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We analyse the asymptotic structure of two classical models of mathematical biology, the models of electrical
action by Hodgkin-Huxley (1952) for a giant squid axon and by Noble (1962) for mammalian Purkinje fibres.
We use the procedure of parametric embedding to formally introduce small parameters in these experiment-
based models. Although one of the models was designed as a modification of the other, their structure with
respect to the small parameters appears to be entirely different: Hodgkin-Huxley’s model has two slow and two
fast variables, while Noble’s model has one slow variable, two fast variables and one superfast variable. The
singular perturbation theory of these models adequately reproduces some features of the accurate numeric so-
lutions, such as excitability and the shape of the voltage upstroke, but fails to reproduce other features, such as
the relatively slow return from the excited state, compared to the speed of the upstroke. We present arguments
towards the viewpoint that contrary to the conjecture proposed by Zeeman (1972), for these two models this fail-
ure is an inevitable consequence of the Tikhonov-style appearance of the small parameters, and a more adequate
asymptotic description may only be achieved with small parameters entering the equations in a significantly
different way.

PACS numbers: 87.10.+e

I. INTRODUCTION

The idea of the present study came from a 1972 paper by
Zeeman [1], which was one in his series of works dedicated
to possible applications of the then new catastrophe theory
[2]. In that paper, Zeeman has analysed an apparent differ-
ence between two sorts of biological excitable systems, nerve
and heart, and conjectured that this difference may come as a
consequence of them being described by singularly perturbed
systems of equations, with the slow manifolds demonstrating
catastrophes of different types. Amazingly, in the following
30 years, there were no published papers directly testing this
conjecture. To fill in this gap, was one reason to undertake
this study.

The other reason was more practical. Mathematical mod-
els describing biological excitable systems, particularly nerve
and heart tissues, are historically the first, and so far the best,
in terms of quantitative description of truly biological phe-
nomena, based on solid experimental information. A special
place in this set belongs to Hodgkin and Huxley’s [3] model
of the squid giant axon, and Noble’s [4] model of the cells of
Purkinje fibres of mammalian heart. These were historically
the first and still the simplest in that family. Since then, the
progress in development of realistic models of different kinds
of cells has been enormous, and the current models achieve
remarkable complexity and accuracy, particularly for cardiac
cells [5, 6]. One disappointing, from a theoretical physicist’s
point of view, feature of all these models is a seemingly ab-
solute necessity of numerical treatment, since they are high-
order (at least, of order four, as for both HH and N62) non-
linear systems of differential equations, and do not admit ex-
act analytical solution. Purely numerical study, however good
the computers may be, always has well known disadvantages,
e.g. lack of insight into dependence of the solutions on the pa-
rameters. Thus, from the very beginning there were attempts
to understand the behaviour of the solutions in these models

by some asymptotic methods, and to devise simpler models
that admit analytical treatment. The most prominent exam-
ple of such study was the paper by FitzHugh [7], who has
shown that a modification of the van der Pol’s nonlinear os-
cillator can demonstrate qualitative properties very similar to
those of the HH system, and that a collection of appropriate
two-dimensional projections of the four-dimensional trajecto-
ries of the HH system look similar to the phase portrait of the
modified van der Pol system. When considered as a singu-
larly perturbed system, FitzHugh’s system allowed a qualita-
tive analysis explaining its main featureswithout using a com-
puter. Ever since, FitzHugh’s system and its numerous varia-
tions are very popular as simple systems qualitatively similar
to real excitable systems, and allowing both a better qualita-
tive understanding, and a more efficient numerical treatment
of large numbers of excitable cells, than detailed, realistic
models. Yet, these simplified models are only in qualitative
and not in quantitative agreement with the real systems. More-
over, these simplified models are not in any wayderivedfrom
the realistic systems, and therefore there is no way to be sure
that they reproduce even the qualitative effects correctly.

This makes a case for deriving simplified models from re-
alistic models, by exploiting their real properties, via a clearly
defined set of assumptions and transformations. One such at-
tempt made as early as 1973 by Krinsky and Kokoz [8] who
have considered the HH system as a singularly perturbed sys-
tem to reduce its order to three, and anad hocempirical ob-
servation to further reduce it to two, which ended up with
a system whose phase portrait looked similar to that of the
FitzHugh’s system, but already without any small parameters
left. Although very interesting in a historical perspective, that
paper failed to have a more lasting impact in its time, in par-
ticular, because thead hocmethods used there could not be
transferred to more sophisticated models.

With the advent of computational biology of extended bi-
ological systems including large numbers of excitable ele-
ments, such as large neural networks or whole heart, the ques-
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tion of faithful simplifications of detailed models gains more
and more of practical importance. Various kinds of simplified
models of excitable systems, such as FitzHugh and its vari-
ations, and even further caricature-like simplifications, such
as integrate-and-fire neurons, cellular automata etc, have been
used in large scale computations as a “poor man’s substitute”
of realistic models. Now the level of understanding achievable
at such caricature level is to a considerable extent exhausted.
On the other hand, the development of computer technology
itself has not been in pace with the demand from applications,
e.g. in biomedical engineering in cardiology. There have been
several attempts to develop models which would mimic the
properties of realistic models but would be less computational
expensive, see e.g. [9–12]. However, all these attempts so
far have been, at least in some points, phenomenological, and
thus have the same principal disadvantages as the FitzHugh’s
attempt, i.e. lack of confidence in quantitative and perhaps
even qualitative predictions. Hence, development of meth-
ods of reliable and verifiable derivation of simplified models,
qualitatively and quantitatively reproducing relevant proper-
ties of the detailed models, or deviating from them in a con-
trollable way, can present a considerable advantage for com-
putations for applications. We believe that the methods of
such derivations should be developed starting from the sim-
plest cases, and then generalised to more sophisticated mod-
els. The present paper deals with the two simplest cases.

The structure of this paper is as follows. In Section II we in-
troduce Hodgkin and Huxley (1952) and Noble’s (1962) sys-
tems of equations. In Section III we present the relevant bits
of the singular perturbation theory of fast-slow systems, such
as the concepts of fast foliation and slow manifold. Section IV
describes two Zeeman’s toy models and their analysis, as an
illustration of the method we use later for HH and N62. Sec-
tion V describes parametric embedding, the formal procedure
of introducing artificial small parameters to enable asymptotic
treatment of experiment-based models, which do not have pa-
rameters but only experimentally measured constants. In Sec-
tion VI we analyse the relative speeds of the four variables in
both HH and N62 models, to assign them the roles of slow and
fast variables. The main results are presented in Sections VII
and VIII, where we apply all the described methods to the HH
and N62 models. The discussion of the results is presented in
Section IX.

