (32) system,; = 1 (panel (a)) and for the reduced system—

11
det (Jpn) = =Car 7, ( OE ' 0h dE +0, represented by, = 103 (panel (b)).



FIG. 13: Phase portraits of the fast leaves at the specified valueséshed lines: thé; = 0 isoclines, solid linesi = 0 isoclines, dots:
selected trajectories, filled points: stable equilibria, asterisks: saddle points.
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FIG. 14: (a) The projection of the phase portrait of the N62 system onteithE) plane. Solid line: the slow manifold. Dotted line: a selected
“pacemaker potential” trajectory. Vertical dashed line: positions of the selected fast leaves shown on fig. 13 (b) Same as (a), with the traject
of the embedded systemat= 10~2. (c) The pacemaker potentials of the original (solid line) and embedded (dashed line) systems. Letters
A,B,C,D,E mark feature points of the pacemaker potential trajectory.

The selected trajectory, representing the pacemaker potenf the pacemaker potential is the non-monotonic onset, repre-
tial, has slow motion pieces along the upper (CD) and lowesented by the ABC piece of the trajectory, including the “over-
(EA) branches of the slow manifold. Between these slow moshot”. This non-monotonicity is a consequence of the be-
tions, there are fast transitions from the lower branch to théaviour of trajectories in the corresponding two-dimensional
upper branch (ABC), which is the jump onset with an over-fast subsystem, as illustrated by the portrait on the fast leaf
shot of the pacemaker potential, and from the upper branch te = 0.3, fig. 13(a). This is essentially different from what is
the lower branch (DE), which is the jump return. These faspossible in one-dimensional fast subsystems, where the tran-
transitions occur near the fold points on the slow manifold.sition is always monotonic.

The labels A-E correspond to the feature points of the pace-

maker potentials shown on fig. 2. This fast/slow behaviour is

exaggerated on the panel (b) where the fast pieces of trajectory IX. DISCUSSION
are visually vertical.

The pacemaker potential trajectory does not ever come We have analysed the asymptotic behaviour of two classical
close to the intermediate stable branch of the slow manifoldmodels of biological excitable systems, the Hodgkin-Huxley
As can be seen from fig. 13(c), the angle between the nulltHH) model of a nerve axon and Noble 1962 (N62) model
clines at the middle stable equilibria of the fast subsystem isf a heart muscle fibre. Although the latter was only a mod-
very small and the stability of these equilibria must be veryification of the former, we have found that their asymptotic
weak. Indeed, the numerical experiment shows thatat 1,  properties differ substantially. The least surprising difference
there are no trajectories that would stay along the middlés the longer duration of the pacemaker potentials in the N62
branch of the slow manifold for any considerable time. model than the action potentials in the HH model, as it is a

