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Models of electric excitability of cardiac cells can be studied by singular perturbation techniques. To do this
one should take into account parameters appearing in equations in non-standard ways. Physical reason for this
is near-perfect switch behavior of ionic current gates. This leads to a definition of excitability different from
the currently accepted one. The asymptotic structure revealed by our analysis can be used to devise simplified
“caricature” models, obtain approximate analytical solutions, and facilitate numerical simulations.
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Self-organization in complex non-equilibrium dissipative
systems is often understood in terms of “order parameters”,
i.e. a small number of essential quantities whose dynamics are
much slower than all others in the system[1]. An important
class of self-organized systems are excitable systems, found
in such diverse areas as catalytical chemical reactions, nerves,
heart, populations, liquid crystals, semiconductors and lasers
[2, 3]. An excitable system has a “resting” state, which is
stable against small perturbations, but an over-threshold per-
turbation produces a large “action potential” response before
returning to rest. The classical FitzHugh-Nagumo[4, 5] way
to understand excitable dynamics is in terms of a fast vari-
able, called “activator” or “propagator”, explicitly separate
from one or more slow variables, called “inhibitors” or “con-
trollers”, and the dynamics of the activator may be bistable,
depending on the instant state of the controller(s) [6].

In this Letter we provide a counterexample to this
paradigm[4–6], by demonstrating that excitability of heart tis-
sue is better understood in completely different terms. Earlier
we demonstrated features of realistic heart models, incom-
patible with the FitzHugh-Nagumo description, such as dis-
sipation of excitation fronts [7, 8] and characteristic shape of
the action potentials [9]. Here we identify the details of heart
excitation responsible for these features, and suggest a com-
plete asymptotic description of heart excitability, consistent
with these details. We do that for the first and the simplest
cardiac excitation model by Noble [10]. We also propose a
modified version of it, which has similar asymptotic proper-
ties and produces similar action potentials, but contains small
parameters in the way that is more typical of other models of
cardiac cells.

Simplified but adequate models are important for making
massive numerical simulations of biological excitable systems
more efficient. Development of such models has been via ap-
proximation of phase space dynamics [4, 11], imitation of ac-
tion potentials and recovery dynamics [12, 13],ad hocasymp-
totics [14, 15] or combination thereof [16–19]. Identification
of typical asymptotic features of detailed models opens a reg-
ular and reliable way to do that by asymptotic methods.

The asymptotic techniques —The standard approach to
“fast-slow” systems[20] is based on Tikhonov’s 1952 [21] the-
orem. As it is well known, this theory operates with para-
metric families of systems of the formdx/dt = f(x, y),
εdy/dt = g(x, y) (x andy are scalars or vectors), or equiva-
lently dx/dT = εf(x, y), dy/dT = g(x, y), wheret = εT
andε is assumed small. In the limitε ↘ 0, the second (fast-
time) system describes the fast variablesy approaching their
quasi-stationary values along the fast foliation of the phase
space(x, y) determined by conditionsy = const, and the first
(slow-time) system describes motion along the slow manifold
defined by the conditiong(x, y) = 0. An important assump-
tion of Tikhonov’s theorem is that the relevant attractors of the
fast system are isolated, asymptotically stable equilibria.

Mathematical models of real systems normally don’t con-
tain parameters that can conceivably tend to zero or infinity,
thus asymptotic approaches to such systems are always based
on artificially introduced small parameters. We callparamet-
ric embeddingof a functionf(x) any functionf(x; ε) such
that f(x, 1) = f(x) for all x ∈ dom(f). A parametric em-
bedding in the context ofε → 0 is calledasymptotic embed-
ding. An embedding of a system of differential equations cor-
responds to an embedding of its right-hand sides.

An artificial small parameter can be introduced in infinitely
many different ways. To check that a particular embedding is
reasonable, we use numerical simulation to see how its solu-
tions behave in the limitε→ 0. Note this can be done prior to
any analytical work.