II. HOGKIN-HUXLEY’S 1952 AND NOBLE’S 1962
SYSTEMS OF EQUATIONS

Both HH and N62 systems of equations can be written in
the same form,

dE
dt

= C−1
M fE(E, h,m, n),

dh
dt

= αh(E)(1− h)− βh(E)h = (h(E)− h)/τh(E),

dm
dt

= αm(E)(1−m)− βm(E)m = (m(E)−m)/τm(E),

dn
dt

= αn(E)(1− n)− βn(E)n = (n(E)− n)/τn(E), (1)

Parameter/ Hodgkin-Huxley Noble 1962

Function System System

CM 1 12

αm(E)
0.1(−E + 25)

e
−E+25

10 − 1

0.1(−E − 48)

(e
(−E−48)

15 − 1)

αn(E)
0.01(−E + 10)

(e
−E+10

10 − 1)

0.0001(−E − 50)

(e
(−E−50)

10 − 1)

αh(E) 0.07e
−E
20 0.17e

(−E−90)
20

βm(E) 4e
−E
18

0.12(E + 8)

(e
(E+8)

5 − 1)

βn(E) 0.125e
−E
80 0.002e

(−E−90)
80

βh(E)
1

(e
−E+30

10 + 1)

1

(e
(−E−42)

10 + 1)

gNa 120 400

gNa1
0 0.14

gK 36 1.2

gK1
(E) 0 1.2e

(−E−90)
50

+ 0.015e
(E+90)

60

gl 0.3 0

ENa 115 40

EK −12 −100

El 10.613 −60

TABLE I: Parameters and functions of the Hodgkin-Huxley and No-
ble 1962 models.

where

fE(E, h,m, n) = (gKn
4 + gK1

(E))(EK − E)

+(gNam
3h+ gNa1

)(ENa − E)
+gl(El − E)

is the total current passing through the membrane measured
in µA/cm2, t is time measured inms, E is the transmem-
brane voltage measured inmV, Ek, k = Na,K, l are the
reversal potentials of sodium, potassium and leakage currents
respectively, measured in the same scale asE, gk are cor-
responding maximal specific conductance’s in mmho/cm2,
n, m, h are dimensionless “gating” variables,CM is the
specific membrane capacitance inµF/cm2, αj(E), βj(E),
j = h,m, n, are gates opening and closing rates inms−1,
j(E) = αj/(αj + βj) are the gates instant equilibrium val-
ues, andτj(E) = 1/(αj + βj) are the gates dynamics time
scales inms. The standard values of parameters and forms of
the functions used in (1) are different for HH and N62 models,
and are summarised in Table I.

In the original Hodgkin and Huxley paper [3], the trans-
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FIG. 1: Properties of the channel gates in the Hodgkin-Huxley sys-
tem (HH) and Noble’s 1962 system (N62). (a,b) The quasi-stationary
values of the gatesy = m,h, n in HH (a) and N62 (b) systems. Solid
lines:m(E), dash-dotted lines:h(E), dashed lines:n(E). (c,d) The
time scalesτ in HH (c) and N62 (b) systems. Solid lines:τm(E),
dash-dotted lines:τh(E), dashed lines:τn(E) in (c) and0.01τn(E)
in (d).

membrane voltageV was measured with respect to the rest-
ing potential, and in the direction opposite to the one accepted
later, so the variableV of [3] and the variableE in (1) are
related by

E = −V

and the resting potential in HH model corresponds toE =
0 by definition; in fact, parameterEl was not measured but
chosen with a high precision to ensure that.

N62 model was formulated in terms of true experimentally
observed potentials. It was obtained by modifications of the
HH system, taking into account the differences in the electro-
physiology of the membrane of Purkinje cells in mammalian
hearts from the membrane of the giant squid axon, known at
that time. The most obvious change is a 100-fold increase
in the value ofτn(E), which corresponds to a much longer
plateau of the action/pacemaker potential duration in Purkinje
cells compared to that in the nerve membrane. The differ-
ences between various voltage-dependent functions in these
two models are illustrated in fig. 1.

Figure 2 is the action and pacemaker potentials for the
above system of equations (1). The HH action potential,
i.e. time course of the transmembrane voltage after a rela-
tively small but over-threshold deviation from the stable rest-
ing state, has a triangular shape and relatively short dura-
tion. The N62 pacemaker potentials, i.e. time course of the
transmembrane potential during spontaneous oscillations, are
much longer and have a more rectangular shape, with the char-
acteristic “overshot” spikes labelled by “B”.

The difference in the morphology and in quantitative char-
acteristics of the solutions of the two models is well under-
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FIG. 2: (a) Action potential in the Hodgkin-Huxley’s
system: solution for the initial point (E,m, n, h) =
(15, 0.0530, 0.5961, 0.3177). (b) Pacemaker potential to No-
ble’s system: solution for the initial point(E,n,m, h) =
(−70.6426, 0.3276, 0.0786, 0.6025). The labels mark feature
points of the graphs referred to in the asymptotic analysis to follow.

stood physiologically. In this study, we aim to see what math-
ematical features of these systems provide for these differ-
ences, particularly the qualitative ones. Zeeman [1] suggested
that this difference may be understood in terms of asymp-
totic properties of the underlying models considered as sin-
gularly perturbed “fast-slow” systems, and suggested twoa
priori model systems demonstrating the required features. In
this study, we will use the same asymptotic approach as Zee-
man did, but base the analysis on actual HH and N62 mod-
els. Although the asymptotic theory of fast-slow systems is
well known (see e.g. [13]), we give its brief overview in the
next section, for reader’s convenience and also to introduce
the terms and notations we use later.

III. THE SINGULAR PERTURBATION THEORY OF THE
FAST-SLOW SYSTEMS

We consider a system ofk1 + k2 first-order autonomous
ordinary differential equations fork1 + k2 dynamic variables,
of whichk1 are “slow” andk2 are “fast”. We denote the vector
of slow variablesx1 ∈ Rk1 and the vector of fast variables
x2 ∈ Rk2 . Then the system of equations is

dx1

dt
= f1(x1, x2), (2)

ε
dx2

dt
= f2(x1, x2) (3)

whereε > 0 is a small parameter. The transformation of time
t = εT brings this system to the form

dx1

dT
= εf1(x1, x2), (4)

dx2

dT
= f2(x1, x2). (5)

Systems (2,3) (the slow-time system) and (4,5) (the fast-time
system) are equivalent to each other for every fixedε > 0, but
have different properties in the limitε→ +0.
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The fast-time system atε = 0 becomes

dx1

dT
= 0, (6)

dx2

dT
= f2(x1, x2), (7)

which means that the slow variablesx1 remain constant, and
only the fast variablesx2 vary. A conditionx1 = x0

1 for a con-
stantx0

1 defines ak2-dimensional manifold{(x0
1, x2) |x2 ∈

R
k2} in the phase space of the system{(x1, x2)} = R

k1+k2 .
All such manifolds for all possiblex0

1 ∈ Rk1 fill the whole
of the phase spaceRk1+k2 . This k1-parametric family of
non-intersectingk2-dimensional manifolds filling the whole
k1 + k2-dimensional space is called thefast foliationof that
space, because it describes evolution of the system on the fast
time scale. Each of the manifoldsx1 = x0

1 makes aleaf of
the fast foliation.

The slow-time system atε = 0 becomes

dx1

dt
= f1(x1, x2), (8)

0 = f2(x1, x2), (9)

i.e. a system of differential equations (8) with finite con-
straints (9). The finite constraints define ak1-dimensional
manifold in thek1 + k2 dimensional phase space, which is
called theslow manifold. This also defines the fast variables
x2 as implicit functions of the slow variables,x2 = X(x1),
which reduces the original system ofk1 + k2 equations to the
k1 equations on the slow manifold, that can be written in the
form

dx1

dt
= f1(x1, X(x1)). (10)

If explicit solution of (9) in the formx2 = X(x1) is possible,
i.e. if the slow variablesx1 can be chosen as coordinates on
the slow manifold, the procedure is often called anadiabatic
eliminationof the fast variablesx2. Otherwise, the procedure
still can be used, but another system of coordinates on the
slow manifold is required.

The rigorous grounds for the asymptotic analysis of fast-
slow systems has been laid down by classical theorems due to
Tikhonov (1952) [14] and Pontryagin (1957) [15].