Note that there is no stable equilibrium in the model at thedirect consequence of the conductivity of the slow potassium
standard parameter values, and so the selected trajectory repirent decreased by the two orders of magnitude in N62 com-
resents auto-oscillations. With this fact in mind, the over-pared to HH. However, the differences do not stop there.
all behaviour is comparable to that of the Zeeman’s “Heart” First of all, the asymptotic structure of the two models is
model in an appropriate parameter region that gives limit cyclalifferent: whereas HH model is @, 2) model, i.e. has two
behaviour. The only essential difference in the morphologyslow and two fast variables, N62 model ig5 2, 1) model,
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i.e. has 1 slow, 2 fast and 1 superfast variable. By virtue Applied to the character of the return in HH and N62 mod-
of the simple structure of the superfast system, which alwaysls, the present result are less than entirely agreeing with intu-
has a unique and stable equilibrium, N62 model is readily reitive impressions that one might have observing the solutions
duced to a1, 2) system, with one slow variable and two fast of the original models. Indeed, the action potential in the
variables. After that, HH and N62 models have a commorHH model definitely looks more triangular than rectangular,
feature, which makes them different from the two Zeeman'swhich was the original impulse for Zeeman’s conjecture on
models: two fast variables in both HH and reduced N62, ashe role of the cusp catastrophe. And yet, this property is not
opposed to one fast variable in both Zeeman’s “Heart” and¢conserved in the asymptotic embedding. The pacemaker po-
“Nerve” model. This feature appears to be not just a technitentials in the N62 model are less triangular, and the question
cal difference, but brings about new phenomena that are natf whether the return to the lower potential should be consid-
possible in systems with one fast variable. In the HH modelgered fast or slow may be a subjective matter. It is, however,
the feature we found is less prominent: it is a slight delay ofcertain that the slope of the return is much smaller than the
the fast onset of the action potential, even with its slight deslope of the onset. In the asymptotic embedding considered,
crease in the beginning. In the N62 model, this is much morenore specifically, in the limi¢; — 40, this difference is not
prominent: it is the overshot in the beginning of a pacemakereflected at all, and both slopes become vertical.
potential. This last feature is quite typical of many cardiac ex- Thys. we conclude that if the slow character of the return is
citability models and of real cardiac cells behaviour; thus, weyt importance, then the asymptotic embedding we used here
believe the mechanism of the overshot in the N62 model maynoyid be considered unsatisfactory. At this point, we should
be prototypical for more detailed and up-to-date models. Anecy|l that there are infinitely many asymptotic embeddings,
important lesson here is that if any asymptotic embeddings ife - infinitely many ways artificial small parameter(s) can be
such models are to retain this property, theysthave atleast  hroduced to a given system of equations. The asymptotic
a two-dimensional fast foliation. embeddings we used here were both of Tikhonov fast-slow
Another characteristic feature of the solution is the “return”,type, where small parameters appear as factors at some of the
i.e. the repolarisation to the resting potential in the excitabldime derivatives, or as factors at some of the right-hand sides,
HH system and to the lower phase of oscillations in the oscildepending on the choice of the time scale. The number of
latory N62 model. The two Zeeman'’s model differ in that theways such embeddings can be done for a system of only a few
“Nerve” model, at appropriate initial conditions, has a smoothequations is limited, and considering the formal speed analy-
return, while the “Heart” model always has a jump return. Insis that we performed in Section VI, there are practically no
our analysis, both the HH nerve, and N62 heart models havalternatives [19]. This class of perturbed systems is the best
proved to demonstrate jump returns. However, the reasons fatudied, and a huge amount of literature dedicated to singular
that are different in the two models. In N62 model, there isperturbations and fast-slow systems is practically restricted to
only one slow variable, thus the slow manifold is only one-this class: e.g. it ithe onlyclass considered in a very compre-
dimensional, and therefore, in accordance with Zeeman'’s redensive review [13]. Thus, the formal analysis of asymptotic
soning, the slow return is impossible. Indeed, the action angroperties of realistic excitable systems ought to have started
resting branches of the slow manifold have been found to bevith this embedding. However, we now see that analysis re-
separated in the phase space. In contrast, HH model has tvetricted to this class may not be sufficient, and other types of
slow variables, and a two-dimensional slow manifold. Thereembedding should be considered. And this may involve inter-
fore, there exists a theoretical possibility of this manifold toesting mathematical questions, as the mathematical theory of
have a cusp catastrophe in its mapping to the space of slomon-Tikhonov fast-slow systems is very little developed yet.
variables, and a possibility for trajectories to return from the  There are two more points to notice in the analysis of the
upper to the lower branch of the slow manifold by going alongne2 model, the possibility of fast oscillatory instability and
that manifold around the cusp point. Indeed, we have founghiqde stable branch of the slow manifold. Oscillatory insta-
that, although such a catastrophe is not observed in the modgiity is impossible in systems with one fast variable, but is
at the standard values of the parameters, it may appear at &poretically possible in systems with two fast variables, and
propriate, phy5|ol.og|cally fea§|ble variations of the parame-yqyd be characterised by change of sign of the trace of the
ters. However, existence of this catastrophe does not automafacobjan at the equilibrium at a positive determinant of the Ja-
ically imply that trajectories will necessary go around the cusp:gpjan, i.e. a Hopf bifurcation. This possibility is not realised
point, and as the numerical calculations show, in fact they dg, Ng2 model, as the change of sign of the trace happens at
not, at least at the parameter values studied. negative determinant; however, the fact that such a change
Notice that the very fact of the jump return does not dependhappens, is suggestive of the fact that this kind of instability
on details of the analytic work, but is a direct result of the cho-may take place in this system at different parameter values, or
sen parametric embedding, i.e. the way the artificial small pain other models of similar nature. This would correspond to
rameter is introduced in the model to make asymptotic analybursts of high frequency oscillations on the wake of the ac-
sis possible. Indeed, this property can be established by diretibn/pacemaker potential; indeed, such bursts are observed in
numerical calculations of trajectories in systems with progressome models[16]. The middle stable branch in N62 model
sively decreasing values of the artificial parameter. This is avas completely unexpected. If it was more pronounced, it
convenient way to establish properties of an asymptotic emeould correspond e.g. to another, “minor” action potentials
bedding prior to the asymptotic analysis of that embedding. with smaller amplitude and much shorter duration than the
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normal potentials. This possibility is not realised in N62 sys-nor potential” explanation may look plausible[17].
tem at normal parameter values, and so could be considered
as an artefact of the parametric embedding. But again, the
fact that such this feature takes place albeit formally, suggest
that in some similar systems it may appear indeed. We are not
aware of any theoretical or reliable experimental description
that could be associated with such “minor” potentials; how- VNB is grateful to D. Barkley and 1.V. Biktasheva for en-
ever, there are certain experimental facts which do not yetouraging discussions. This work was supported in part by
have firm theoretical explanations, and for which such “mi-EPSRC.
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