The Noble-1962 model,after the standard adiabatic elimi-
nation of them gate, can be written in the form

dE

dt
= g1(E)m3

∞(E)h + g2(E)n4 + g3(E),

dh

dt
= f1(E) (h∞(E)− h) ,

dn

dt
= f2(E) (n∞(E)− n) , (1)

where g1(E) = gNa (ENa − E) /CM , g2(E) =
gK (EK − E) /CM , g3(E) = (gNa1(E) (ENa − E) +
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FIG. 1: (color online) (a) The typical action potential solution of (1).
This and all other AP solutions are calculated for initial conditions
E(0) = −10, h(0) = 1, n(0) = 0. A–G: feature points referred
to in further analysis. (b) Graphs of dimensionless functions ofE
whose properties are summarised in the assumptions A2–A7. Volt-
agesEm andEh cutm3

∞ andh∞ on the level1/2.

gK1(E) (EK − E) + gl (El − E))/CM , f1(E) = τ−1
h (E),

f2(E) = τ−1
n (E), and further definitions of functions and

parameters can be found in [9, 10]. Following [10] and
[14], we raised the numerical coefficient at functiongK1(E)
from 1.2 to 1.3, to make the system excitable rather than
oscillatory. A typical AP solution of this system is shown on
Fig. 1(a).

The asymptotic featuresof (1) are summarised in the fol-
lowing formal assumptions (see Fig. 1(b)):
A1 The maximal permittivity of the fast (gated) Na cur-
rent is much larger than those of the other currents,
max(gK , gK1 , gNa1)/gNa

<∼ 10−2. Thus we replacegNa

with gNa(ε) = ε−1gNa.
A2 The speed ofh is comparable toE during the upstroke and
definitely higher than the speed ofn, so thatmax(f2/f1) <∼
10−2. Thus, we putf1(E; ε) = ε−1f1(E).
A3 Function m3

∞(E) is small for E below someEm.
Thus we replacem3

∞(E) with m3
∞(E; ε) which obeys

lim
ε→0

m3
∞(E; ε) = M(E)θ(E−Em) whereM(E) ≈ m3

∞(E)

for E > Em. We useθ() for Heaviside function.
A4 Similarly, h∞(E > Eh) is small solim

ε→0
h∞(E; ε) =

H(E)θ(Eh − E) whereH(E) ≈ h∞(E) for E < Eh.
A5 From Fig. 1(b) we see thatEm > Eh.

A consequence of A3–A5 is that the specific permittivity of
the “window current”, defined asw(E) = m3

∞(E)h∞(E), is
small[24], i.e.

lim
ε→0

[
m3
∞h∞

]
= 0. (2)

However, this small product is multiplied by a large factor
gNa, which makes it comparable to 1.

A6 Thus, we supposelim
ε→0

[
ε−1m3

∞(E; ε)h∞(E; ε)
]

=

W (E) > 0, whereW (E) ≈ w(E).
A7 In addition to (2), we assume thatq(E) = m3

∞dh∞/dE

is small, i.e.lim
ε→0

[
m3
∞(E; ε) ∂

∂E h∞(E; ε)
]

= 0.

So the asymptotic embedding of model (1) is

dE

dt
= ε−1g1(E)m3

∞(E; ε)h + g2(E)n4 + g3(E)

dh

dt
= ε−1f1(E)

(
h∞(E; ε)− h

)
dn

dt
= f2(E) (n∞(E)− n) . (3)

Here only A1 and A2 are used explicitly. Examples of explicit
embeddingsm∞ andh∞ that satisfy A3–A7 are discussed in
[22], here for brevity we only do the deductive analysis. For
numerics, we setEm = −14, Eh = −69 (so m∞(Em) ≈
h∞(Eh) ≈ 1/2), M = m∞, H = h∞ andW = w.