Tikhonov’s theorem states conditions when a typical solu-
tion of the exact system starts with initial conditions at a point
(x0

1, x
0
2) demonstrates a “regular” behaviour, which consists

of two parts. The first part of a regular solution is a transient
period lasting for the time intervalt ∝ ε or T ∝ 1, close
to the solution of (7) within the leafx1 = x0

1 starting from
(x0

1, x
0
2) and approaching the point(x0

1, X(x0
1)). The second

part is slow motion along the slow manifold, it runs on the
time scalet ∝ 1 or T ∝ ε−1 and the solution remains close to
the solution of (10) withx2 = X(x1) with initial conditions
(x0

1, X(x0
1)). Apart from the technical conditions, the essen-

tial assumption for this regular behaviour are that the slow
part of the trajectory goes within an attracting region of the
slow manifold, defined as set of equilibria of the fast subsys-
tems (7) that are stable (attractive) in linear approximation,

and that the initial point(x0
1, x

0
2) is within the basin of attrac-

tion of the equilibrium(x0
1, X(x0

1)) in terms of the fast-time
system (4,5).

Pontryagin’s theorem states conditions for the trajectories
leaving off the slow manifold to start movement along the fast
foliation. Typically, that happens when a trajectory moving
along the slow manifold reaches the boundary of the attract-
ing region of that manifold, provided that the slow trajectory is
transversal to that boundary. If after taking off the slow mani-
fold, the trajectory then happens to be in the basin of another
stable part of the slow manifold, then, by Tikhonov’s theorem,
it will again have a quick transient along the fast foliation with
subsequent slow motion along the slow manifold.

Thus, a trajectory with a regular behaviour in a fast-slow
system will consist of slow and fast pieces. Transition from
fast to slow motion happens when a fast piece of trajectory
reaches the slow manifold; and transition from slow to fast
motion happens when a slow piece of trajectory reaches the
boundary of the attracting region of the slow manifold. The
slow pieces of trajectory are described by a system ofk1 dif-
ferential equations, and the fast pieces are described by a sys-
tem of k2 differential equations. That means, both systems
are simpler than the original system, thus may admit analyt-
ical solution, more exhaustive qualitative analysis, or at least
be easier for numerical treatment, due to a smaller dimension-
ality and absence of the small parameter.

For the purposes of this paper, we will ignore some fine
details that make life more complicated than the above ide-
alised picture. E.g., the exact moment of the take-off at a
small but fixed value of the small parameter, depends on the
initial conditions in a nontrivial way; namely, some very small
fraction of trajectories continue to travel along the slow mani-
fold well into the repelling region before taking off (so called
“duck” solutions). A more detailed discussion of this and
other related questions and a comprehensive bibliography can
be found in [13].

Tikhonov [14] also presented a generalisation of the reduc-
tion theorem, for hierarchical systems that depend on more
than one small parameter, for instance,

dx1

dt
= f1(x1, x2, x3), x1 ∈ Rk1 ,

ε1
dx2

dt
= f2(x1, x2, x3), x2 ∈ Rk2 ,

ε1ε2
dx3

dt
= f3(x1, x2, x3), x3 ∈ Rk3 , (11)

where simultaneouslyε1 → +0 andε2 → +0. In this case, a
typical trajectory would consist of

1. a superfast part when onlyx3 change whilex1 andx2

remain constant during timet ∝ ε−1
1 ε−1

2 , followed by

2. a fast part whenx3 and x2 change, so that
f3(x1, x2, x3) ≈ 0, while x1 remain constant, lasting
t ∝ ε−1

1 , followed by

3. slow motion when all three sets of variables change
with f3(x1, x2, x3) ≈ 0 and f2(x1, x2, x3) ≈ 0, on
the time scalet ∝ 1.
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We will say that system (2,3) hasasymptotic struc-
ture (k1, k2), and system (11) has asymptotic structure
(k1, k2, k3).

IV. THE TWO ZEEMAN’S MODELS

Zeeman [1] has considered two “toy” models, demonstrat-
ing two different types of asymptotic behaviour of the shape of
the action potential, which he believed resembled the shapes
of the action potentials in nerve and in cardiac tissue. Thus, he
called them the “Nerve” model and the “Heart” model. With-
out discussing how much these models actually relate to nerve
or heart tissue, we briefly discuss them here, for the sake of
introducing the key concepts and describing the method that
we will subsequently apply to the HH and N62 systems.

Zeeman’s “Heart” model has asymptotic structure(1, 1)
and can written in the form

ḃ = x− x0,

εẋ = −(x3 − x+ b), (12)

whereb is the slow variable andx is the fast variable. This
example is very similar to the famous system of equations due
to FitzHugh [7]. The slow manifold of this system is a cubic
parabola

f(x, b) = x3 − x+ b = 0.

The slow variableb cannot be chosen as a coordinate on this
slow manifold, as this equation cannot be resolved with re-
spect to the fast variablex. But it can be easily resolved with
respect tob, and sox can be used as a coordinate.

The stable (attracting) regions on the slow manifold are de-
fined by an additional condition that∂f/∂x > 0 and the un-
stable (repelling) region corresponds to∂f/∂x < 0. The
boundary between these two regions satisfies the system of
equations

f(x, b) = 0,
∂f

∂x
(x, b) = 0,

which gives two solutions,(x1, b1) = (1/
√

3, 2/3
√

3) and
(x2, b2) = (−1/

√
3,−2/3

√
3). These are thefold points

where the fast leaves are tangent to the slow manifold. At
about these points trajectories moving along the slow mani-
fold would take off from it.

Since we have only one fast variable, the fast foliation is a
family of linesb = const. In the leaves withb ∈ (b1, b2) the
fast subsystem has three equilibria, of which two are stable
and separated by the unstable one.

The phase portrait of the system is shown on fig. 3(a). The
solid lines represent stable pieces of the slow manifold, de-
fined byx3 − x + b = 0 and3x2 > 1, and the dashed line is
the unstable piece, defined byx3 − x + b = 0 and3x2 < 1.
They are separated by fold points shown by open circles. The
fixed point (E) of the flow on the slow manifold is located on
the attracting branch and therefore is stable.
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FIG. 3: (a) Phase portrait of Zeeman’s “Heart” model (12),ε =
10−3. The double arrows represent the flow on the fast foliation
and the single arrows represent the flow on the slow manifold. In
this case the slow manifold is the lineb = −x3 + x. Dotted line
represents the trajectory with the initial point(b, x) = (0.2, 0.1). (b)
“Action potential” corresponding to the trajectory of panel (a) with
the initial point(b, x) = (0.2, 0.1). Here the “voltage” is−x.

A selected trajectory is shown with dotted line and arrows.
Starting from point A, it reaches the upper stable branch of the
slow manifold (B), travels along it leftwards until reaching the
left fold point (C) and cannot go any further as it has reached
the repelling piece of the slow manifold. Therefore the trajec-
tory has to make a jump from the fold point to the point D on
the lower stable branch of the slow manifold, and then travel
back along it to the stable equilibrium point E. Thus, trajec-
tory ABCDE represents a typical action potential. The AB
part corresponds to the jump onset. The BC part represents
the slow excitation part, the action potential plateau. The CD
piece is the jump return, and DE is the smooth part of the re-
turn to the equilibrium. The corresponding action potential is
shown on fig. 3(b). It has a rather “rectangular” shape which
was the reason Zeeman called it the “Heart” model.

Zeeman’s “Nerve” model is a system with asymptotic struc-
ture(2, 1):

ȧ = −2(a+ x),

ḃ = −(a+ 1),
εẋ = −(x3 + ax+ b), (13)

wherea andb are the slow variables andx is the fast variable.
The slow manifold is defined by the equation

f(x, a, b) = x3 + ax+ b = 0, (14)

and the fast foliation is a 2-parametric family of linesa =
const, b = const. Thebistability is observed for thosea and
b for which (14) has three real solutions forx; the set of sucha
andb is defined by condition27b2−4a3 > 0. On the contrary,
if 27b2−4a3 < 0, then (14) has one simple real solution forx,
and we call this themonostabilityregion on the(a, b) plane.
The boundary between these regions in the(a, b) plane is the
semi-cubic parabola

27b2 − 4a3 = 0 (15)

which corresponds to one triple root (at point(a, b) = (0, 0))
or one double and one simple roots (all other points) in (14).

Curve (15) is the projection onto the(a, b)-plane of thefold
curve, defined as the set of points where the slow manifold is
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tangent to the fast foliation,(0, 0, 1) ·∇f(a, b, x) = ∂f/∂x =
0. So the fold curves satisfies these two equations:

f(a, b, x) = 0 : x3 + ax+ b = 0,
∂f

∂x
(a, b, x) = 0 : 3x2 + a = 0,

and can be parameterised byx,

a = −3x2, (16)

b = 2x3. (17)

This is a smooth curve in the(a, b, x) space. Its projection to
(a, b) plane is also a smooth curve except where it is tangent to
the direction of the projection, i.e. to the fast foliation. Such
tangency is characterised to the third condition

∂2f

∂x2
(a, b, x) = 0 : 6x = 0.

Thus, the only point where this tangency happens in this
model is the point(0, 0, 0) where equation (14) has a triple
zero inx. This is thecusp(or pleating, by the terminology of
[13]) point of the slow manifold.

The fold curve separates the stable (attracting) and unstable
(repelling) regions of the slow manifold. Unlike the “Heart”
model, where the fold points have cut the slow manifold into
three pieces, two stable and one unstable, here the fold curve
only makes two pieces, one stable and one unstable. The un-
stable piece is projected onto the bistability region of the(a, b)
plane, and corresponds to the middle rootx of the correspond-
ing functionsf(a, b, x). The stable piece includes the monos-
tability region together with the upper and lower branches of
the manifold over the bistability region.

Theresting statein this model is(a, b, x) = (−1, 0, 1) and
it belongs to the upper (“recovery”) branch of the stable part
of the manifold over the stability region. Thus we have the
excitable behaviour: perturbation displacing the system from
the resting state beyond the threshold, represented by the un-
stable branch of the slow manifold, fall down to the lower
stable (“excitation”) branch of the slow manifold, and return
to the resting state from there. Unlike the “Heart” model, now
there are various opportunities. A trajectory can reach the fold
line and make a jump return to the upper branch of the slow
manifold moving towards the resting state, or it can reach that
state moving entirely within the slow manifold, circumvent-
ing the cusp point, as now the upper and lower branches are
connected to each other via the monostable region.

It is not possible to determine analytically, which of the two
possibilities is realised for a given trajectory. Thephase por-
trait, showing the slow manifold, the fold line, and a selected
trajectory computed numerically, and a corresponding action
potential on fig. 4. This selected trajectory shows a marginal
case: its return path goes very near to the cusp point. The
corresponding action potential of this “nerve” model demon-
strates a jump onset of excitation, but a moderately smooth
return to equilibrium. This looks similar to the HH action po-
tential, which was the reason Zeeman called this a “Nerve”
model. Note, however, that small change in the initial condi-
tions of the trajectory can result in a jump return, if the trajec-
tory fails to go around the cusp.

V. PARAMETRIC EMBEDDING

We are going to apply the asymptotic procedure described
above to the Hodgkin-Huxley and Noble (1962) systems of
equations defined by (1) and Table I. The immediate prob-
lem is that these systems do not depend on any parameters,
but only contain constants, which have been measured exper-
imentally and have certain values, even if not always known
with a good precision.

Thus, to apply the singular perturbation technique we need
to introduce the small parameters artificially. This is of course
a standard practice in principle, often successfully used on in-
tuitive basis. However, since this procedure is the key step in
this study, we are going to formalise it, to avoid any ambigu-
ity.

Definition 1 We will call a system

ẋ = F (x; ε), x ∈ Rd,

depending on parameterε, a1-parametric embeddingof a sys-
tem

ẋ = f(x), x ∈ Rd,

if f(x) ≡ F (x, 1) for all x ∈ R
d. Similarly, we de-

fine ann-parametric embedding, with right-hand sides in the
form F (x, ε1, . . . , εn) andF (x, 1, . . . , 1) ≡ f(x). If an n-
parametric embedding has a form of a Tikhonov’s fast-slow
system with asymptotic structure(k1, . . . , kn), we call it a
(Tikhonov)(k1, . . . , kn)-asymptotic embedding.

The typical use of this procedure has the form of a re-
placement of a small constant with a small parameter. If a
system contains a dimensionless constanta which is “much
smaller than 1”, then replacement ofa with εa constitutes a
1-parametric embedding; and then the limitε→ 0 can be con-
sidered. In practice, constanta would more often be replaced
with parameterε, but in the context ofε → 0 anda = const
this, of course, does not make any difference fromεa.

There are infinitely many ways a given system can be para-
metrically embedded. In terms of asymptotics, which of the
embeddings is “better” depends on the qualitative features of
the original systems that need to be represented, or classes of
solutions that need to be approximated. If a numerical simu-
lation of the interesting properties can be done easily, then the
practical recipe we use in this paper is to look at the solutions
of the embedding at different, progressively decreasing values
of the artificial small parameterε, and see when the features
of interest will start to converge. If the convergent behaviour
is satisfactorily similar to the original system withε = 1, the
embedding is adequate for these features.

VI. ANALYSIS OF THE RELATIVE SPEED OF THE
VARIABLES

To obtain the asymptotic embeddings of the two systems
we need to decide which variables shall be called slow and



7

−2
−1

0 −0.5
0

0.5
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5 B

A

C

B

A

C

−0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

A

B

C

�
�

� �
(a)

�
�

� �
(b)

�
�

�
(c)

FIG. 4: Phase Portrait of The Zeeman’s ”Nerve” model (13),ε = 10−3. The semi-transparent surface is the slow manifoldx3 + ax+ b = 0.
The thick solid line is the fold line (17), the thin lines are its projections to the coordinate planes, the filled circles are the cusp point(0, 0, 0)
and its projections. A selected trajectory (initial conditions(a, b, x) = (−0.8, 0.25,−0.1)) and its projections are shown by dash-dotted lines.
(a) The slow manifold, trajectory and the fold curve, with their projections. (b) The trajectory and the fold curve with their projections, but
without the slow manifold. (c) Action potential (“voltage”−x vs. time), corresponding to the trajectory of (a) and (b).

which shall be called fast. It is reasonable to decide that based
on the characteristic times of those variables. The three gat-
ing variables have in their equations functionsτh,m,n which
have just that meaning. The equation forE does not have a
function calledτE , so we define the instant characteristic time
of a variablej as the inverse of the corresponding diagonal
element of the Jacobian of the right-hand sides,

τj(E, h,m, n) =
∣∣∣∣ ∂∂j

(
dj
dt

)∣∣∣∣−1

.

Obviously, forj = h,m, n this gives the same functionsτj as
defined in (1), but also can be used forj = E. After that we
decide that the variables with smallerτ will be called fast, and
the variables with largerτ will be called slow.

Theseτ ’s are not constants, though, but functions, and these
functions depend on different arguments, so they cannot be
compared directly. To make them comparable, we consider
typical solutions at selected initial conditions. This givesE,n,
h andm as functions oft, which, in turn, defines all the char-
acteristic time scales of the variables, theτ ’s, as functions of
t, via τj(t) = τj(E(t), h(t),m(t), n(t)), wherej = E, h, n
orm.