The fast system —Changing the independent variable in
(3) from t to T = t/ε and taking the limitε → 0, gives, with
account of A3 and A4,

dE

dT
= g1(E)M(E)θ(E − Em)h,

dh

dT
= f1(E) (H(E)θ(Eh − h)− h) ,

dn

dT
= 0. (4)

The first two right-hand sides are nonzero, thus we have two
fast variables,E and h. This system coincides with the
point system postulated in [7]. Its phase portrait is shown on
Fig. 2(a); it does not depend on the slow variablen. The slow
manifold is the set of equilibria of (4) and is defined by

M(E)θ(E − Em)h = 0, (5)

H(E)θ(Eh − E)− h = 0, (6)

sinceg1(E) > 0, f1(E) > 0 in the physiological range ofE.
Substitution of (6) into (5) with account of A5 makes (5) an

identity due to the product of two Heaviside functions. Thus
we have a codimension 1 slow manifold, defined by equation
(6). So, all the equilibria of the fast system, at anyn, are
not isolated, and Tikhonov’s theorem is not applicable. The
physical reason for this highly degenerate situation is the near-
perfect switch behavior ofh∞(E) andm∞(E)[25].

System (4) is solvable in quadratures. ForE < Em, we
haveĖ = 0 and the equation foṙh is separable. ForE > Em,
we havedE

dh = −g1(E)M(E)/f1(E) and a quadrature for
h(E) follows; substituted back to (4) it givesh(T ) andE(T ).

The threshold between excitatory and passive responses
is the line E = Em, at which the right-hand sides are
non-analytical, and discontinuous ifM(Em) 6= 0. Even if
M(Em) = 0, this is not a locus of equilibria of the fast sys-
tem. So, the nature of the threshold in this system is different
from FitzHugh-type systems where the thresholds are unsta-
ble pieces of the slow manifold. We see also on Fig. 2(a) that
each fast trajectory approaches the slow manifold only once,
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FIG. 2: (color online) Phase portraits of (a) fast system (4), (b) slow
system (9). A–G: feature points defined at Fig. 1(a). Black dotted
lines: trajectories of the fast (a) and slow (b) subsystem. Green large
dots: projections of an action potential trajectory of the full system
(1). Blue dashed lines: vertical isoclines,ḣ = 0 (a) orṅ = 0 (b). Red
solid lines: horizontal isoclineṡE = 0. On (a), horizontal isocline
includesa region(E, h) ∈ (−∞, Em) × [0, 1] (dashed rectangle).
Thus,{ḣ = 0} ⊂ {Ė = 0}, and the whole curve{ḣ = 0} = {h =
H(E)θ(Eh − E)} consists of equilibria.

so there is no place for the classical interpretation of the ex-
citability in terms of bistability of the fast dynamics.

The slow system —Consider system (3) in the original
(slow) time, and focus on trajectories near the slow manifold,
i.e. for h ≈ h∞(E; 0). By re-arranging the second equation,
and assuming thatdh/dt = O(1) (this is confirmed by the
following result), we see that

h = h∞(E; ε)− ε

f1(E)
dh

dt
= h∞(E; ε) + O(ε). (7)

Differentiating this byt and substituting back into (7) gives

h = h∞(E; ε)− ε

f1(E)
∂h∞

∂E

dE

dt
+ O(ε2). (8)

Substituting this into the first equation, using A6 and A7 and
taking the limitε→ 0 produces, in the leading order,

dE

dt
= g1(E)W (E) + g2(E)n4 + g3(E),

h = H(E)θ(Eh − E),
dn

dt
= f2(E) (n∞(E)− n) , (9)

a system of two slow equations forE andn plus a finite equa-
tion for h defining the slow manifold. So we have a two-
dimensional slow manifold, two slow variables,E andn, and
a non-Tikhonov feature of variableE being both fast and slow.