Figure 5(a) demonstrates that during the action potential in
the HH model, variablesE andm are always faster than vari-
ablesh andn, and that, compared to each other,m is slower
thanE in the beginning of the action potential, but faster than
E in the most part of the action potential. So we consider HH
as a (2,2) system, withh andn as slow variables andE and
m as fast variables.

Figure 5(b) shows that during the pacemaker potentials in
the N62 model,m is always the fastest, thatE andh inter-
change at around the overshot spikes, and that all three of
these are always faster thann. So we consider N62 as a (1,2,1)
system, wheren is the slow variable,E andh are fast vari-
ables andm is the superfast variable.
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FIG. 5: (a,b) Graphs ofτE(t) (dotted lines),τm(t) (solid lines),
τn(t) (dashed lines), andτh(t) (dash-dotted lines), corresponding
to the solutionsE(t) shown on (c,d) for (a,c) HH and (b,d) N62 sys-
tems.

VII. A (2, 2)-ASYMPTOTIC EMBEDDING OF THE
HODGKIN-HUXLEY SYSTEM

The above analysis suggests that the adequate asymptotic
embedding of this system is(2, 2), with slow variables (h, n)
and fast variables (E,m).

Thus, we consider the following one-parametric embedding
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FIG. 6: The asymptotic embedding of the Hodgkin-Huxley sys-
tem. (a) The action potentials in (18) with the initial condition
(E,m, h, n) = (15, 0.0530, 0.5961, 0.3177), original system with
ε = 1 (solid line), and withε = 10−3 (dashed line). (b) Same, in the
fast time (19).

of (1):

dn
dt

= (n(E)− n)/τn(E),

dh
dt

= (h(E)− h)/τh(E),

ε
dE
dt

= C−1
M fE(E, h,m, n),

ε
dm
dt

= (m(E)−m)/τm(E), (18)

with one artificial small parameterε. This embedding takes
into account the real relationship between the characteristic
time scales of dynamic variables during typical action poten-
tial solution. This system is singularly perturbed with respect
to ε.

The corresponding system in the fast timeT = t/ε is

dn
dT

= ε(n(E)− n)/τn(E),

dh
dT

= ε(h(E)− h)/τh(E),

dE
dT

= C−1
M fE(E, h,m, n),

dm
dT

= (m(E)−m)/τm(E), (19)

which is regularly perturbed with respect toε.
First we consider the limitε→ +0 numerically. The effect

of this limit onto the shape of the action potential is shown
on fig. 6. We can see that the excitability of the model is pre-
served, and we observe the jump upstroke to the excited state,
which becomes infinitely fast for infinitely smallε. However,
the asymptotic embedding abolishes the smooth return to rest,
as in the system with smallε, the return to rest includes a fast
piece. This suggests that if this smooth return is essential,
then the Tikhonov asymptotic embedding, contrary to Zee-
man’s expectation, is not sufficient, and one should consider
some more adequate appearance of the small parameter(s) in
the system. Note that this conclusion comes from the numeric
experiment with the embedding, prior to, and thus indepen-
dent of, any analytic work.

The slow manifold corresponding to the embedding (18)
is a two-dimensional manifold in the four-dimensional phase
spaceR4={(n, h,E,m)}. It is defined by equating the right-
hand sides of thėm andĖ equations to zero,

fE(E, h,m, n) = 0,
m(E)−m = 0.

This can not be resolved explicitly with respect to the fast vari-
ables(E,m), but can be resolved with respect to(m,h), giv-
ing

m = m(E), (20)

h = hSM (n,E) = −gK(EK − E)n4 + gl(El − E)
gNa(ENa − E)m3(E)

.

This explicit representation of the slow manifold is convenient
for visualisation, and can be used to describe explicitly the
slow motion in terms of(n,E) as coordinates on the slow
manifold.

The fast foliation is a two-parameter set of planesh =
const andn = const in R4={(n, h,E,m)}. The flow within
each of these planes is described by the system of two equa-
tions, which in the fast timeT = t/ε state:

dE
dT

= C−1
M fE(E, h,m, n),

dm
dT

= (m−m)/τm. (21)

Some typical phase portraits of this system at selected val-
ues of parametersn andh are shown on fig. 7. As antici-
pated from the formal speed analysis, which of the two vari-
ables is faster depends on their values, and the trajectories in
the (m,E) phase plane can be almost vertical or almost hor-
izontal in different parts of it. The system can have from one
to three equilibria. The most typical picture observed during
the selected action potential solution, is the type shown on
fig. 7(b), with two stable equilibria and one unstable equilib-
rium. The trajectory starting from point labelled A represents
the behaviour similar to the onset of the action potential as
shown on figures 2(a), 5(c) and 6, when the voltage experi-
ences a period of stagnation or even a slight temporary de-
crease, before them gates open up and allow the fast upstroke
of the voltage.

The stable equilibria of all leaves constitute the attractive
regions of the slow manifold. Let us describe the boundaries
of these regions. We consider equations (21) withn andh as
constant parameters. The Jacobian of the right-hand sides of
(21) at an equilibrium is:

JEm =
∂(Ė, ṁ)
∂(E,m)

=

[
C−1
M ∂fE/∂E C−1

M ∂fE/∂m

(τmm
′
− (m−m)τ

′

m)τ−2
m −τ−1

m

]
.

However, since at an equilibriumm = m(E), this reduces to:

JEm =

[
C−1
M ∂fE/∂E C−1

M ∂fE/∂m

m′τ−1
m −τ−1

m

]
.
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An equilibrium is stable in linear approximation iff
Tr (JEm) < 0 anddet (JEm) > 0. We have

Tr (JEm) = C−1
M

∂fE
∂E
− τ−1

m

= −C−1
M

(
gKn

4 + gNam
3h+ gl

)
− τ−1

m < 0, (22)

for all physiologically sensible values of the variables, so the
first stability condition is always satisfied. Further,

det (JEm) = −C−1
M τ−1

m

(
∂fE
∂E

+
∂fE
∂m

dm
dE

)
, (23)

and the zeros of this function determine the boundary of the
attractive regions on the slow manifold. In terms of the struc-
ture of the phase portraits of the fast subsystems (21), con-

dition det (JEm) = 0 can be viewed as
(
∇Ė · ∇ṁ

)
= 0,

i.e. tangency of the two null-clines at a double equilibrium.
In terms of the geometry of the slow manifold, this condition
means tangency of the fast flow to the slow manifold, i.e. de-
fines the fold curves. In more detail, the fold curve satisfies
the following three equations,

Ė = 0 : fE(E, h,m, n) = 0,
ṁ = 0 : m−m = 0, (24)

det (JEm) = 0 : F (E,m) ≡ ∂fE
∂E

+
∂fE
∂m

dm
dE

= 0.

An explicit equation of the fold curve can be given if we
chooseE as a parameter. Then, resolving (23) with respect
to h,m andn, we get:

h =
gl
gNa

p(E)
q2(E)− µ(E)

,

m = m(E),

n =
(
− gl
gK

q1(E)− µ(E)
q2(E)− µ(E)

)1/4

, (25)
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FIG. 8: Functionsq1(E) (dots),q2(E) (dash-dots) andµ(E) (solid)
defined by (26) for (a)El = 10.613 and (b)El=25. The fold line
of the slow manifold corresponds to the values ofE whereµ(E) is
betweenq1(E) andq2(E). Vertical dashed line isE = E∗ ≈ 31.92,
corresponding to the cusp point.

where

µ(E) = m3(E)/
(
m3(E)

)′
,

p(E) = (El − Ek)(ENa − EK)−1/
(
m3(E)

)′
,

q1(E) = (ENa − E)(E − El)(ENa − El)−1,

q2(E) = (ENa − E)(E − EK)(ENa − EK)−1. (26)

As n must be real, equation (25) only makes sense when
N(E) ≡ −(q1(E)−µ(E))/(q2(E)−µ(E)) ≥ 0. The graph
of functionsµ(E) andq1,2(E) for the standard values of the
parameters is shown in figure 8(a). There are two disjoint in-
tervals,E ∈ (−9.37 . . . , 14.66 . . . ) ∪ (41.25 . . . , 45.68 . . . ),
in which q1(E) < µ(E) < q2(E) and thusN(E) > 0. Thus,
the fold curve consists of two disjoint branches.

The cusp point is defined by condition that system (21) has
a triple equilibrium, or, equivalently, that the null-clines of
that system have second-order tangency, or, equivalently, that
the fold curve (24) is tangent to the fast leaves, i.e. planes
n = const, h = const. This leads to the following condition,
additional to the three equations (24):

∂F

∂E
+
∂F

∂m

dm
dE

= 0. (27)
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Using the definition ofF (E) we find from here that theE-
coordinate of the cusp points, if any, is given by the in-
flexion points of the graph of the functionM(E) = (E −
ENa)m3(E). For the standard parameter values, there is only
one such point,E∗ ≈ 31.92. The value ofN(E) at this point
is negative,N(E∗) ≈ −0.021. Therefore, the slow manifold
at the standard parameter values does not have cusp points.

We now demonstrate that a variation of parameters in the
HH system is possible that givesN(E∗) > 0, so the slow
manifold has a real cusp point. From (25) we can see that
the sign ofN(E∗) depends on the relative location of the ze-
ros of the functionsq1,2(E) − µ(E) to E∗. Note that the
function µ(E) is determined by the properties of the acti-
vation gates of the Na channel, and variations of those are
not physiologically feasible. On the contrary, the parameters
ENa,EK andEl are determined by the ratios of the intra- and
extracellular concentrations of the corresponding ions, which
can be changed during the experiments, and can vary phys-
iologically depending on the ionic balance of the organism.
From fig. 8(b) one can see that the closest to theE∗ root of
q1,2(E) = µ(E) is the left root ofq1(E), obviously strongly
correlated with the root ofq1(E) = 0, i.e. E = El. Inci-
dentally, as we noted above,El is the least reliable parameter
of the model, as its value has not been measured, but chosen
using indirect considerations. We have found that by chang-
ingEl from its standard value of10.613, we can shift the left
zero of q1(E) − µ(E) throughE∗ = 31.92. Notably, this
parameter variation does not involve functionM(E) whose
inflexion point isE∗, so the value ofE∗ remains unchanged.
Figure 8(b) shows what happens toq1, q2 andµ for El = 25.
We haveN(E) > 0 at the cusp pointE∗ = 31.92. As a re-
sult, atEl = 25 and all other parameters at standard values,
we haveN(E∗) ≈ 0.0012 > 0, and there is a cusp point,
(h, n,E,m) ≈ (0.0013, 0.1860, 31.92, 0.6711).

Note that the conditionN(E∗) > 0 is equivalent to the con-
dition of having the single interval withN(E) > 0, i.e. the
slow manifold has a real cusp point if and only if the two fold
lines join into a single fold line. This can be seen by consider-
ing the marginal case when the graphs of the functionsq1(E)
andµ(E) have a point of tangency; straightforward calcula-
tions show that this always happens at the point of the zero of
the second derivative ofM(E), i.e. atE∗.

The phase portraits resulting from the above analysis for
both values ofEl are shown in figure 9. As the phase
space of the system is four-dimensional, we depict only three-
dimensional projections of the portraits. We use (20) to draw
the slow manifolds, and (25) to draw the fold curves. Figure 9
also shows typical trajectories that go from a starting point (A)
along the fast foliation until they reach the slow manifold (B),
then along the slow manifold, until the fold curve (C), where
we have a jump return down the fast foliation to the lower
part of the slow manifold (D). Then the trajectories eventually
move to the equilibrium point (E).

In the system with the modified value ofEl there exists,
theoretically, an alternative for the trajectories. Namely, with
a different flow on the slow manifold, the trajectories could
have returned to the equilibrium without a jump return, but
only going along the slow manifold, around the cusp point,

as they did in Zeeman’s “Heart” model. However, as far as
we could see, this possibility has not been realised in the HH
model at any reasonable variations of parameters, and the ac-
tion trajectories always have a jump return.

VIII. A (1, 2, 1)-ASYMPTOTIC EMBEDDING OF THE
NOBLE (1962) SYSTEM

Our formal analysis of the relative speeds in the N62 model
has shown thatm is the fastest variable,E andh are of inter-
mediate speeds comparable to each other, andn is the slowest
variable. This understanding leads to the following(1, 2, 1)
asymptotic embedding:

dn
dt

= (n(E)− n)/τn(E),

ε1
dE
dt

= C−1
M fE(E, h,m, n),

ε1
dh
dt

= (h(E)− h)/τh(E),

ε1ε2
dm
dt

= (m(E)−m)/τm(E). (28)

First, we consider the limitε2 → 0. The corresponding slow
manifold is defined by equating the right-hand side of theṁ
equation to zero, which givesm as a single-valued smooth
function ofE,

m = m(E).

This makesm a uniquely and everywhere defined function of
the slower variables, i.e. the slow manifold is uniquely and
reversibly projected onto the(n, h,E) space. This slow man-
ifold is always attractive. This allows adiabatic elimination of
variablem from the system. Figure 10 illustrates results of
direct numerical simulations, illustrating the accuracy of this
procedure. We see that replacement ofm with m(E) has vir-
tually no effect on the shape of the action potential. In other
words, numerical experiment shows that variablem can be
adiabatically eliminated from the system with good quantita-
tive accuracy.

After this elimination, we have a(1, 2) Tikhonov system,

dn
dt

= (n(E)− n)/τn(E),

ε1
dh
dt

= (h(E)− h)/τh(E),

ε1
dE
dt

= C−1
M fE(E, h, n), (29)

where

fE(E, h, n) = fE(E, h,m(E), n).

This “reduced” system has two fast variables,h andE, and
only one slow variable,n. Therefore, the slow manifold is
one-dimensional, and the fast foliation is two-dimensional.
Thus, Zeeman’s conjecture on the cusp singularity in the slow
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FIG. 9: (a,d) The three-dimensional projections of the phase portraits of the Hodgkin-Huxley system and (b,e) its(2, 2) asymptotic embed-
ding atε = 10−3, together with (c,f) corresponding action potentials, for (a–c)El = 10.613 and (d–e)El = 25. The semi-transparent
surface is the slow manifold (20). On (a,b,d,e), the thick solid lines are the fold curves and the thin solid lines are their projections
on the coordinate planesh = const, n = const andE = const. The trajectories and their projections are shown by dotted lines.
The initial point of the trajectories is(E, h,m, n) = (15, 0.5961, 0.0530, 0.3177). The filled circle on (d,e) represents the cusp point
(E, h,m, n) = (31.92, 0.0013, 0.6711, 0.1860). Labels A–E mark the feature points of the solution on the coordinate planesh = const and
n = const on (a,b,d,e) and are also marked on the graphs on (c,f).
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FIG. 10: The first asymptotic embedding in the Noble-1962 system,
(28) atε1 = 1 andε2 → 0, leading to adiabatic elimination of the
gatem. (a) The pacemaker potentials in the original system,ε2 = 1
(solid line), and in the reduced system,ε2 = 0 (dotted line), for initial
point (n,E, h,m) = (0.3276,−70.6426, 0.6025, 0.0786). (b) The
behaviour ofm(t) (dashed line) andm(E(t)) (dotted line) during
one pacemaker potential (E(t) ∗ 0.01 shown by solid line for com-
parison). The two curvesm(t) andm(E(t)) are indistinguishable at
this resolution.

manifold is not applicable here even in theory, and we are
bound to have a jump return.