System (9) was derived [26] and studied in detail in [14]
In particular, it can be considered a fast-slow system itself,
this time in the classical Tikhonov sense, withE as the fast
variable andn as the slow variable. The small parameter of
this secondary embedding is associated with a small dimen-
sionless constant of the order of10−1. As both the fast and
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FIG. 3: (color online) Transmembrane currents in (a) Noble model
(1), µA/cm2, (b) Courtemanche et al. [23] model of a human atrial
cell, pA. INa: the current component proportional to the product
m3h; Iin: the sum of all other inward currents;Iout: the sum of
all outward currents;E: the action potential for reference. By the
tradition accepted in physiology, currents that increase voltage are
considered negative and called inward.
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FIG. 4: (color online) The modified Noble model (10). (a) The typ-
ical action potential solution. Black dots: solution of the original
system for comparison. Agreement at the wake of AP can be im-
proved by more careful choice of parameters and asymptotics in (9)
[22]. (b) Currents making this action potential. Compare with Fig. 3.

slow subsystems are one-dimensional, both admit solutions in
quadratures. A phase portrait of (9) is shown on Fig. 2(b).

Modified model —Noble’s [10] model of heart Purkinje fi-
bres is special (see Fig. 3) in that the action potential plateau
is a balance between the outward potassium currentIout and
the “window” component of the inward sodium currentINa

through poorly closed gatesm and h, unlike other cardiac
models, where balance is betweenIout and other inward cur-
rents, andINa is neglible. This peculiar property of (1) is
reflected by assumption A6, withW (E) > 0. In other mod-
els, we would haveW (E) = 0. Then, in the leading order,
h∞ andm∞ can be simply replaced with their limits, and the
asymptotic embedding would have simple explicit form

dE

dt
=

1
ε
g1(E)M(E)θ(E − Em)h + g2(E)n4 + G(E),

dh

dt
=

1
ε
f1(E) (H(E)θ(Eh − E)− h) ,

dn

dt
= f2(E) (n∞(E)− n) . (10)

whereG(E) = g3(E) + g1(E)W (E). Here we have chosen
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FIG. 5: (color online) Asymptotic embedding of the modified Noble
model (10). Action potential solutions forε = 10−3 (line choice as
in Fig. 1) andε = 1 (black dots), (a) in the slow timet ∈ [0, 600],
(b) in the fast timeT = t/ε ∈ [0, 1].

such right-hand sides that the fast and slow systems of this
model exactly coincide with the fast (4) and slow (9) systems
of the original model (1). Thus all the above asymptotic anal-
ysis of (1) applies to (10) as well. Note that the model postu-
lated in [16] has structure similar to (10) but withEm = Eh.

The modified model (10) approximates the original model
(1), and has a structure more typical of other heart models, in
that the window current is negligible during the plateau, and
the balance is maintained by other currents, see Fig. 4(b). Its
essential asymptotic features are captured by a simple explicit
embedding, which gives a quantitatively good approximation,
easily tested numerically, see Fig. 5. Thus it may serve as
a prototype for simplified models for heart cells, by specify-
ing appropriate phenomenology for the slow subsystem, as the
fast subsystem in the form (4) is apparently quite generic. In-
deed, we have found that an asymptotic embedding of model
[23] similar to A1–A7 works well withW (E) = 0, and its
fast subsystem is similar to (4); its slow subsystem is substan-
tially more complicated than (9) and depends on a number of
slow gates and ionic concentrations, but further progress is
possible with identification of new small parameters.

In conclusion, the revealed asymptotic structure of the
Noble-1962 model can be used to build simplified ”carica-
ture” models of excitability, which can be solved analytically
and/or used for more efficient numerical simulations. We be-
lieve that our results can help to understand better excitabil-
ity of heart. These results can also stimulate more adequate
analysis of other excitable systems, both biological, e.g. neu-
ral, and non-biological, e.g. catalytical chemical reactions or
semiconductors. Cardiac and nerve excitability models have
features, such as near-switch behaviour of the ionic gates, that
could not be described within Tikhonov formalism. Consider-
ation of non-Tikhonov small parameters in other systems can
provide new views and reveal unexpected aspects of known
phenomena.
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