This is confirmed by direct numerical simulations illus-
trated on fig. 11(a). The pacemaker potentials in the system
with small ε1 = 0 are somewhat shorter, mainly at the ex-
pense of the slow returns forε1 = 1 becoming jump returns
for ε1 → 0, and also by further quickening of the fast onsets.
Correspondingly, the period of oscillations is shorter. Another
observation can be made on the regular limit fig. 11(b), i.e.
behaviour of the system in the fast time: the overshot of the
voltage at the onset of the pacemaker potential is due to the
interaction of the two fast variablesE andh, as it is preserved
when the slow motion ofn is frozen.

The one-dimensional slow manifold of (29) is defined by
equations

h− h(E) = 0,
fE(E, h, n) = 0.

This system of equations cannot be explicitly resolved with
respect to(E, h), but is easily resolved with respect to(h, n),
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FIG. 11: The second asymptotic embedding in the Noble-1962
system (29) atε1 → 0. (a) Singular limit. Solid line: so-
lution of the original system (ε1 = 1), dotted line: close to
the reduced system (ε1 = 10−3), for initial point (n,E, h) =
(0.3276,−70.6426, 0.6025). (b) The corresponding regular limit.
Same initial conditions as in (a), in the fast timeT1 = t/ε1.

giving parameterisation of the manifold byE

h = h(E),
n = nSM (E) =

[(
(m3hgNa + gNa1

)(ENa − E)

+ gK1
(E)(EK − E) + gl(El − E)

) /
(gK(E − EK))

]1/4
.

The fast foliation consists of planesn = const, with coor-
dinates(h,E). The dynamics on the fast leaves, in terms of
the fast timeT is described by the system

dE
dT

= C−1
M fE(E, h, n),

dh
dT

= (h(E)− h)/τh(E), (30)

wheren is a constant parameter defining the leaf.
The stability of an equilibrium in the fast subsystem is de-

termined by the Jacobian of the right-hand side of (30),

JEh =
∂(Ė, ḣ)
∂(E, h)

=

[
C−1
M ∂fE/∂E C−1

M ∂fE/∂h

(τhh
′ − (h− h)τ

′

h)τ−2
h −τ−1

h

]

=

[
C−1
M ∂fE/∂E C−1

M ∂fE/∂h

τ−1
h h

′ −τ−1
h

]
(31)

becauseh = h(E) at an equilibrium. The stability in linear
approximation requiresTr (JEh) < 0 anddet (JEh) > 0. We
have

Tr (JEh) = C−1
M

∂fE
∂E
−τ−1

h = C−1
M

(
∂fE
∂E

+
∂fE
∂m

dm
dE

)
−τ−1

h

Unlike (22), we are not guaranteed that this func-
tion is negative in the physiological region, since
(∂fE/∂m) (dm/dE) > 0. The graph ofTr (JEh) (E)
in the physiological range ofE is shown in fig. 12. It
shows that stability conditionTr (JEh) (E) < 0 is vio-
lated in a rangeE ∈ [E1

Tr, E
2
Tr], whereE1

Tr ≈ −68.25,
E2
Tr ≈ −57.01.
Further,

det (JEh) = −C−1
M τ−1

h

(
∂fE
∂E

+
∂fE
∂h

dh
dE

)
. (32)
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FIG. 12: Graphs of10 ∗ det (J) (E) (solid line, ms−2) and
Tr (J) (E) (dashed lines, ms−1), whereJ = JEh is defined by (31).

As can be seen from figures 12, conditiondet (JEh) < 0
is satisfied in intervalsE ∈ (−∞, E1

det) ∪ (E2
det, E

3
det) ∪

(E4
det,+∞), whereE1

det = −77.37, E2
det = −55.54, E3

det =
−47.24, E4

det = −20.27.
Thus, we see that the interval of instability due to the

positive trace,(E1
Tr, E

2
Tr), lies wholly inside the interval

(E1
det, E

2
det) where the equilibria are unstable due to nega-

tive determinant. Therefore, the stability of the equilibria of
the fast subsystem, hence attractive and repelling pieces of
the slow manifold, can be determined based on the sign of the
determinant only, at least for the standard values of the pa-
rameters. And this criterion produces three disjoint attracting
pieces of the slow manifold.

Incidentally, the sign ofdet (JEh), and thus the stability
of different parts of the slow manifold, can be deduced from
the slope of its(n,E) projection. Indeed, this projection is
defined byn = nSM (E), where

fE(E, h(E), nSM (E)) = 0.

We differentiatef(E), and thus find the slope of the slow
manifold projection as

dnSM
dE

= −
(
∂fE(n)
∂n

)−1(
∂fE
∂E

+
∂fE
∂h

dh
dE

)
.

Comparing this with (32) and noticing that

∂fE(n)
∂n

= 4gKn
3(EK − E),

we see thatdet (JEh) has the opposite sign todnSM/dE as
long asE > EK , i.e. during any physiologically sensible
action/pacemaker potential.

Thus, the stable points of the slow manifold are those where
the slope of the projection of the slow manifold to the(E,n)
plane, see fig. 14(a,b), is negative.

Figure 13 shows the different types of phase portraits of the
fast subsystem, taken at selected values ofn. These portraits
illustrate the null-clines, equilibria, and selected trajectories.
On fig. 14, one can see also the projection of the slow manifold
and the selected trajectory to the(n,E) plane, for the original
system,ε1 = 1 (panel (a)) and for the reduced systemε1 →
+0, represented byε1 = 10−3 (panel (b)).
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FIG. 13: Phase portraits of the fast leaves at the specified values ofn. Dashed lines: thėE = 0 isoclines, solid lines:̇h = 0 isoclines, dots:
selected trajectories, filled points: stable equilibria, asterisks: saddle points.
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FIG. 14: (a) The projection of the phase portrait of the N62 system onto the(n,E) plane. Solid line: the slow manifold. Dotted line: a selected
“pacemaker potential” trajectory. Vertical dashed line: positions of the selected fast leaves shown on fig. 13 (b) Same as (a), with the trajectory
of the embedded system atε1 = 10−3. (c) The pacemaker potentials of the original (solid line) and embedded (dashed line) systems. Letters
A,B,C,D,E mark feature points of the pacemaker potential trajectory.

The selected trajectory, representing the pacemaker poten-
tial, has slow motion pieces along the upper (CD) and lower
(EA) branches of the slow manifold. Between these slow mo-
tions, there are fast transitions from the lower branch to the
upper branch (ABC), which is the jump onset with an over-
shot of the pacemaker potential, and from the upper branch to
the lower branch (DE), which is the jump return. These fast
transitions occur near the fold points on the slow manifold.
The labels A-E correspond to the feature points of the pace-
maker potentials shown on fig. 2. This fast/slow behaviour is
exaggerated on the panel (b) where the fast pieces of trajectory
are visually vertical.

The pacemaker potential trajectory does not ever come
close to the intermediate stable branch of the slow manifold.
As can be seen from fig. 13(c), the angle between the null-
clines at the middle stable equilibria of the fast subsystem is
very small and the stability of these equilibria must be very
weak. Indeed, the numerical experiment shows that atε1 = 1,
there are no trajectories that would stay along the middle
branch of the slow manifold for any considerable time.

Note that there is no stable equilibrium in the model at the
standard parameter values, and so the selected trajectory rep-
resents auto-oscillations. With this fact in mind, the over-
all behaviour is comparable to that of the Zeeman’s “Heart”
model in an appropriate parameter region that gives limit cycle
behaviour. The only essential difference in the morphology

of the pacemaker potential is the non-monotonic onset, repre-
sented by the ABC piece of the trajectory, including the “over-
shot”. This non-monotonicity is a consequence of the be-
haviour of trajectories in the corresponding two-dimensional
fast subsystem, as illustrated by the portrait on the fast leaf
n = 0.3, fig. 13(a). This is essentially different from what is
possible in one-dimensional fast subsystems, where the tran-
sition is always monotonic.

IX. DISCUSSION

We have analysed the asymptotic behaviour of two classical
models of biological excitable systems, the Hodgkin-Huxley
(HH) model of a nerve axon and Noble 1962 (N62) model
of a heart muscle fibre. Although the latter was only a mod-
ification of the former, we have found that their asymptotic
properties differ substantially. The least surprising difference
is the longer duration of the pacemaker potentials in the N62
model than the action potentials in the HH model, as it is a
direct consequence of the conductivity of the slow potassium
current decreased by the two orders of magnitude in N62 com-
pared to HH. However, the differences do not stop there.

First of all, the asymptotic structure of the two models is
different: whereas HH model is a(2, 2) model, i.e. has two
slow and two fast variables, N62 model is a(1, 2, 1) model,
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i.e. has 1 slow, 2 fast and 1 superfast variable. By virtue
of the simple structure of the superfast system, which always
has a unique and stable equilibrium, N62 model is readily re-
duced to a(1, 2) system, with one slow variable and two fast
variables. After that, HH and N62 models have a common
feature, which makes them different from the two Zeeman’s
models: two fast variables in both HH and reduced N62, as
opposed to one fast variable in both Zeeman’s “Heart” and
“Nerve” model. This feature appears to be not just a techni-
cal difference, but brings about new phenomena that are not
possible in systems with one fast variable. In the HH model,
the feature we found is less prominent: it is a slight delay of
the fast onset of the action potential, even with its slight de-
crease in the beginning. In the N62 model, this is much more
prominent: it is the overshot in the beginning of a pacemaker
potential. This last feature is quite typical of many cardiac ex-
citability models and of real cardiac cells behaviour; thus, we
believe the mechanism of the overshot in the N62 model may
be prototypical for more detailed and up-to-date models. An
important lesson here is that if any asymptotic embeddings in
such models are to retain this property, theymusthave at least
a two-dimensional fast foliation.

Another characteristic feature of the solution is the “return”,
i.e. the repolarisation to the resting potential in the excitable
HH system and to the lower phase of oscillations in the oscil-
latory N62 model. The two Zeeman’s model differ in that the
“Nerve” model, at appropriate initial conditions, has a smooth
return, while the “Heart” model always has a jump return. In
our analysis, both the HH nerve, and N62 heart models have
proved to demonstrate jump returns. However, the reasons for
that are different in the two models. In N62 model, there is
only one slow variable, thus the slow manifold is only one-
dimensional, and therefore, in accordance with Zeeman’s rea-
soning, the slow return is impossible. Indeed, the action and
resting branches of the slow manifold have been found to be
separated in the phase space. In contrast, HH model has two
slow variables, and a two-dimensional slow manifold. There-
fore, there exists a theoretical possibility of this manifold to
have a cusp catastrophe in its mapping to the space of slow
variables, and a possibility for trajectories to return from the
upper to the lower branch of the slow manifold by going along
that manifold around the cusp point. Indeed, we have found
that, although such a catastrophe is not observed in the model
at the standard values of the parameters, it may appear at ap-
propriate, physiologically feasible variations of the parame-
ters. However, existence of this catastrophe does not automat-
ically imply that trajectories will necessary go around the cusp
point, and as the numerical calculations show, in fact they do
not, at least at the parameter values studied.

Notice that the very fact of the jump return does not depend
on details of the analytic work, but is a direct result of the cho-
sen parametric embedding, i.e. the way the artificial small pa-
rameter is introduced in the model to make asymptotic analy-
sis possible. Indeed, this property can be established by direct
numerical calculations of trajectories in systems with progres-
sively decreasing values of the artificial parameter. This is a
convenient way to establish properties of an asymptotic em-
bedding,prior to the asymptotic analysis of that embedding.

Applied to the character of the return in HH and N62 mod-
els, the present result are less than entirely agreeing with intu-
itive impressions that one might have observing the solutions
of the original models. Indeed, the action potential in the
HH model definitely looks more triangular than rectangular,
which was the original impulse for Zeeman’s conjecture on
the role of the cusp catastrophe. And yet, this property is not
conserved in the asymptotic embedding. The pacemaker po-
tentials in the N62 model are less triangular, and the question
of whether the return to the lower potential should be consid-
ered fast or slow may be a subjective matter. It is, however,
certain that the slope of the return is much smaller than the
slope of the onset. In the asymptotic embedding considered,
more specifically, in the limitε1 → +0, this difference is not
reflected at all, and both slopes become vertical.

Thus, we conclude that if the slow character of the return is
of importance, then the asymptotic embedding we used here
should be considered unsatisfactory. At this point, we should
recall that there are infinitely many asymptotic embeddings,
i.e. infinitely many ways artificial small parameter(s) can be
introduced to a given system of equations. The asymptotic
embeddings we used here were both of Tikhonov fast-slow
type, where small parameters appear as factors at some of the
time derivatives, or as factors at some of the right-hand sides,
depending on the choice of the time scale. The number of
ways such embeddings can be done for a system of only a few
equations is limited, and considering the formal speed analy-
sis that we performed in Section VI, there are practically no
alternatives [19]. This class of perturbed systems is the best
studied, and a huge amount of literature dedicated to singular
perturbations and fast-slow systems is practically restricted to
this class: e.g. it isthe onlyclass considered in a very compre-
hensive review [13]. Thus, the formal analysis of asymptotic
properties of realistic excitable systems ought to have started
with this embedding. However, we now see that analysis re-
stricted to this class may not be sufficient, and other types of
embedding should be considered. And this may involve inter-
esting mathematical questions, as the mathematical theory of
non-Tikhonov fast-slow systems is very little developed yet.

There are two more points to notice in the analysis of the
N62 model, the possibility of fast oscillatory instability and
middle stable branch of the slow manifold. Oscillatory insta-
bility is impossible in systems with one fast variable, but is
theoretically possible in systems with two fast variables, and
would be characterised by change of sign of the trace of the
Jacobian at the equilibrium at a positive determinant of the Ja-
cobian, i.e. a Hopf bifurcation. This possibility is not realised
in N62 model, as the change of sign of the trace happens at
negative determinant; however, the fact that such a change
happens, is suggestive of the fact that this kind of instability
may take place in this system at different parameter values, or
in other models of similar nature. This would correspond to
bursts of high frequency oscillations on the wake of the ac-
tion/pacemaker potential; indeed, such bursts are observed in
some models[16]. The middle stable branch in N62 model
was completely unexpected. If it was more pronounced, it
could correspond e.g. to another, “minor” action potentials
with smaller amplitude and much shorter duration than the
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normal potentials. This possibility is not realised in N62 sys-
tem at normal parameter values, and so could be considered
as an artefact of the parametric embedding. But again, the
fact that such this feature takes place albeit formally, suggest
that in some similar systems it may appear indeed. We are not
aware of any theoretical or reliable experimental description
that could be associated with such “minor” potentials; how-
ever, there are certain experimental facts which do not yet
have firm theoretical explanations, and for which such “mi-

nor potential” explanation may look plausible[17].
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